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We are interested in two classes of varieties with group action,
namely toric varieties and spherical embeddings. They are classi-
fied by combinatorial objects, called fans in the toric setting, and
colored fans in the spherical setting. We characterize those com-
binatorial objects corresponding to varieties defined over an arbi-
trary field k. Then we provide some situations where toric varieties
over k are classified by Galois-stable fans, and spherical embed-
dings over k by Galois-stable colored fans. Moreover, we construct
an example of a smooth toric variety under a 3-dimensional non-
split torus over k whose fan is Galois-stable but which admits no
k-form. In the spherical setting, we offer an example of a spheri-
cal homogeneous space X0 over R of rank 2 under the action of
SU(2,1) and a smooth embedding of X0 whose fan is Galois-stable
but which admits no R-form.

© 2011 Elsevier Inc. All rights reserved.

Introduction

In the early 70’s, Demazure [Dem70] gave a full classification of smooth toric varieties under a split
torus in terms of combinatorial objects which he named fans. This classification was then extended
to all toric varieties under a split torus during the next decade (see for example [Dan78]).

In the first part of this paper, we address the classification problem for a nonsplit torus T over
a field k. Let K be a Galois extension of k which splits T . Then the Galois group Gal(K |k) acts on
fans corresponding to toric varieties under T K = T ×k K , and one can speak of Galois-stable fans. The
classification Theorem 1.22 says, roughly speaking, that toric varieties under a nonsplit torus T are
classified by Galois-stable fans satisfying an additional condition, named (ii). For a quasi-projective
fan (see Proposition 1.9) condition (ii) holds. If the torus T is of dimension 2 then every fan is
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quasi-projective, and then condition (ii) holds. If T is split by a quadratic extension, condition (ii)
is also automatically satisfied, by a result of Włodarczyk [Wło93] which asserts that any two points
in a toric variety (under a split torus) lie on a common affine open subset. In these situations, toric
varieties under T are thus classified by Galois-stable fans (Theorem 1.25). Condition (ii) is nonetheless
necessary, as we construct an example of a three-dimensional torus T over a field k, split by an ex-
tension K of k of degree 3, and a smooth toric variety under the split torus T K with Galois-stable fan
but which is not defined over k (Theorem 1.31). This provides an example of a toric variety (under a
split torus) containing three points which do not lie on a common affine open subset.

Recently, Elizondo, Lima-Filho, Sottile and Teitler also studied toric varieties under nonsplit tori
[ELST10]. They also obtain the statement of Theorem 1.25, but do not address the problem of descent
in general. Using Galois cohomology, they are able to classify toric k-forms of Pn

K if the extension K
of k is cyclic and, toric smooth surfaces in general.

In the second part of this paper, we address the classification problem for embeddings of spherical
homogeneous spaces. A homogeneous space (X0, x0) under a connected reductive group G over k is
called spherical if there is a Borel subgroup B of Gk̄ with Bx0 open in X0(k̄). An embedding of X0 is
a normal G-variety over k containing X0 as an open orbit. The main difference with the toric case is
the base point, introduced in order to kill automorphisms.

The classification of spherical embeddings was obtained by Luna and Vust [LV83] when k is alge-
braically closed of characteristic 0, and extended by Knop [Kno91] to all characteristics. The classifying
objects, called colored fans, are also of combinatorial nature.

In Section 2.2, we show that the Galois group Gal(k̄|k) acts on those colored fans, so that we
can speak of Galois-stable colored fans. The main classification theorem is Theorem 2.26; like The-
orem 1.22 it asserts that the embeddings of X0 are classified by Galois-stable fans satisfying an
additional assumption, named (ii). We provide some situations where this condition (ii) is automati-
cally satisfied (including the split case, which is not a part of the Luna–Vust theory), and an example
of a homogeneous space X0 over R, under the action of SU(2,1), and an embedding X of X0,C with
Galois-stable colored fan but which is not defined over R. This gives an example of a smooth spherical
variety containing two points which do not lie on a common affine subset.

A motivation for studying embeddings of spherical homogeneous spaces is to construct equivariant
smooth compactifications of them. In the toric case, this construction is due to Colliot-Thélène, Harari
and Skorobogatov [CTHS05].

I’d like to thank M. Brion for his precious advice about that work and his careful reading. I’d also
like to thank E.J. Elizondo, P. Lima-Filho, F. Sottile and Z. Teitler for communicating their work to me.

1. Classification of toric varieties over an arbitrary field

Let k be a field and k̄ a fixed algebraic closure. We denote by T a torus defined over k. By a
variety over k we mean a separated geometrically integral scheme of finite type over k. We define
toric varieties under the action of T in the following way:

Definition 1.1. A toric variety over k under the action of T is a normal T -variety X such that the group
T (k̄) has an open orbit in X(k̄) in which it acts with trivial isotropy subgroup scheme. A morphism
between toric varieties under the action of T is a T -equivariant morphism defined over k.

It follows from the definition that a toric variety X under the action of T contains a principal
homogeneous space under T as a T -stable open subset. We will denote it by X0.

Definition 1.2. We will say that X is split if X0 is isomorphic to T , that is to say, if X0 has a k-point.

Remark 1.3. If X is a split toric variety, then the automorphism group of X is the group T (k).

In the rest of this section, we classify the toric varieties under the action of T (up to isomorphism).
Assuming first that the torus T is split, we recall how the classification works in terms of combina-
torial data named fans (Section 1.1). In Section 1.2, we derive the general case from the split case.
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We show (Theorem 1.22) that toric varieties under the action of T are, roughly speaking, classified
by Galois-stable fans satisfying an additional assumption. In Section 1.3, we provide some situations
where this additional assumption is always satisfied, and an example where it is not.

1.1. The split case

In this section, we assume that the torus T is split, and give the classification of toric varieties
under the action of T . This classification was obtained by Demazure in the case of smooth toric
varieties, and by many other people in the general case. See [Dan78] for more details and proofs.

Proposition 1.4. Every toric variety under the action of T is split.

Proof. By Hilbert’s 90 theorem, every principal homogeneous space under T has a k-point. �
In order to state the main theorem of this section, we need more notations and definitions.

Notation 1.5. We denote by M the character lattice of T , and by N the lattice of one parameter
subgroups, which is dual to M . We call V the Q-vector space N ⊗Z Q, and V ∗ = M ⊗Z Q its dual.

By a cone in V , we mean the Q+-linear span of finitely many elements of V . We say that a cone
is strictly convex if it contains no line.

Notation 1.6. If C is a cone in V , we denote by C∨ ⊆ V ∗ its dual cone, and by Int(C) its relative
interior.

Recall the classical:

Definition 1.7. A fan in V is a finite collection E of strictly convex cones in V satisfying:

• Every face of C ∈ E belongs to E .
• The intersection of two cones in E is a face of each.

Let us now recall how a fan can be associated to a toric variety under the action of T . Fix a toric
variety X under T . If x ∈ X(k̄), the orbit of x under T (k̄) is actually defined over k. For simplicity, we
will denote by T x this orbit. If ω is a T -orbit, the open subset

Xω := {
x ∈ X(k̄), ω ⊆ T x

}
is affine and defined over k. Fix x ∈ X0(k). One can show that the subset

{
λ ∈ N, lim

t→0
λ(t)x exists in X and belongs toXω

}

of N is a finitely generated monoid whose Q+-linear span Cω is a strictly convex cone in V . Observe
that the cone Cω does not depend on the point x ∈ X0(k).

Theorem 1.8. By mapping a toric variety X to the collection

{Cω, ω ⊆ X is a T -orbit},

one gets a bijection between (isomorphism classes of ) toric varieties under T and fans in V . We will denote
by E X the fan associated to the toric variety X, and by XE the toric variety associated to the fan E .
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To construct a toric variety under T out of a fan E in V , one proceeds as follows. If E contains
only one maximal cone C , then the variety XE is

XE = Spec
(
k
[

C∨ ∩ M
])

.

Observe that XE is affine. In the general case, one glues the toric varieties (XC )C∈E along their inter-
sections: XC ∩ XC′ = XC∩C′ .

The following proposition enables us to detect the quasi-projectivity of a toric variety by looking
at its fan:

Proposition 1.9. Let E be a fan in V . The variety XE is quasi-projective if and only if there exists a family of
linear forms (lC )C∈E on V satisfying the following conditions:

• ∀C, C′ ∈ E , lC = lC′ over C ∩ C′ .
• ∀C, C′ ∈ E , ∀x ∈ Int(C), lC (x) > lC′ (x).

In this situation, we say that the fan E is quasi-projective.

Remark 1.10. Every two-dimensional fan is quasi-projective.

Remark 1.11. If the fan E has one maximal cone, then it is quasi-projective because XE is affine. If
E has two maximal cones, then it is also quasi-projective. Indeed, let l ∈ V ∗ be positive on the first
maximal cone C1, and negative on the second C2. Putting lC1 = l and lC2 = 0 one gets the result.

1.2. Forms of a split toric variety

In this section, we go back to the general setting (T is not necessarily split). We fix a finite Galois
extension K of k with Galois group Γ such that the torus T K is split. The notations M, N, . . . will
refer to the corresponding objects associated to T K in Section 1.1. These objects are equipped with an
action of the group Γ .

Fix a toric variety X under T K . We address the following problem:

Question 1.12. Does X admit a k-form?

By a k-form of X , we mean a toric variety Y under the action of T , such that Y K � X as
T K -varieties. Let F X be the set of isomorphism classes of k-forms of X . We denote by Ω the open or-
bit of T K in X , and define FΩ similarly. By definition, FΩ is the set of principal homogeneous spaces
under T which become trivial under T K . By mapping a k-form of X to the principal homogeneous
space that it contains, one obtains a natural map

δX : F X → FΩ.

Question 1.13. What can be said about the map δX ?

Theorem 1.22 will give an answer to Questions 1.12 and 1.13. We will obtain a criterion involving
the fan E X for the set F X to be nonempty, and show that if this criterion is satisfied, the map δX is a
bijection. As usual in Galois descent issues, semi-linear actions on X respecting the ambient structure
turn out to be very helpful.
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Definition 1.14. An action of Γ on X is called toric semi-linear if for every σ ∈ Γ the diagrams

X
σ

X

Spec(K )
σ

Spec(K )

,

T K × X

(σ ,σ )

X

σ

T K × X X

are commutative. The group AutK (X) = T (K ) acts by conjugacy on the whole set of toric semi-linear
actions of Γ on X . We denote by E X the set of conjugacy classes of toric semi-linear actions of Γ

on X .

If Y is a k-form of X and if one fixes a T K -equivariant isomorphism X → Y K , then one can let
the group Γ act on X . Replacing the isomorphism X → Y K by another one, one obtains a T (K )-
conjugated toric semi-linear action. This proves that there is a natural map

αX : F X → E X .

The following proposition is part of the folklore and can be found for example in [ELST10].

Proposition 1.15. The map αX is injective. A toric semi-linear action on X is in the image of αX if and only if
the quotient X/Γ exists, or, in other words, if and only if one can cover X by Γ -stable quasi-projective subsets.

Remark 1.16. If the variety X itself is quasi-projective, the map αX is thus bijective.

Proposition 1.17. The map αΩ is bijective. Otherwise stated, a principal homogeneous space under T which
becomes trivial under T K is characterized by the toric semi-linear action it induces on Ω .

Proof. Use Proposition 1.15 and observe that Ω is affine. �
Remark 1.18. The set FΩ is naturally the Galois cohomology set H1(Γ, T (K )).

The following proposition (also obtained in [ELST10]) enables us to see very easily whether the
set E X is empty or not, by looking at the fan E X .

Proposition 1.19. The set E X is nonempty if and only if the fan E X is Γ -stable in the sense that, for every cone
C ∈ E X , and for every σ ∈ Γ , the cone σ(C) still belongs to E X . In this case, the restriction map E X → EΩ is a
bijection.

Remark 1.20. The open orbit Ω is easily seen to be Γ -stable for any toric semi-linear action of Γ

on X . By mapping such an action to its restriction to Ω one gets what we call the restriction map
E X → EΩ .

Proof of Proposition 1.19. Assume first that the set E X is nonempty. The variety X is thus endowed
with a toric semi-linear action of Γ . Let ω be an orbit of T K on X , and σ be an element of Γ . Let x
be a K -point in Ω (it exists because T K is split). One has

σ(Cω) ∩ N =
{
σ(λ), λ ∈ N, lim λ(t)x exists in X and belongs to Xω

}
.

t→0
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Thus,

σ(Cω) ∩ N =
{
λ ∈ N, lim

t→0
λ(t)σ (x) exists in X and belongs to Xσ (ω)

}
.

But the K -point σ(x) belongs to Ω , showing that σ(Cω) = Cσ(ω) . This proves that E X is stable under
the action of Γ .

Assume now that E X is Γ -stable. Let C be a cone in E and σ an element of Γ . The linear map σ
on M gives a morphism of monoids

σ(C)∨ ∩ M → C∨ ∩ M

and then a semi-linear morphism of K -algebras

K
[
σ(C)∨ ∩ M

] → K
[

C∨ ∩ M
]
,

inducing a morphism of varieties

U C → Uσ (C)

which respects the toric structures on both sides. These morphisms patch together, and enable us to
construct the desired toric semi-linear action on X . This completes the proof of the first point.

Suppose from now on that the set E X is nonempty, and fix a toric semi-linear action of Γ on X .
Denote by ∗ a toric semi-linear action of Γ on Ω . Then, for all σ ∈ Γ , the morphism

Ω → Ω,

x �→ σ−1 ∗ (
σ(x)

)
is a toric automorphism of Ω , that is, the multiplication by an element of T (K ). But such a multi-
plication extends to X , proving that the semi-linear action ∗ of Γ extends to X . In other words, the
restriction map is surjective. But it is also injective because Ω is open in X . This completes the proof
of the proposition. �
Remark 1.21. By the previous arguments, one sees that if E is Γ -stable, if ω is an orbit of T K in X ,
and σ an element of Γ , the notation σ(ω) makes sense, and does not depend on the chosen toric
semi-linear action of Γ on X . Moreover, one sees that for every toric semi-linear action of Γ on X ,
and for every cone C ∈ E , σ(XC ) = Xσ(C) .

We are now able to answer Questions 1.12 and 1.13:

Theorem 1.22. The set F X is nonempty if and only if the two following conditions are satisfied:

(i) The fan E X is Γ -stable.
(ii) For every cone C ∈ E X , the fan consisting of the cones (σ (C))σ∈Γ and their faces is quasi-projective.

In that case, the map δX is bijective. Otherwise stated, for every principal homogeneous space X0 under T ,
there is a unique k-form of X containing X0 , up to isomorphism.

Proof. Assume first that conditions (i) and (ii) are fulfilled. By Proposition 1.19, the set E X is
nonempty. Fix a toric semi-linear action of Γ on X . By condition (ii) and Proposition 1.9, for ev-
ery cone C ∈ E , the open subset

⋃
σ∈Γ Xσ(C) is quasi-projective. But these open subsets are Γ -stable

(by Remark 1.21) and cover X . By Proposition 1.15 the quotient X/Γ exists. Performing this argument
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for every toric semi-linear action of Γ on X , one proves that the map δX is bijective. In particular,
the set F X is nonempty.

Assume now that the set F X is nonempty. We want to prove that conditions (i) and (ii) are fulfilled.
By Proposition 1.15, the set E X is nonempty, so that condition (i) holds. Fix a T -orbit ω on X . By
Remark 1.21, the open subset U = ⋃

σ∈Γ Xσ(ω) is Γ -stable. Moreover, closed T -orbits in U form a
unique orbit under Γ . There exists therefore an affine open subset V in U intersecting every closed
T -orbit. By Proposition 1.23 below, one concludes that U is quasi-projective, or, using Proposition 1.9,
that the fan consisting of the cones (σ (Cω))σ∈Γ and their faces is quasi-projective. This being true
for every T -orbit ω, we are done. �

Let G be a linear algebraic group over k. Sumihiro proved in [Sum74] that a normal G-variety con-
taining only one closed orbit is quasi-projective. By the same arguments one gets the next proposition,
whose proof we give for the convenience of the reader.

Proposition 1.23. Let X be a normal G-variety over k. Assume that there is an affine subset of X which meets
every closed orbit of G on X. Then X is quasi-projective.

Proof. Quasi-projectivity is of geometric nature, so one can assume that k is algebraically closed in
what follows. We will use the following quasi-projectivity criterion given in [Sum74] (Lemma 7):

Lemma 1.24. If there exist a line bundle L on X and global sections s1, . . . , sn generating L at every point and
such that Xs1 , . . . , Xsn are affine, then X is quasi-projective.

Let U be an affine subset of X meeting every closed orbit of G and D = X \ U . Then D is a Weil
divisor. Denote by L the coherent sheaf O X (D), and by i : X0 → X the inclusion of the regular locus
of X in X . The natural morphism ϕ : L → i∗(L|X0) is an isomorphism, because X is normal. Moreover,

the sheaf L|X0 is invertible on the smooth G-variety X0, so that one can let a finite covering G ′ of G
act on L|X0 , and thus on L, using the isomorphism ϕ . This enables us to see that the set

A = X \ {x ∈ X, L is invertible in a neighborhood of x}

is a G-stable closed subset of X . Moreover, L|U is trivial, so that A is contained in D , proving that
A is empty, or, otherwise stated, the sheaf L is invertible: the divisor D is Cartier. Let now s be
the canonical global section of the sheaf L. The common zero locus of the translates (g′.s)g′∈G ′ is
also a G-closed subset of D , and is therefore empty. We can thus find a finite number of elements
g′

1, . . . , g′
n of G ′ such that the global sections g′

1.s, . . . , g′
n.s generate L at every point. Moreover, the

open subsets Xg′
i .s

are G-translates of U and are therefore affine. This completes the proof. �
1.3. Applications

In this section we give first some conditions on T for every toric variety under T K to have a
k-form. Then we construct an example of a 3-dimensional torus T split by a degree 3 extension K
of k and a toric variety X under T with F X empty.

Theorem 1.25. Assume that dimk(T ) = 2, or that the torus T is split by a quadratic extension. Then, for every
toric variety X under the action of T K whose associated fan is Γ -stable, the map δX is bijective.

Proof. If dimk(T ) = 2, then dimK T K = 2, and Remark 1.10 shows that the variety X is quasi-
projective. By Remark 1.16, the map δX is bijective in that case. Assume now that the torus T is
split by a quadratic extension K of k. Then the Galois group Γ has two elements, and thus for every
cone C ∈ Σ , the fan consisting of the cones (σ (C))σ∈Γ and their faces has only one or two maximal
cones. By Remark 1.11, this fan is automatically quasi-projective, so that Theorem 1.22 applies. �
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Remark 1.26. The tori T split by a fixed quadratic extension K of k being exactly the products of the
three following tori: Gm , R K |k(Gm), R1

K |k(Gm). Here R K |k(Gm) is the Weil restriction of the torus Gm ,

and R1
K |k(Gm) is the kernel of the norm map

NK |k : R K |k(Gm) → Gm.

We now provide an example of a split toric variety over K which admits no k-form. We assume
that the Galois extension K over k is cyclic of degree 3. Let σ be a generator of Γ . Fix a basis (u, v, w)

of the lattice N = Z3, and let σ act on N by the following matrix in the basis (u, v, w)

(0 −1 0
1 −1 0
0 0 1

)
.

One defines in this way an action of Γ on N . Let T be the torus over k corresponding to this action.
This is a three-dimensional torus split by K .

Lemma 1.27. Let C = Cone(5u + v − 5w,−5u − 5v + 14w,4u − v). Then C ∩ σ(C) = {0}.

Proof. One has σ(C) = Cone(−u + 4v − 5w,5u + 14w, u + 5v). Let x ∈ C ∩ σ(C). There exist
a,b, c,d, e, f � 0 such that

x = (5a − 5b + 4c)u + (a − 5b − c)v + (−5a + 14b)w

= (−d + 5e + f )u + (4d + 5 f )v + (−5d + 14e)w.

Consequently

⎧⎪⎨
⎪⎩

5a − 5b + 4c = −d + 5e + f ,

a − 5b − c = 4d + 5 f ,

−5a + 14b = −5d + 14e,

and then 14(second line) + 5(third line) gives

−11a − 14c = 31d + 70e + 70 f .

The left-hand side is nonpositive, and the right-hand side is nonnegative, so that d = e = f = 0, and
then x = 0. �
Definition 1.28. Let E be the fan consisting of C, σ (C),σ 2(C) and their faces.

Lemma 1.29. The fan E is smooth.

Proof. It is enough to check that C is a smooth cone, and this holds:

∣∣∣∣∣
5 −5 4
1 −5 −1

−5 14 0

∣∣∣∣∣ = 1. �

Proposition 1.30. The fan E is not quasi-projective.
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Proof. Observe first that −w ∈ C − σ(C). Indeed, 45u − 25w = 5((5u + v − 5w) + (4u − v)) ∈ C and
45u + 126w = 9(5u + 14w) ∈ σ(C), so that −151w = (45u − 25w) − (45u + 126w) ∈ C − σ(C), and
finally, −w ∈ C − σ(C). Applying σ and σ 2, one obtains

−w ∈ (
C − σ(C)

) ∩ (
σ(C) − σ 2(C)

) ∩ (
σ 2(C) − C

)
.

Now suppose that the fan E is quasi-projective, and use the notations of Definition 1.9. The linear
form lC − lσ(C) is strictly positive on (C − σ(C)) \ {0}, and then: (lC − lσ(C))(−w) > 0. But similarly,
lσ(C) − lσ 2(C) is strictly positive on (σ (C) − σ 2(C)) \ {0} (resp. (σ 2(C) − C) \ {0}) and thus (lσ(C) −
lσ 2(C))(−w) > 0 (resp. (lσ 2(C) − lC )(−w) > 0). This gives a contradiction, proving that the fan E is not
quasi-projective. �

In view of Theorem 1.22, one has the following:

Theorem 1.31. The toric variety XE under T K is smooth and does not admit any k-form.

In this example, T is of minimal dimension and Γ of minimal order, in view of Theorem 1.25.

Remark 1.32. The variety XE gives an example of a toric variety containing three points which do not
lie on an open affine subset. In [Wło93], it is shown that any two points in a toric variety lie on a
common affine subset.

Remark 1.33. Using techniques from [CTHS05], one can “compactify” the fan E in a Γ -equivariant
way, and thus produce an example of a smooth complete toric variety under the action of T K which
has no k-form. We first produce a complete simplicial fan Γ -stable fan E0 containing E . For simplicity,
we note

r1 = −5u − 5v + 14w, s1 = 4u − v, t1 = 5u + v − 5w,

r2 = σ(r1), s2 = σ(s1), t2 = σ(t1), r3 = σ 2(r1), s3 = σ 2(s1), t3 = σ 2(t1).

The fan E0 has maximal cones

Cone(r1, t3, s1), Cone(t3, s1, t1), C = Cone(r1, s1, t1),

Cone(r1, r2, t1), Cone(r1, r2, r3), Cone(t1, t2, t3)

and their images under Γ . Because the fan E0 is complete, it gives a triangulation of the unit sphere
in R3. By projecting this triangulation from the South Pole to the tangent plane of the North Pole,
one gets Fig. 1. The maximal cone Cone(t1, t2, t3) of E0 is missing in this picture because it is sent to
infinity by the projection. In order to smoothen the fan E0 in a Γ -equivariant way, we use the method
described in [CTHS05]. We first subdivide E0 using the vectors r = −5v + 28w , w , t = u − 4v − 10w
and −w . We thus obtain a complete, simplicial Γ -stable fan E ′

0 satisfying Property (∗) defined in
Proposition 2 of [CTHS05]. This fan E ′

0 has maximal cones

Cone(r1, r, t1), Cone(r, r2, t1), Cone(r1, r, w), Cone(r, r2, w), C = Cone(r1, s1, t1),

Cone(r1, s1, t3) Cone(t3, s1, t) Cone(t, t1, s1) Cone(t3, t,−w) Cone(t, t1,−w)

and their images under Γ . We now can apply to E ′
0 the algorithm explained in the proof of Propo-

sition 3 of [CTHS05] because it satisfies Property (∗). We thus get a complete, smooth Γ -stable fan
containing E .
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Fig. 1. The fans E (grey) and E0.

2. Spherical embeddings over an arbitrary field

Let k be a field, and k̄ a fixed algebraic closure. Throughout this section, we denote by Γ the
absolute Galois group of k. Let G be a connected reductive algebraic group over k. We note Gk̄ =
G ×k k̄.

Definition 2.1. A spherical homogeneous space under G over k is a pointed G-variety (X0, x0) over k
such that:

• The group G(k̄) acts transitively on X0(k̄).
• x0 ∈ X0(k).
• There exists a Borel subgroup B of Gk̄ such that the orbit of x0 under B(k̄) is open in X0(k̄).

We say that X0 is split over k if there exists a split Borel subgroup B of G such that Bx0 is open
in X0,k̄ . In this case, the group G itself is split.

Remark 2.2. For simplicity, we will often denote by X0 a spherical homogeneous space, omitting the
base point.

Definition 2.3. Let X0 be a spherical homogeneous space under G . An embedding of X0 is a pointed
normal G-variety (X, x) together with a G-equivariant immersion i : X0 → X preserving base points.
A morphism between two embeddings is defined to be a G-equivariant morphism defined over k
preserving base points.

Remark 2.4. For simplicity again, when speaking about an embedding of X0, we will often omit the
base point and the immersion.



222 M. Huruguen / Journal of Algebra 342 (2011) 212–234
Remark 2.5. If there exists a morphism between two embeddings, then it is unique.

In this section, we classify the embeddings of a fixed spherical homogeneous space X0 under G
up to isomorphism. We first recall in Section 2.1 the Luna–Vust classification theory of spherical
embeddings, assuming that the field k is algebraically closed. Fundamental objects named colored
fans are the cornerstone of that theory. In Section 2.2 we let the Galois group Γ act on these colored
fans, and prove in Section 2.3 that the embeddings of X0 are classified by Γ -stable colored fans
satisfying an additional condition. In Section 2.4 we provide several situations where this condition is
fulfilled (including the split case), and an example where it is not.

2.1. Recollections on spherical embeddings

We assume that k is algebraically closed. Fix a spherical homogeneous space X0 under G , and a
Borel subgroup B such that Bx0 is open in X0. We now list some facts about X0 and give the full
classification of its embeddings (see [Kno91] for proofs and more details). We will introduce along
the way notations that will be systematically used later on.

Notation 2.6. We will denote by:

• K = k(X0) the function field of X0. The group G acts on K.
• V the set of k-valuations on K with values in Q. The group G acts on V . We will denote by V G

the set of G-invariant valuations, and by V B the set of B-invariant valuations.
• Ω the orbit of x0 under the action of B . This is an affine variety.
• D the set of prime divisors in X0 \ Ω . These are finitely many B-stable divisors.
• X the set of weights of B-eigenfunctions in K. This is a sublattice of the character lattice of B .

The rank of X is called the rank of X0 and denoted by rk(X0).
• V = HomZ(X ,Q). This is a Q-vector space of dimension rk(X0).
• ρ the map V → V , ν �→ (χ �→ ν( fχ )), fχ ∈ K being a B-eigenfunction of weight χ (such an

fχ is uniquely determined up to a scalar). The restriction of ρ to V G is injective, and the image
ρ(V G) is a finitely generated cone in V whose interior is nonempty.

The Luna–Vust theory of spherical embeddings gives a full classification of embeddings of X0 in
terms of combinatorial data living in the ones we have just defined.

Definition 2.7. A colored cone inside V with colors in D is a couple (C, F ) with F ⊆ D, and satisfy-
ing:

• C is a cone generated by ρ(F ) and finitely many elements in ρ(V G).
• The relative interior of C in V meets ρ(V G).
• The cone C is strictly convex and 0 /∈ ρ(F ).

A colored cone (C′, F ′) is called a face of (C, F ) if C′ is a face of C and F ′ = F ∩ ρ−1(C′). A colored
fan is a finite set E of colored cones satisfying:

• (0,∅) ∈ E .
• Every face of (C, F ) ∈ E belongs to E .
• There exists at most one colored cone (C, F ) ∈ E containing a given ν ∈ ρ(V G) in its relative

interior.

Let us now recall how a colored fan can be associated to an embedding X of X0. The open sub-
set Ω being affine, its complement X \ Ω is pure of codimension one, and thus a union of B-stable
prime divisors. Let ω be a G-orbit on X . We denote by Dω the set of prime divisors D ⊆ X \ Ω
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with ω ⊆ D , and by Fω the subset of D ∈ D with ω ⊆ D . The elements of Fω are called the colors
associated to the orbit ω. Let Cω be the cone in V generated by the elements

ρ(νD), D ∈ Dω

where νD is the normalized valuation of K associated to the divisor D . We are now able to state the
main theorem of this section:

Theorem 2.8. By mapping X to

{
(Cω, Fω), ω ⊆ X is a G-orbit

}
one gets a bijection between embeddings of X0 and colored fans in V , with colors in the set D. We will denote
by E X the colored fan associated to the embedding X of X0 , and by XE the embedding of X0 associated to the
colored fan E .

Remark 2.9. We will say that the embedding X has no color if, for every orbit ω of G on X , the
set Fω is empty.

We are not going to explain how an embedding of X0 can be construct out of a colored fan. The
curious reader can find the recipe in [Kno91].

In the rest of the section, we list some properties of spherical embeddings that will be used later.
Firstly, as in the toric case, one is able to say whether an embedding of X0 is quasi-projective by
using the associated colored fan (see [Bri89]).

Proposition 2.10. Let E be a colored fan. The embedding XE is quasi-projective if and only if there exists a
collection (lC,F )(C,F )∈E of linear forms on V satisfying:

• ∀(C, F ) ∈ E , ∀(C′, F ′) ∈ E , lC,F = lC′,F ′ over C ∩ C′ .
• ∀(C, F ) ∈ E , ∀x ∈ Int(C) ∩ ρ(V G), ∀(C′, F ′) ∈ E \ {(C, F )}, lC,F (x) > lC′,F ′ (x).

In this situation, we say that the fan E is quasi-projective.

We now give some results of local nature on spherical embeddings. Knowing the local structure of
toric varieties (as explained in Section 1.1) was a crucial point in order to prove Theorem 1.22. A toric
variety X under T is covered by open affine T -stable subset. This fact is not true on a spherical
embedding X of X0, but we still have a nice atlas of affine charts at our disposal. If ω is a G-orbit
on X , we denote

Xω,G := {y ∈ X, ω ⊆ G y}.

This is a G-stable open subset of X containing ω as its unique closed orbit. It is quasi-projective by a
result of Sumihiro [Sum74]. We define

Xω,B := Xω,G \
⋃

D∈D\Fω

D.

This is a B-stable affine open subset of X . Moreover, the G-translates of Xω,B cover Xω,G . One has

k[Xω,B ] = {
f ∈ k[Ω], ∀D ∈ Dω νD( f ) � 0

}
.
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Let

P :=
⋂

D∈D\Fω

Stab(D).

This is a parabolic subgroup of G containing B , and the open subset Xω,B is P -stable. The following
theorem describes the action of P in Xω,B . See [BLV86] for a proof.

Theorem 2.11. Assume that the field k is of characteristic 0. There exist a Levi subgroup L of P and a closed
L-stable subvariety S of Xω,B containing x0 , such that the natural map

Ru(P ) × S → Xω,B , (g, x) �→ gx

is a P -equivariant isomorphism.

Finally, let us introduce the class of horospherical homogeneous spaces:

Definition 2.12. A homogeneous space X0 is said to be horospherical if the isotropy group of x0
contains a maximal unipotent subgroup of G .

Any horospherical homogeneous space is spherical. Moreover, thanks to the following proposition,
we are able to recognize horospherical homogeneous spaces among spherical ones in a very simple
way (see [Kno91]).

Proposition 2.13. A spherical homogeneous space X0 is horospherical if and only if ρ(V G) = V .

2.2. Galois actions

We return to an arbitrary field k with algebraic closure k̄. Recall that Γ is the absolute Galois group
of k, and G is a connected reductive algebraic group over k. Fix a spherical homogeneous space X0

under the action of G , and a Borel subgroup B of Gk̄ such that Bx0 is open in X0(k̄). In the previous
section, we introduced some data attached to X0,k̄ . In this section, we let the group Γ act on these
data.

2.2.1. Action on K
The group Γ acts on K by the following formula

∀σ ∈ Γ, ∀ f ∈ K, ∀x ∈ X0(k̄), σ ( f )(x) = σ
(

f
(
σ−1(x)

))
.

Proposition 2.14. One has

∀σ ∈ Γ, ∀g ∈ G(k̄), ∀ f ∈ K, σ (g f ) = σ(g)σ ( f ).

Proof. A straightforward computation. �
2.2.2. Action on V B

If σ ∈ Γ , then the group σ(B) is a Borel subgroup of G , so that (see [Bor91, Chap. IV, Theo-
rem 11.1]) there exists gσ ∈ G(k̄) satisfying

σ(B) = gσ Bg−1
σ .
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Moreover, gσ is unique up to right multiplication by an element of B . We let the group Γ act on V
by

∀σ ∈ Γ, ∀ν ∈ V, ∀ f ∈ K, σ (ν)( f ) = ν
(
σ−1(gσ f )

)
.

Proposition 2.15. We define in this way an action of Γ on V B which does not depend on the particular choice
of the (gσ )σ∈Γ .

Proof. Fix ν ∈ V B , σ ∈ Γ and f ∈ K. Let b ∈ B , and b′ ∈ B such that: gσ b−1 = σ(b′)gσ . Then one has

(
bσ(ν)

)
( f ) = ν

(
σ−1(gσ b−1 f

)) = ν
(
b′σ−1(gσ f )

) = σ(ν)( f )

because ν ∈ V B . Thus we have proved that for all σ ∈ Γ and ν ∈ V B , σ(ν) ∈ V B . Now let us check
that one defines an action of Γ on V B . For this we will need the following lemma:

Lemma 2.16.

∀(σ , τ ) ∈ Γ 2, ∃bσ ,τ ∈ B with σ(gτ )gσ = gστ bσ ,τ .

Proof. Express σ(τ (B)) in two different ways. �
Fix (σ , τ ) ∈ Γ 2, ν ∈ V B and f ∈ K. Then

(στ )(ν)( f ) = ν
(
τ−1(σ−1(gστ f )

)) = ν
(
τ−1(σ−1(σ(gτ )gσ b−1

σ ,τ

)
f
))

= ν
(
τ−1(gτ σ

−1(gσ b−1
σ ,τ f

)))
.

This shows that

(στ )(ν) = bσ ,τ

(
σ

(
τ (ν)

)) = σ
(
τ (ν)

)
because σ(τ (ν)) ∈ V B . The fact that this action does not depend on the choice of the gσ readily
follows from the fact that we are working with B-invariant valuations. �
2.2.3. Action on X

Let us denote by X (B) the character lattice of the group B . For σ ∈ Γ and χ ∈ X (B) we define

σ(χ) : B → Gm,k̄, b �→ σ
(
χ

(
g−1
σ−1σ

−1(b)gσ−1

))
.

As in the proof of Proposition 2.15, one checks that this defines an action of Γ on X (B) which does
not depend on the choice of the (gσ )σ∈Γ . The following proposition shows that this action restricts
to an action on X :

Proposition 2.17. Let χ ∈ X and fχ ∈ K be a B-eigenfunction of weight χ . Fix σ ∈ Γ . Then σ(gσ−1 f ) is a
B-eigenfunction of weight σ(χ).

Proof. A straightforward computation. �
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2.2.4. Action on V
Being dual to X , the vector space V = HomZ(X ,Q) inherits a linear action of Γ defined by

∀ϕ ∈ V , ∀σ ∈ Γ, ∀χ ∈ X , σ (ϕ)(χ) = ϕ
(
σ−1(χ)

)
.

Proposition 2.18. The map

ρ : V B → V

is Γ -equivariant.

Proof. Let ν ∈ V B , σ ∈ Γ and χ ∈ X . Denote by fχ ∈ K a B-eigenfunction of weight χ . By Proposi-
tion 2.17, σ−1(gσ f ) is a B-eigenfunction of weight σ−1(χ). Then

ρ
(
σ(ν)

)
(χ) = σ(ν)( fχ ) = ν

(
σ−1(gσ f )

) = ρ(ν)
(
σ−1(χ)

)
,

completing the proof. �
2.2.5. Action on D

Let σ ∈ Γ . Observe that g−1
σ σ (Ω) is an open B-orbit in X0,k̄ . Thus g−1

σ σ (Ω) = Ω , and the map

D → D, D �→ σ · D = g−1
σ σ (D)

is a bijection. The elements of D being B-invariant divisors, this map does not depend on the choice
of gσ . As in the proof of Proposition 2.15, one checks that this defines an action of Γ on D. Moreover,
one has the following:

Proposition 2.19. The natural map

D → V B , D �→ νD

is Γ -equivariant.

Proof. Indeed, if a valuation ν on K has a center Y on X0,k̄ and if ϕ is an automorphism of X0,k̄ ,
then the valuation

ϕ(ν) : K → Q, f �→ ν
(
ϕ−1( f )

)
is centered on ϕ(Y ). �
2.3. k-forms of embeddings

We assume in this section that k is a perfect field. We keep the notations from Section 2.2. If X is
an embedding of X0,k̄ , we call a k-form of X an embedding of X0 isomorphic to X after extending

scalars to k̄. We obtain in this section a criterion for an embedding X of X0,k̄ to admit a k-form, in
terms of its associated colored fan.

Proposition 2.20. If a k-form of X exists, then it is unique up to isomorphism.
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Proof. Take Y and Z two k-forms of X . There exists an isomorphism of embeddings

f : Yk̄ → Zk̄

because they are both isomorphic to X . But a morphism between two embeddings, if exists, is unique.
This shows that f is unchanged under twisting by Γ . In other words, f is defined over k. �

The following proposition gives a characterization of embeddings of X0,k̄ admitting a k-form:

Proposition 2.21. The embedding X admits a k-form if and only if it satisfies the two following conditions:

(i) The semi-linear action of Γ on X0,k̄ extends to X.
(ii) X is covered by Γ -stable affine open sets.

Remark 2.22. Condition (ii) is automatically satisfied if X is quasi-projective or covered by Γ -stable
quasi-projective subsets. By a result of Sumihiro [Sum74], this is the case if there is only one closed
orbit of Gk̄ on X , or, in other words, if the embedding is simple.

Proof of Proposition 2.21. These two conditions are satisfied exactly when X admits a k-form as a
variety. Because the semi-linear action of Γ on X0,k̄ is Gk̄-semi-linear in the sense that

∀σ ∈ Γ, ∀g ∈ G(k̄), ∀x ∈ X0(k̄), σ (gx) = σ(g)σ (x),

the k-form is naturally an embedding of X0. �
Condition (i) in this proposition can be made very explicit in terms of the colored fan associated

to X .

Theorem 2.23. The Gk̄-semi-linear action of Γ on X0,k̄ extends to X if and only if the colored fan of X is
Γ -stable. In that case, for every Gk̄-orbit ω on X and every σ ∈ Γ one has

σ(Cω) = Cσ (ω) and σ(Fω) = Fσ (ω).

Remark 2.24. We say that a colored fan E is Γ -stable if for every colored cone (C, F ) ∈ E , the colored
cone (σ (C),σ (F )) still belongs to E .

Proof of Theorem 2.23. Assume (i) and let ω be a Gk̄-orbit on X . Fix σ ∈ Γ . Observe that σ(ω) is
also a Gk̄-orbit on X . By mapping a divisor D to σ · D , one gets bijections

Dω → Dσ (ω) and Fω → Fσ (ω).

Thus, (
σ(Cω),σ (Fω)

) = (Cσ (ω), Fσ (ω))

because the map ρ is Γ -equivariant (Proposition 2.18).
Assume now that the colored fan of X is Γ -stable. Let ω be a Gk̄-orbit on X . Fix σ ∈ Γ , and

denote by ω′ the Gk̄-orbit on X satisfying

(
σ(Cω),σ (Fω)

) = (Cω′ , Fω′).

Lemma 2.25. The automorphism σ of V B sends the set {νD , D ∈ Dω} onto the set {νD , D ∈ Dω′ }.
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Proof. Let D ∈ Dω . If D is not Gk̄-stable, then D ∈ Fω . In this case σ · D ∈ Fω′ , and thus Proposi-
tion 2.19 shows that

σ(νD) ∈ {
νD ′ , D ′ ∈ Dω′

}
.

Assume now that D is Gk̄-stable. We know from Lemma 2.4 [Kno91] that Q+ρ(νD) is an extremal
ray of Cω which contains no element of ρ(Fω). The map ρ being equivariant, this proves that
Q+ρ(σ (νD)) is an extremal ray of Cω′ which contains no element of ρ(Fω′ ). Using Lemma 2.4
[Kno91] again and the injectivity of ρ on V G , we get that σ(νD) = νD ′ , for some Gk̄-stable divi-
sor D ′ in Dω′ . So far we have proved that σ sends the set {νD , D ∈ Dω} into the set {νD , D ∈ Dω′ }.
Using this result for σ−1 and ω′ instead of ω, one obtains the lemma. �

Using the description of k̄[Xω,B ] and k̄[Xω′,B ] given in Section 2.1 and the previous lemma, we get
that the morphism

Ω → Ω, x �→ g−1
σ σ (x)

extends to a morphism

Xω,B → Xω′,B .

Let U be the largest open subset of X on which this morphism extends. The action of Γ on X0,k̄ being
Gk̄-semi-linear, U is Gk̄-stable. But X is covered by the Gk̄-translates of Xω,B , ω being a Gk̄-orbit on X .
We conclude that U = X , completing the proof of the theorem. �

Assuming that the condition (i) of Proposition 2.21 holds, we now make (ii) explicit.

Theorem 2.26. Let X be an embedding of X0,k̄ with Γ -stable colored fan E X . Then X admits a k-form if and
only if for every colored cone (C, F ) ∈ E X , the colored fan consisting of the cones (σ (C),σ (F ))σ∈Γ and their
faces is quasi-projective.

Proof. The condition given in the proposition is equivalent to the following: for every Gk̄-orbit ω
on X , the open subset

⋃
σ∈Γ

Xσ (ω),Gk̄

is quasi-projective. This set being Γ -stable, if this condition is fulfilled then X admits a k-form (see
Remark 2.22). To prove the converse statement, one can clearly replace X by

⋃
σ∈Γ

Xσ (ω),Gk̄
,

and thus suppose that maximal cones in E X form a single orbit under the action of Γ . But maximal
cones correspond to closed orbits, so using Theorem 2.23, one deduces that closed orbits are per-
muted by Γ . Because X admits a k-form, there exists an affine open subset U of X meeting every
closed Gk̄-orbit on X . We conclude by Proposition 1.23. �
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2.4. Applications

2.4.1. Some situations where (i) ⇒ (ii)
We keep notations from Section 2.2, and denote by X an embedding of X0,k̄ . In Proposition 2.21 we

introduced two conditions called (i) and (ii) on X which were reformulated in terms of the colored
fan E X in Theorems 2.23 and 2.26. In this section, we prove that (i) ⇒ (ii) under some additional
assumptions on G , X0 or X .

Proposition 2.27. In each of the following situations, one has (i) ⇒ (ii):

1. X0 is split.
2. X0 is of rank 1.
3. X0 is horospherical and of rank 2.
4. X0 is horospherical, and G is split by a quadratic extension K of k.
5. X has no colors, and X0 is of rank 2.
6. X has no colors, and G is split by a quadratic extension K of k.

Proof. We suppose that condition (i) is satisfied, and prove that (ii) holds. Let us first consider situa-
tion 1. We fix a split Borel subgroup B of G with Bx0 open in X0,k̄ . One can choose gσ = 1 for every
σ ∈ Γ . Looking at the very definition of the action of Γ on X and using the fact that B is split, one
deduces that Γ acts trivially on X . Let ω be a Gk̄-orbit on X . For every σ ∈ Γ one has

(
σ(Cω),σ (Fω)

) = (Cω, Fω).

But the colored fan consisting of (Cω, Fω) and its faces is quasi-projective, so condition (ii) is satisfied.
We now turn to situation 2. One can check using Proposition 2.10 and the fact that V is of dimen-

sion 1 that X is automatically quasi-projective. Condition (ii) is thus fulfilled.
In the remaining situations, observe that for every closed orbit ω of Gk̄ on X the cone Cω is

contained in ρ(V G) (this is obvious if X has no colors; if X0 is horospherical use Proposition 2.13), so
that the collection of cones

{Cω, ω is an orbit of Gk̄ on X}

is a fan. Moreover, this fan is quasi-projective if and only if the colored fan E X is.
Every 2-dimensional fan is quasi-projective, so condition (ii) is satisfied in situations 3 and 5.
If G is split by a quadratic extension K of k, then the Galois group Γ acts through a quotient of

order 2 on V , and thus for every orbit ω of Gk̄ on X , the fan consisting of the cones (σ (Cω))σ∈Γ

and their faces has only one or two maximal cones. By Remark 1.11, this fan is automatically quasi-
projective. We thus see that condition (ii) is also satisfied in situations 4 and 6. �
Remark 2.28. Situations 1,2,3 and 4 don’t depend on X . This means that in these situations, the
embeddings of X0 are classified by Γ -stable colored fans. In the split case, the colored fan E X is
Γ -stable if and only if for every Gk̄-orbit ω on X , the set of colors Fω is Γ -stable.

2.4.2. A spherical embedding with no k-form
In this section k = R. Thus k̄ = C and Γ = Z/2Z. We let σ be the nontrivial element of Γ . We

construct here a connected reductive group G over R, a spherical homogeneous space X0 of rank 2
under the action of G and an embedding X of X0,C whose colored fan is Γ -stable, but which admits
no R-form.
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2.4.3. The group G
We denote by E a 3-dimensional C-vector space with an R-structure ER . Let ε be a bilinear form

on E defined over R and of signature (1,2). We denote by q its associated quadratic form. If g is an
element of GL(E), we denote by g∗ the inverse of its adjoint. We consider the semi-linear action of Γ

on SL(E) given by

∀g ∈ SL(E), σ (g) = g∗.

Here the conjugation is relative to the R-form SL(ER) of SL(E). One checks that Γ acts by auto-
morphisms of the group SL(E), so that this action corresponds to an R-form G of SL(E), which is
isomorphic to SU(2,1). Fix an isotropic line l in E defined over R, and denote by B the stabilizer of
the complete flag

l ⊂ l⊥

in E . Then B is a Γ -stable Borel subgroup of SL(E). Thus G is quasi-split, and we can choose gσ = 1
in what follows. The character lattice of B is given by

X (B) = (Zχ1 ⊕ Zχ2 ⊕ Zχ3)/Z(χ1 + χ2 + χ3),

where the group B acts through the character χ1 on l, χ2 on l⊥/l and χ3 on E/l⊥ .
We denote by V the dual HomZ(X (B),Q). We thus have

V = {
r1μ1 + r2μ2 + r3μ3, (r1, r2, r3) ∈ Q3 and r1 + r2 + r3 = 0

}
where Zμ1 ⊕ Zμ2 ⊕ Zμ3 is the dual lattice of Zχ1 ⊕ Zχ2 ⊕ Zχ3.

2.4.4. The homogeneous space X0
Consider the following affine variety over C:

Y = {
(p, P), p ∈ E, P ⊂ E of dimension 2, p /∈ P

}
.

The group SL(E) acts naturally and transitively on Y . Fix a point p0 ∈ ER \ {l} with q(p0) = 1. We note
P0 = p⊥

0 and x0 = (p0, P0).

Remark 2.29. The stabilizer of x0 in SL(E) is

{
g ∈ G(C), g(p0) = p0 and g(P0) = P0

}
,

and is therefore isomorphic to SL2. The homogeneous space Y is thus isomorphic to SL3/SL2.

We let the group Γ act semi-linearly on Y by

σ(p, P) = (
p′, p⊥)

where p′ ∈ P ⊥ satisfies ε(p, p′) = 1. We call X0 the R-form of this variety corresponding to this semi-
linear action. There is no problem to perform the quotient because Y is an affine variety. Observe that
x0 ∈ X0(R).

Proposition 2.30. The homogeneous space X0 is spherical. More precisely, Bx0 is open in X0(C).
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Proof. As one can check, the subset

Ω := {
(p, P) ∈ X0(C), p /∈ l⊥ and l � P

}
of X0(C) is an orbit of B , and is open in X0(C). Moreover x0 ∈ Ω . �
2.4.5. Data attached to X0

We define

D1 := {
(p, P) ∈ X0(C), p ∈ l⊥

}
and D2 := {

(p, P) ∈ X0(C), l ⊆ P
}
.

These are two B-stable divisors on X0(C) and:

Proposition 2.31. The set D equals {D1, D2}, and σ exchanges D1 and D2 .

Proof. This is a direct consequence of the description of Ω given in the proof of Proposition 2.30 and
of the definition of the action of Γ on D. �

Before we continue, we need to specify a particular basis of ER .

Notation 2.32. We denote by e1 the unique vector in l satisfying ε(e1, p0) = 1, by e2 the unique vector
in l⊥ ∩ P0 with q(e2) = 1 and by e3 the vector p0 − e1. The vectors e1, e2, e3 give a basis of E defined
on R and we denote by e∗

1, e∗
2, e∗

3 the dual basis.

With these notations, we have

x0 = (
e1 + e3, 〈e2, e3〉

)
and l⊥ = 〈e1, e2〉.

We define the two following functions on X0(C)

f1 : (p, P) �→ e∗
3(p) and f2 : (p, P) �→ ϕP (e1)

ϕP (p)

where ϕP is an equation of the 2-plane P . They are respectively the equations of D1 and D2, and
B-eigenfunctions of weight −χ3 and χ1. We are now able to prove:

Proposition 2.33. The lattice X is X (B) itself. We have

ρ(νD1) = μ2 − μ3, ρ(νD2) = μ1 − μ2.

The automorphism σ of V is the reflection exchanging μ2 − μ3 and μ1 − μ2 .

Proof. The first point follows from the fact that −χ3 and χ1 generate X (B). Moreover,

ρ(νD1)(−χ3) = νD1( f1) = 1 and ρ(νD1)(χ1) = νD1( f2) = 0,

proving that ρ(νD1 ) = μ2 − μ3. We compute ρ(νD2 ) in the same way. For the remaining point, recall
that the automorphism σ of D exchanges D1 and D2, and the map ρ is equivariant. �
Proposition 2.34. We have

ρ
(

V G) = {r1μ1 + r2μ2 + r3μ3 ∈ V , r3 � r1}.



232 M. Huruguen / Journal of Algebra 342 (2011) 212–234
Fig. 2. The combinatorial data attached to X0.

Fig. 3. The colored fan E .

Proof. Denote by τ the permutation (1,2,3) and also by τ ∈ SL(E) the automorphism sending ei
to eτ (i) . Then one checks that

τ ( f1) f2 + τ 2( f1)τ
2( f2) + f1τ ( f2) = 1

in the field K. This proves that if ν ∈ V is G-invariant, then〈
ρ(ν),χ1 − χ3

〉
� 0.

So far we have proved “⊆”. For the reverse inclusion, we use the following fact (see [Kno91]): the di-
mension of the linear part of the cone ρ(V G) is equal to the codimension of Stab(x0) in its normalizer.
Using Remark 2.29 one sees that this normalizer is given by{

g ∈ G(C), g(p0) ∈ 〈p0〉 and g(P0) = P0
}
.

Thus the linear part of ρ(V G) is of dimension 1, completing the proof of the proposition. See
Fig. 2. �
2.4.6. The embedding X

We denote by C the cone in V spanned by μ2 − μ3 and μ1 − 2μ2 + μ3. Let E be the colored fan
in V with colors in D whose maximal cones are (C, {D1}) and (σ (C), {D2}). The fan E is Γ -stable. It
is depicted in Fig. 3.

Theorem 2.35. The embedding X = XE of X0,C admits no R-form. Moreover, X is smooth.
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Proof. The colored fan E has two maximal cones that are permuted by Γ . Moreover, these maximal
cones meet, so the colored fan E cannot be quasi-projective. By Theorem 2.26 this proves the first
point. Let us denote by ω the closed orbit of G(C) on X corresponding to the colored cone (C, {D1}).
Translating the open subset Xω,B by elements of Γ and G(C) one covers X , so in order to prove
the second point, one only has to see that Xω,B is smooth. Denote by P the stabilizer of D2, or, in
other words, the stabilizer of l in E . By Theorem 2.11, there exist a Levi subgroup L of P and a closed
L-stable subvariety S of Xω,B containing x0 and such that the natural map

Ru(P ) × S → Xω,B

is a P -equivariant isomorphism. By the following lemma, S is isomorphic to C3, and thus smooth. Let
f3 be the following function on X0(C):

f3 : (p, P) �→ e∗
2(p). �

Lemma 2.36. The functions f2, f1 f2 and f3 f2 are algebraically independent in C[S], and

C[S] = C[ f2, f1 f2, f3 f2].

Proof. Observe that:

C[S] = C[Xω,B ]Ru(P )

so that the algebra C[S] is the sub-L-module of C[Lx0] generated by the B ∩ L-eigenfunctions in
C(Lx0) of weight χ satisfying

〈μ2 − μ3,χ〉 � 0, 〈μ1 − 2μ2 + μ3,χ〉 � 0.

In other words, χ belongs to the monoid generated by χ1 and χ1 − χ3. The functions f2 and f1 f2
are B ∩ L-eigenfunctions of respective weights χ1 and χ1 − χ3. Moreover, the L-module C[Lx0] is
multiplicity-free, because the homogeneous space Lx0 is spherical. One deduces that

C[S] =
⊕

(m,n)∈N2

〈
L f m+n

2 f n
1

〉
.

Using the fact that f2 is a L-eigenfunction, the following lemma enables us to conclude. �
Lemma 2.37. Let n ∈ N. A basis of the linear span of L-translates of f n

1 in C[Lx0] is given by

f n
1 , f n−1

1 f3, . . . , f1 f n−1
3 , f n

3 .

Proof. We first prove the case n = 1. Observe that l⊥ ⊆ V ∗ is generated by e∗
2 and e∗

3. Then one easily
checks that e∗

2, e∗
3 is a basis of 〈Le∗

3〉. Moreover, if there exist λ1, λ3 ∈ C2 such that

λ1 f1 + λ3 f3 = 0

in C[S], then the same is true in C[Xω,B ]. The linear forms e∗
2 and e∗

3 are thus linearly dependent
in V ∗ , which is a contradiction. Thus f1 and f3 are linearly independent in C[S], completing the proof
in the case n = 1. The same argument proves that f n

1 , f n−1
1 f3, . . . , f1 f n−1

3 , f n
3 are linearly independent

in C[S]. By the case n = 1, they also generate 〈L f n
1 〉. �
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Remark 2.38. The embedding X gives an example of a spherical variety containing two points which
do not lie on a common affine open subset. Indeed, there are two closed orbits of Gk̄ on X . If the
point y belongs to the first orbit and z to the second, then y and z cannot lie on a common affine
open subset, because of Proposition 1.23. Moreover, in view of Theorem 2.27, this example has mini-
mal rank.

Remark 2.39. With a little more work, one can compactify the previous example, and thus obtains a
complete smooth embedding X of X0 with Γ -stable fan, and with no R-form.
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