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1. INTRODUCTION

The study of impulsive functional differential equations is linked to
their utility in simulating processes and phenomena subject to short-time
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perturbations during their evolution. The perturbations are performed
discretely and their duration is negligible in comparison with the total
duration of the processes and phenomena. That is why the perturbations
are considered to take place “instantaneously” in the form of impulses. The
theory of impulsive differential equations has seen considerable develop-
ment; see the monographs of Bainov and Simeonov [1], Lakshmikantham
et al. [12], and Samoilenko and Perestyuk [16], where numerous properties
of their solutions are studied and detailed bibliographies are given.

This paper is devoted to extending existing results to a differential-
inclusions scenario. To be precise, in [3], the authors used Schaefer’s
theorem to establish existence results for first- and second-order impul-
sive semilinear neutral functional differential equations in Banach spaces.
The goal of this paper is to extend, via Martelli’s fixed point theorem, the
results of [3] to the differential inclusions context.

Section 3 deals with the existence of mild solutions for the first-order
initial-value problem for semilinear neutral functional differential inclusions
with impulsive effects given by

d

dt
�y�t� − g�t� yt�� ∈ Ay�t� + F�t� yt�� t ∈ J = �0� b��(1.1)

t 	= tk� k = 1� � � � �m�


y
t=tk
= Ik�y�t−k ��� k = 1� � � � �m�(1.2)

y�t� = φ�t�� t ∈ �−r� 0��(1.3)

where A is the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators T �t� in E� F � J × C��−r� 0�� E� −→ 2E is a
bounded, closed, and convex-valued multivalued map; g� J × C��−r� 0�,
E� −→ E is a given function; φ ∈ C��−r� 0�� E� �0 < r < ∞�, 0 = t0 <
t1 < · · · < tm < tm+1 = b, and Ik ∈ C�E�E� �k = 1� 2� � � � �m� are bounded
functions; 
y
t=tk

= y�t+k � − y�t−k �, where y�t−k � and y�t+k � represent the left
and right limits of y�t� at t = tk, respectively; and E is a real Banach space
with norm 
·
.

For any continuous function y defined on �−r� b� − �t1� � � � � tm� and any
t ∈ J, we denote by yt the element of C��−r� 0�� E� defined by yt�θ� =
y�t + θ�� θ ∈ �−r� 0�. Here yt�·� represents the history of the state from
time t − r up to the present time t.

In Section 4 we study second-order impulsive semilinear neutral func-
tional differential inclusions of the form

d

dt
�y ′�t� − g�t� yt�� ∈ Ay �t� + F�t� yt�� t ∈ J = �0� b��(1.4)

t 	= tk� k = 1� � � � �m�


y
t=tk
= Ik�y�t−k ��� k = 1� � � � �m�(1.5)
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y ′
t=tk
= Ik�y�t−k ��� k = 1� � � � �m�(1.6)

y�t� = φ�t�� t ∈ �−r� 0�� y ′�0� = η�(1.7)

where A is the infinitesimal generator of a strongly continuous cosine family
C�t�� t ∈ �, of bounded linear operators in E�F� g� Ik, and φ are as in the
problem (1.1)–(1.3); Ik ∈ C�E�E�; and η ∈ E.

Other results on functional differential equations without impulsive effect
can be found in the monograph of Erbe et al. [5], Hale and Verduyn Lunel
[9], Henderson [10], and the survey paper of Ntouyas [15].

This paper is organized as follows. In Section 2 we recall briefly some
basic definitions and preliminary facts which will be used throughout Sec-
tions 3 and 4. In Section 3 we establish existence theorems for (1.1)–(1.3),
and in Section 4 we deal with (1.4)–(1.7). Our approaches are based on a
fixed-point theorem for condensing multivalued maps due to Martelli [14].

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper.

C��−r� 0�� E� is the Banach space of all continuous functions from �−r� 0�
into E with the norm

�φ� = sup�
φ�θ�
 � −r ≤ θ ≤ 0��
By C�J�E� we denote the Banach space of all continuous functions from J
into E with the norm

�y�J �= sup�
y�t�
 � t ∈ J��
A measurable function y� J −→ E is Bochner integrable if and only if 
y

is Lebesgue integrable. (For properties of the Bochner integral see, for
instance, Yosida [19]).

L1�J�E� denotes the Banach space of functions y� J −→ E which are
Bochner integrable normed by

�y�L1 =
∫ b

0

y�t�
dt for all y ∈ L1�J�E��

Let �X� 
·
� be a Banach space. A multivalued map G� X −→ 2X has con-
vex (closed) values if G�x� is convex (closed) for all x ∈ X. G is bounded
on bounded sets if G�B� is bounded in X for each bounded set B of X
(i.e., supx∈B�sup�
y
 � y ∈ G�x��� < ∞�.

G is called upper semicontinuous (u.s.c.) on X if for each x0 ∈ X the
set G�x0� is a nonempty, closed subset of X, and if for each open set N
of X containing G�x0� there exists an openneighborhood M of x0 such
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that G�M� ⊆ N . G is said to be completely continuous if G�B� is relatively
compact for every bounded subset B ⊆ X.

If the multivalued G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e., xn −→
x∗� yn −→ y∗� yn ∈ G�xn� imply y∗ ∈ G�x∗�). G has a fixed point if there
is x ∈ X such that x ∈ G�x�.

In the following CC�E� denotes the set of all nonempty compact, convex
subsets of E. A multivalued map G� J −→ CC�X� is said to be measurable
if for each x ∈ E the function Y � J −→ � defined by Y �t� = d�x�G�t�� =
inf�
x− z
 � z ∈ G�t�� is measurable.

An upper semicontinuous multivalued map G� X −→ 2X is said to be
condensing [2] if for any subset B ⊂ X with α�B� 	= 0 we have α�G�B�� <
α�B�, where α denotes the Kuratowski measure of noncompacteness [2].

We remark that a completely continuous multivalued map is the easiest
example of a condensing map. For more details on multivalued maps see
the books by Deimling [4], Gorniewicz [8], and Hu and Papageorgiou [11].

For any y ∈ C��−r� b�� E� we define the set

SF� y = �v ∈ L1�J�E� � v�t� ∈ F�t� yt� for a.e. t ∈ J��
Our main results are based on the following lemmas.

Lemma 2.1 ([13]). Let I be a compact real interval and X be a Banach
space. Let F be a multivalued map satisfying the Carathéodory conditions with
the set of L1-selections SF nonempty, and let $ be a linear continuous mapping
from L1�I�X� to C�I�X�. Then the operator

$ ◦ SF � C�I�X� −→ CC�C�I�X��� y �−→ �$ ◦ SF��y� �= $�SF� y��
is a closed graph operator in C�I�X� × C�I�X�.
Lemma 2.2 ([14]). Let X be a Banach space and N � X −→ CC�X� be

a condensing map. If the set

� �= �y ∈ X � λy ∈ N�y� for some λ > 1�
is bounded, then N has a fixed point.

3. FIRST ORDER IMPULSIVE NEUTRAL FUNCTIONAL
DIFFERENTIAL INCLUSIONS

In order to define the concept of a mild solution of (1.1)–(1.3) we con-
sider the space

' = �y � �−r� b� −→ E � yk ∈ C�Jk� E�� k = 0� � � � �m and there exist

y�t−k � and y�t+k �� with y�t−k � = y�tk�� k = 1� � � � �m�

y�t� = φ�t�� ∀t ∈ �−r� 0���
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which is a Banach space with the norm

�y�' = max��yk�Jk� k = 0� � � � �m��
where yk is the restriction of y to Jk = �tk� tk+1�� k = 0� � � � �m.

So let us start by defining what we mean by a mild solution of the problem
(1.1)–(1.3).

Definition 3.1. A function y ∈ C��−r� b�� E� is said to be a mild solu-
tion of (1.1)–(1.3) if y�t� = φ�t� on �−r� 0�� 
y
t=tk

= Ik�y�t−k ��� k =
1� � � � �m; for each 0 ≤ t ≤ b the function AT �t − s�g�s� ys�� s ∈ �0� t�, is
integrable; there exists a v ∈ L1�J�E� such that v�t� ∈ F�t� yt� a.e on J;
and

y�t� = T �t��φ�0� − g�0� φ�� + g�t� yt� +
∫ t

0
AT �t − s�g�s� ys�ds

+
∫ t

0
T �t − s�v�s�ds + ∑

0<tk<t

Ik�y�t−k ��� t ∈ J�

Let v ∈ L1�J�E� and consider the initial value problem (IVP) (3.1), (1.2),
and (1.3), where

d

dt
�y�t� − g�t� yt�� = Ay�t� + v�t�� t ∈ J� t 	= tk� k = 1� � � � �m�(3.1)

We need the following auxiliary result. Its proof is very simple, so we omit it.

Lemma 3.2. y ∈ '1 is a solution of (3.1), (1.2), and (1.3) if and only if
y ∈ ' is a solution of the impulsive integral equation

y�t� = T �t��φ�0� − g�0� φ�� + g�t� yt� +
∫ t

0
AT �t − s�g�s� ys�ds

+
∫ t

0
T �t − s�v�s�ds + ∑

0<tk<t

Ik�y�t−k ��� t ∈ J�

We are now in a position to state and prove our existence result for
the problem of (1.1)–(1.3). For the study of this problem we first list the
following hypotheses.

(H1) A is the infinitesimal generator of a compact semigroup of
bounded linear operators T �t� in E such that


T �t�
 ≤ M1� for some M1 ≥ 1� and 
AT �t�
 ≤ M2� M2 ≥ 0� t ∈ J�

(H2) There exist constants 0 ≤ c1 < 1 and c2 ≥ 0 such that


g�t� u�
 ≤ c1�u� + c2� t ∈ J� u ∈ C��−r� 0�� E��
(H3) There exist constants dk such that 
Ik�y�
 ≤ dk� k = 1� � � � �m,

for each y ∈ E.
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(H4) F � J × C�J0� E� −→ BCC�E�� �t� u� �−→ F�t� u� is measurable
with respect to t for each u ∈ C�J0� E�, u.s.c. with respect to u for each
t ∈ J, and for each fixed u ∈ C�J0� E� the set

SF�u = {
g ∈ L1�J�E� � g�t� ∈ F�t� u� for a.e. t ∈ J

}
is nonempty.

(H5) �F�t� u�� = sup�
v
 � v ∈ F�t� u�� ≤ p�t�ψ��u�� for almost all
t ∈ J and all u ∈ C��−r� 0�� E�, where p ∈ L1�J��+� and ψ � �+ −→ �0�∞�
is continuous and increasing with∫ b

0
m̂�s�ds <

∫ ∞

c

dτ

τ + ψ�τ� �

where

c = 1
1 − c1

{
M1��φ� + c1�φ� + c2� + c2M2b+ c2 +

m∑
k=1

dk

}

and

m̂�t� = 1
1 − c1

�M2c1�M1p�t���

(H6) The function g is completely continuous and for any bounded
set D ⊆ ' the set �t → g�t� yt� � y ∈ D� is equicontinuous in '.

Remark 3.3. (i) If dimE < ∞, then for each u ∈ C��−r� 0�� E� the set
SF�u is nonempty (see Lasota and Opial [13]).

(ii) If dimE = ∞ and u ∈ C��−r� 0�� E� the set SF�u is nonempty if
and only if the function Y � J −→ � defined by

Y �t� �= inf�
v
 � v ∈ F�t� u��
belongs to L1�J��� (see Hu and Papageorgiou [11]).

Theorem 3.4. Assume that the hypotheses (H1)–(H6) hold. Then the IVP
(1.1)–(1.3) has at least one solution on �−r� b�.
Proof. Transform the problem into a fixed-point problem. Consider the

operator N� ' −→ 2' defined by:

N�y� =




h ∈ ' � h�t� =




φ�t�� t ∈ �−r� 0�
T �t��φ�0� − g�0� φ�� + g�t� yt�

+
∫ t

0
AT �t − s�g�s� ys�ds

+
∫ t

0
T �t − s�v�s�ds

+ ∑
0<tk<t

Ik�y�t−k ��� t ∈ J�




�

where v ∈ SF�y = �v ∈ L1�J�E� � v�t� ∈ F�t� yt� for a.e. t ∈ J��
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Remark 3.5. Clearly from Lemma 3.2 the fixed points of N are solutions
to (1.1)–(1.3).

We shall show that N satisfies the assumptions of Lemma 2.2. Using (H6)
it suffices to show that the operator N1 � ' −→ 2', defined by

N1�y� =



h ∈ ' � h�t� =




φ�t�� t ∈ �−r� 0�

T �t�φ�0� +
∫ t

0
AT �t − s�g�s� ys�ds

+
∫ t

0
T �t − s�v�s�ds + ∑

0<tk<t

Ik�y�t−k ��� t ∈ J�



�

where v ∈ SF� y , is u.s.c. condensing with bounded, closed, and convex val-
ues. The proof will be given in several steps.

Step 1. N1�y� is convex for each y ∈ '.
This is obvious since SF�y is convex (because F has convex values).

Step 2. N1 maps bounded sets into bounded sets in '.
Indeed, it is enough to show that there exists a positive constant 0 such

that for each h∈N1�y�� y ∈ Bq = �y ∈ ' � �y�' ≤ q�, one has �N1�y��' ≤ 0.
If h ∈ N1�y�, then there exists a v ∈ SF�y such that for each t ∈ J we have

h�t� = T �t�φ�0� +
∫ t

0
AT �t − s�g�s� ys�ds

+
∫ t

0
T �t − s�v�s�ds + ∑

0<tk<t

Ik�y�t−k ���

By (H1)–(H3) and (H5) we have for each t ∈ J,


h�t�
 ≤ M1�φ� +M2b�c1q+ c2� +M1 sup
y∈�0�q�

ψ�y�
(∫ t

0
p�s�ds

)

+
m∑

k=1

sup�
Ik�
y
�
 � �y�' ≤ q��

Then for each h ∈ N�Br� we have

�h�' ≤ M1�φ� +M2b�c1q+ c2� +M1 sup
y∈�0� q�

ψ�y�
(∫ b

0
p�s�ds

)

+
m∑

k=1

sup�
Ik�
y
�
 � �y�' ≤ q�� �= 0�

Step 3. N1 maps bounded sets into equicontinuous sets of '.
Let τ1� τ2 ∈ J� τ1 < τ2; and Bq = �y ∈ ' � �y�' ≤ q� be a bounded set

of '.
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For each y ∈ Bq and h ∈ N1�y�, there exists v ∈ SF�y such that

h�t� = T �t�φ�0� +
∫ t

0
AT �t − s�g�s� ys�ds +

∫ t

0
T �t − s�v�s�ds

+ ∑
0<tk<t

Ik�y�t−k ��� t ∈ J�

Thus


h�τ2� − h�τ1�
 ≤ 
T �τ2� − T �τ1�
�φ�
+
∣∣∣
∫ τ2

0
�AT �τ2 − s� −AT �τ1 − s��g�s� ys�ds

∣∣∣
+
∣∣∣
∫ τ2

τ1

AT �τ1 − s�g�s� ys�ds
∣∣∣

+
∥∥∥
∫ τ2

0
�T �τ2 − s� − T �τ1 − s��v�s�ds

∥∥∥
+
∥∥∥
∫ τ2

τ1

T �τ1 − s�v�s�ds
∥∥∥+ ∑

0<tk<τ2−τ1

dk

≤
∫ τ2

0

A�T �τ2 − s� − T �τ1 − s��
�c1q+ c2�ds

+
∫ τ2

τ1


AT �τ1 − s�
�c1q+ c2�ds

+
∫ τ2

0

T �τ2 − s� − T �τ1 − s�
M1

× sup
y∈�0�q�

ψ�y�
(∫ b

0
p�s�ds

)
ds

+
∫ τ2

τ1


T �τ1 − s�
M1 sup
y∈�0�q�

ψ�y�
(∫ t

0
p�s�ds

)
ds

+ ∑
0<tk<τ2−τ1

dk�

As τ2 −→ τ1 the right-hand side of the above inequality tends to zero.
The equicontinuities for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2 are

obvious.
As a consequence of Step 2, Step 3, and (H6) together with the Arzela–

Ascoli Theorem we can conclude that N � ' −→ 2' is a compact multi-
valued map and, therefore, a condensing multivalued map.

Step 4. N has a closed graph.
Let yn −→ y∗� hn ∈ N�yn�� and hn −→ h∗. We shall prove that

h∗ ∈ N�y∗�. hn ∈ N�yn� means that there exists vn ∈ SF� yn such that for
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each t ∈ J,

hn�t� = T �t��φ�0� − g�0� φ�0��� + g�t� ynt� +
∫ t

0
AT �t − s�g�s� yns�ds

+
∫ t

0
T �t − s�vn�s�ds +

∑
0<tk<t

Ik�yn�tk���

We must prove that there exists v∗ ∈ SF� y∗ such that for each t ∈ J,

h∗�t� = T �t��φ�0� − g�0� φ�0��� + g�t� y∗t� +
∫ t

0
AT �t − s�g�s� y∗s�ds

+
∫ t

0
T �t − s�v∗�s�ds +

∑
0<tk<t

Ik�y∗�tk���

Since the functions g�t� ·�� t ∈ J� Ik� k = 1� � � � �m, are continuous we
have that∥∥∥(hn−T �t��φ�0�−g�0�φ�0���−g�t�ynt�

−
∫ t

0
AT �t−s�g�s�yns�ds−

∑
0<tk<t

Ik�yn�tk��
)

−
(
h∗−T �t��φ�0�−g�0�φ�0���−g�t�y∗t�

−
∫ t

0
AT �t−s�g�s�y∗s�ds−

∑
0<tk<t

Ik�y∗�tk��
)∥∥∥

'
−→0� as n→∞�

Consider the linear continuous operator

$ � L1�J�E� −→ C�J�E��

v �−→ $�v��t� =
∫ t

0
T �t − s�v�s�ds�

From Lemma 2.1, it follows that $ ◦ SF is a closed graph operator.
Moreover, we have that

hn�t� − T �t��φ�0� − g�0� φ�0��� − g�t� ynt� −
∫ t

0
AT �t − s�g�s� yns�ds

− ∑
0<tk<t

Ik�yn�tk�� ∈ $�SF�yn��

Since yn −→ y∗� it follows from Lemma 2.1 that

h∗�t� − T �t��φ�0� − g�0� φ�0��� − g�t� y∗t�

−
∫ t

0
AT �t − s�g�s� y∗s�ds −

∑
0<tk<t

Ik�y∗�tk�� =
∫ t

0
T �t − s�v∗�s�ds

for some v∗ ∈ SF�y∗ .
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Step 5. Now it remains to show that the set

� �= �y ∈ ' � λy ∈ N�y�� for some λ > 1�
is bounded.

Let y ∈ �. Then y ∈ λN�y� for some 0 < λ < 1. Thus for each t ∈ J,

y�t�=λ−1T �t��φ�0�−g�0�φ�0���+λ−1g�t�yt�+λ−1
∫ t

0
A�t−s�g�s�ys�ds

+λ−1
∫ t

0
T �t−s�v�s�ds+λ−1 ∑

0<tk<t

Ik�y�tk���

This implies by (H1)–(H3) and (H5) that for each t ∈ J we have


y�t�
 ≤ M1��φ� + c1�φ� + c2� + c1�yt� + c2

+M2c1

∫ t

0
�ys�ds +M2c2b+

∫ t

0
p�s�ψ��ys��ds +

m∑
k=1

dk�

We consider the function µ defined by

µ�t� = sup�
y�s�
 � −r ≤ s ≤ t�� 0 ≤ t ≤ b�

Let t∗ ∈ �−r� t� be such that µ�t� = 
y�t∗�
. If t∗ ∈ J, by the previous
inequality we have for t ∈ J that

µ�t� ≤ M1��φ� + c1�φ� + c2� + c1µ�t� + c2 +M2c1

∫ t

0
µ�s�ds

+M2c2b+
∫ t

0
p�s�ψ�µ�s��ds +

m∑
k=1

dk�

Thus

µ�t� ≤ 1
1 − c1

{
M1��φ� + c1�φ� + c2� + c2M2b+ c2

+M2c1

∫ t

0
µ�s�ds +

∫ t

0
p�s�ψ�µ�s��ds +

m∑
k=1

dk

}
�

If t∗ ∈ J0 then µ�t� = �φ� and the previous inequality holds.
Let us take the right-hand side of the above inequality as v�t�� then we

have

c = v�0� = 1
1 − c1

{
M1��φ� + c1�φ� + c2� + c2M2b+ c2 +

m∑
k=1

dk

}
�

µ�t� ≤ v�t�� t ∈ J�

and

v′�t� = 1
1 − c1

�M2c1µ�t� + p�t�ψ�µ�t���� t ∈ J�
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Using the nondecreasing character of ψ we get

v′�t� ≤ 1
1 − c1

�M2c1v�t� + p�t�ψ�v�t���

≤ m̂�t��v�t� + ψ�v�t��� t ∈ J�

This implies for each t ∈ J that∫ v�t�

v�0�
dτ

τ + ψ�τ� ≤
∫ b

0
m̂�s�ds <

∫ ∞

v�0�
dτ

τ + ψ�τ� �

This inequality implies that there exists a constant K such that v�t� ≤ K� t ∈
J, and hence µ�t� ≤ K� t ∈ J. Since for every t ∈ J� �yt� ≤ µ�t�, we have

�y�' ≤ K′ = max��φ��K��
where K′ depends on b and on the functions p and ψ. This shows that
4�N� is bounded.

Set X �= '. As a consequence of Lemma 2.1 we deduce that N has a
fixed point which is a solution of (1.1)–(1.3).

4. SECOND ORDER IMPULSIVE NEUTRAL FUNCTIONAL
DIFFERENTIAL INCLUSIONS

In this section we study the initial value problem (1.4)–(1.7) by using the
theory of strongly continuous cosine and sine families.

We say that a family �C�t� � t ∈ �� of operators in B�E� is a strongly
continuous cosine family if

(i) C�0� = I (I is the identity operator in E),
(ii) C�t + s� + C�t − s� = 2C�t�C�s� for all s� t ∈ �, and

(iii) the map t �−→ C�t�y is strongly continuous for each y ∈ E.

The strongly continuous sine family �S�t� � t ∈ ��, associated to the given
strongly continuous cosine family �C�t� � t ∈ ��, is defined by

S�t�y =
∫ t

0
C�s�y ds� y ∈ E� t ∈ ��

The infinitesimal generator A � E −→ E of a cosine family �C�t� � t ∈ ��
is defined by

Ay = d2

dt2 C�t�y
∣∣∣∣
t=0

�

For more details on strongly continuous cosine and sine families, we refer
the reader to the books by Goldstein [7] and Fattorini [6] and to the papers
by Travis and Webb [17, 18].
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Definition 4.1. A function y ∈ C��−r� b�� E� is said to be a mild solu-
tion of (1.4)–(1.7) if y�t� = φ�t� on �−r� 0�, y ′�0� = η, 
y
t=tk

= Ik�y�t−k ���
k = 1� � � � �m, 
y ′
t=tk

= Ik�y�t−k ��, k = 1� � � � �m, and there exists a v ∈
L1�J�E� such that v�t� ∈ F�t� yt� a.e. on J, and

y�t� = C�t�φ�0� + S�t��η− g�0� φ�� +
∫ t

0
C�t − s�g�s� ys�ds

+
∫ t

0
S�t − s�v�s�ds + ∑

0<tk<t

Ik�y�t−k ��� t ∈ J�

a.e. on J − �t1� � � � � tm�.

We need the following auxiliary result. Its proof is very simple, so we
omit it.

Lemma 4.2. y ∈ '1 is a mild solution of (1.4)–(1.7), if and only if y ∈ '
is a solution of the impulsive integral equation

y�t� = C�t�φ�0� + S�t��η− g�0� φ�� +
∫ t

0
C�t − s�g�s� ys�ds

+
∫ t

0
S�t − s�v�s�ds + ∑

0<tk<t

Ik�y�t−k ��� t ∈ J�

Assume the, following.

(A1) A is the infinitesimal generator of a strongly continuous cosine
family C�t�� t ∈ �, of bounded linear operators from E into itself.

(A2) There exists constants c1 and c2 such that


f �t� u�
 ≤ c1�u� + c2� t ∈ J� u ∈ C�J0� E��
(A3) There exist constants dk� d̄k such that 
Ik�y�
 ≤ dk� 
�Ik�y�
 ≤

dk� k = 1� � � � �m, for each y ∈ E.
(A4) F � J × C�J0� E� −→ BCC�E�� �t� u� �−→ F�t� u� is measurable

with respect to t for each u ∈ C�J0� E� and u.s.c. with respect to u for each
t ∈ J; and for each fixed u ∈ C�J0� E� the set

SF�u =
{
g ∈ L1�J�E� � g�t� ∈ F�t� u� for a.e. t ∈ J

}

is nonempty.
(A5) �F�t� u�� �= sup�
v
 � v ∈ F�t� u�� ≤ p�t�ψ��u�� for almost all

t ∈ J and all u ∈ C�J0� E�, where p ∈ L1�J��+� and ψ � �+ −→ �0�∞� is
continuous and increasing with

∫ b

0
m̂�s�ds <

∫ ∞

c

dτ

τ + ψ�τ� �
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where

c = M�φ� +Mb�
η
 + c1�φ� + c2� +Mc2b+
m∑

k=1

�dk + �b− tk�dk��

M = sup�
C�t�
 � t ∈ J��
and

m̂�t� = max�Mc1�Mp�t���
(A6) The function g is completely continuous and for any bounded

set D ⊆ C�J1� E� the set �t −→ g�t� yt� � y ∈ D� is equicontinuous in
C�J�E�.

(A7) C�t�� t ∈ J, is completely continuous.

Now, we are in a position to state and prove our main theorem in this
section.

Theorem 4.3. Assume that the hypotheses (A1)–(A7) hold. Then the IVP
(1.4)–(1.7) has at least one mild solution on �−r� b�.
Proof. Transform the problem into a fixed-point problem. In this setting,

define the multivalued map N � ' −→ 2' by

N�y� �=




h ∈ C�J1� E� � h�t� =




φ�t�� if t ∈ J0

C�t�φ�0� + S�t��η− g�0� φ��

+
∫ t

0
C�t − s�g�s� ys�ds

+
∫ t

0
S�t − s�v�s�ds

+ ∑
0<tk<t

�Ik�y�tk�� + �t − tk�Ik�y�tk���� if t ∈ J




�

where

v ∈ SF�y =
{
v ∈ L1�J�E� � v�t� ∈ F�t� yt� for a.e. t ∈ J

}
�

Remark 4.4. It is clear that the fixed points of N are solutions to (1.1),
(1.2).

We shall show that N is a completely continuous multivalued map, u.s.c.
with convex closed values. The proof will be given in several steps.

Step 1. N�y� is convex for each y ∈ '.

This step is obvious since SF� y is convex (because F has convex values).

Step 2. N maps bounded sets into bounded sets in '�
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Indeed, it is enough to show that there exists a positive constant 0 such
that for each h ∈ N�y�� y ∈ Bq = �y ∈ ' � �y�' ≤ q�, one has �h�' ≤ 0.

If h ∈ N�y�, then there exists a v ∈ SF� y such that for each t ∈ J we have

h�t� = C�t�φ�0� + S�t��η− g�0� φ�� +
∫ t

0
C�t − s�f �s� ys�ds

+
∫ t

0
S�t − s�v�s�ds + ∑

0<tk<t

�Ik�y�tk�� + �t − tk�Ik�y�tk����

By (A2), (A3), and (A5) we have for each t ∈ J,


h�t�
 ≤ Mq+ bM�
η
 + c1q+ c2� +Mb�c1q+ c2�

+M sup
y∈�0� q�

ψ�y�
(∫ t

0
p�s�ds

)
+

m∑
k=1

�dk + �T − tk�dk��

Then for each h ∈ N�Bq� we have

�h�' ≤ Mq+Mb�
η
 + c1q+ c2� +Mb�c1q+ c2�

+M sup
y∈�0�q�

ψ�y�
(∫ b

0
p�s�ds

)
+

m∑
k=1

�dk + �b− tk�dk� �= 0�

Step 3. N maps bounded sets into equicontinuous sets of '.

Let τ1� τ2 ∈ J� τ1 < τ2, and Bq be a bounded set of ' as in Step 2. For
each y ∈ Bq and h ∈ N�y�, there exists v ∈ SF�y such that

h�t� = C�t�φ�0� + S�t��η− g�0� φ�� +
∫ t

0
C�t − s�g�s� ys�ds

+
∫ t

0
S�t − s�v�s�ds + ∑

0<tk<t

�Ik�y�tk�� + �t − tk�Ik�y�tk����

Thus


h�τ2� − h�τ1�
 ≤ 
C�τ2� − C�τ1�
 + �
η
 + c1�φ� + c2�
S�τ2� − S�τ1�

+
∣∣∣
∫ τ2

0
�C�τ2 − s� − C�τ1 − s��g�s� ys�ds

∣∣∣
+
∣∣∣
∫ τ2

τ1

C�τ1 − s�g�s� ys�ds
∣∣∣

+
∣∣∣
∫ t2

0
�S�τ2 − s� − S�τ1 − s��v�s�ds

∣∣∣
+
∣∣∣
∫ τ2

τ1

S�τ1 − s�v�s�ds
∣∣∣+ ∑

0<tk<τ2−τ1

�dk + �T − tk�dk�

≤ 
C�t2� − C�τ1�
 + �
η
 + c1q+ c2�
S�τ2� − S�τ1�
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×
∫ τ2

0

C�τ2 − s� − C�τ1 − s��
�c1q+ c2�ds

+
∫ τ2

τ1


C�τ1 − s�
�c1q+ c2�ds

+
∫ τ2

0

S�τ2 − s� − S�τ1 − s�
M

× sup
y∈�0�q�

ψ�y�
(∫ b

0
p�s�ds

)
ds

+
∫ τ2

τ1


S�t1 − s�
M sup
y∈�0�q�

ψ�y�
(∫ b

0
p�s�ds

)
ds

+ ∑
0<tk<τ2−τ1

�dk + �T − tk�dk��

As τ2 −→ τ1, the right-hand side of the above inequality tends to zero.
The equicontinuities for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ tτ2 are

obvious.
As a consequence of Step 2, Step 3, and (A6), (A7), together with the

Ascoli–Arzela Theorem we can conclude that N � ' −→ 2' is a compact
multivalued map and, therefore, a condensing map.

Step 4. N has a closed graph.

Let yn −→ y∗� hn ∈ N�yn�, and hn −→ h∗. We shall prove that h∗ ∈
N�y∗�. hn ∈ N�yn� means that there exists vn ∈ SF� yn such that

hn�t�=C�t�φ�0�+S�t��η−g�0�φ��+
∫ t

0
C�t−s�g�t�yns�ds

+
∫ t

0
S�t−s�vn�s�ds+

∑
0<tk<t

�Ik�y�tk��+�t−tk�Ik�yn�tk���� t∈J�

We must prove that there exists v∗ ∈ SF� y∗ such that

h∗�t�=C�t�φ�0�+S�t��η−g�0�φ��+
∫ t

0
C�t−s�g�t�y∗s�ds

+
∫ t

0
S�t−s�v∗�s�ds+

∑
0<tk<t

�Ik�y�tk��+�t−tk�Ik�y∗�tk���� t∈J�

Since f is continuous we have that∥∥∥(hn − C�t�φ�0� − S�t��η− g�0� φ�� −
∫ t

0
C�t − s�g�t� yns�ds

− ∑
0<tk<t

�Ik�y�tk�� + �t − tk�Ik�yn�tk���
)
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−
(
h∗ − C�t�φ�0� − S�t��η− g�0� φ�� −

∫ t

0
C�t − s�g�t� y∗s�ds

− ∑
0<tk<t

�Ik�y�tk�� + �t − tk�Ik�y∗�tk���
)∥∥∥

'
→ 0�

as n −→ ∞.
Consider the linear continuous operator

$ � L1�J�E� −→ C�J�E��

v �−→ $�v��t� =
∫ t

0
S�t − s�v�s�ds�

From Lemma 2.2, it follows that $ ◦ SF is a closed graph operator.
Moreover, we have that

hn�t� − C�t�φ�0� − S�t��η− g�0� φ�� −
∫ t

0
C�t − s�g�t� yns�ds

− ∑
0<tk<t

�Ik�y�tk�� + �t − tk�Ik�yn�tk��� ∈ $�SF�yn��

Since yn −→ y∗, it follows from Lemma 2.2 that

h∗�t� − C�t�φ�0� − S�t��η− g�0� φ�� −
∫ t

0
C�t − s�g�t� y∗s�ds

− ∑
0<tk<t

�Ik�y�tk�� + �t − tk�Ik�y∗�tk��� =
∫ t

0
S�t − s�v∗�s�ds�

for some v∗ ∈ SF�y∗ .
Therefore N is a completely continuous multivalued map, u.s.c. with con-

vex closed values. In order to prove that N has a fixed point, we need one
more step.

Step 5. The set

� �= �y ∈ ' � λy ∈ N�y�� for some λ > 1�
is bounded.

Let y ∈ '. Then λy ∈ N�y� for some λ > 1. Thus there exists v ∈ SF� y
such that

y�t� = λ−1C�t�φ�0� + λ−1S�t��η− g�0� φ��

+λ−1
∫ t

0
C�t − s�g�s� ys�ds + λ−1

∫ t

0
S�t − s�v�s�ds

+λ−1 ∑
0<tk<t

�Ik�y�tk�� + �t − tk�Ik�y�tk���� t ∈ J�
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This implies by (A2), (A3), and (A5) that for each t ∈ J we have


y�t�
 ≤ M�φ� +Mb�
η
 + c1�φ� + c2� +M
∫ t

0
�c1�ys� + c2�ds

+M
∫ t

0
p�s�ψ��ys��ds +

m∑
k=1

�dk + �b− tk�dk��

We consider the function µ defined by

µ�t� = sup�
y�s�
 � −r ≤ s ≤ t�� 0 ≤ t ≤ b�

Let t∗ ∈ �−r� t� be such that µ�t� = 
y�t∗�
. If t∗ ∈ J, by the previous
inequality we have for t ∈ J that

µ�t� ≤ M�φ� +Mb�
η
 + c1�φ� + c2� +Mc1

∫ t

0
µ�s�ds +Mc2b

+M
∫ t

0
p�s�ψ�µ�s��ds +

m∑
k=1

�dk + �b− tk�dk��

If t∗ ∈ J0 then µ�t� = �φ� and the previous inequality holds.
Let us take the right-hand side of the above inequality as v�t�� then we

have

c = v�0� = M�φ� +Mb�
η
 + c1�φ� + c2� +Mc2b+
m∑

k=1

�dk + �b− tk�dk��

µ�t� ≤ v�t�� t ∈ J�

and

v′�t� = Mc1µ�t� +Mp�t�ψ�µ�t��
≤ Mc1v�t� +Mp�t�ψ�v�t��
≤ m̂�t��v�t� + ψ�v�t���� t ∈ J�

This implies for each t ∈ J that
∫ v�t�

v�0�
dτ

τ + ψ�τ� ≤
∫ b

0
m̂�s�ds <

∫ ∞

v�0�
dτ

τ + ψ�τ� �

This inequality implies that there exists a constant L such that v�t� ≤ L� t ∈
J, and hence µ�t� ≤ L� t ∈ J. Since for every t ∈ J� �yt� ≤ µ�t�, we have

�y�' ≤ L′ = max��φ�� L��
where L′ depends on b and on the functions p and ψ. This shows that '
is bounded.

Set X �= '. As a consequence of Lemma 2.1 we deduce that N has a
fixed point which is a solution of (1.4)–(1.7).
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