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TO THE EDITOR
There is growing evidence for func-
tional interactions between nociceptive
nerve endings and non-neuronal cells
modulating sensory function in health
and disease. In the skin, non-neuronal
cells like keratinocytes actively partici-
pate in nociceptor sensitization and thus
in encoding of noxious stimuli (Lumpkin
and Caterina, 2007; Gold and Gebhart,
2010). In vivo approaches for live-cell
imaging of the interplay of sensory
terminals and surrounding cells are
hampered by the small diameter of the
endings and the difficult experimental
accessibility. Moreover, selectively
stimulating one type of cell while
recording responses from both is
challenging. Our goal was therefore to
establish an in vitro model that would
allow studying potential functional
interactions between nociceptive
terminals and keratinocytes.

To this end, we developed a cocul-
ture model of sensory endings and
keratinocytes in a compartmented Cam-
penot chamber (Figure 1a; Campenot
et al., 2009; Roggenkamp et al., 2012).
Compartmented chambers for coculture
(Chateau et al., 2007; Roggenkamp

et al., 2012) have the advantage of a
spatial segregation of neurites (Ns) from
their somata (Figure 1a) compared with
a coculture in one compartment
(Ulmann et al., 2009; Pereira et al.,
2010a,b). Moreover, in the Campenot
chamber, fluid isolation between the
compartments allows different culture
media and factors for neuronal
somata in one compartment and
for Ns and keratinocytes in the other,
mimicking the in vivo structural and
environmental conditions. In our
experiments, isolated somata of
porcine dorsal root ganglion neurons
(Obreja et al., 2008) were grown in
the central compartment; Ns outgrown
into the lateral compartments served as
a model for sensory endings. These
Ns were cocultured with primary
isolated porcine keratinocytes (see
Supplementary information).

Using this approach, we obtained
areas of confluent keratinocytes in spa-
tial contact with sensory Ns (Figure 1b
and c). By using atomic force micro-
scopy (AFM), we visualized nanoscaled
surface topographies of adjacent Ns and
keratinocytes (Figure 1d). In the past,
AFM had been established as a tool for

the characterization of cell–cell contacts
comprising also the desmosomal junc-
tions between the keratinocytes (Fung
et al., 2010). In comparison, our images
suggest cell–cell contacts not only
between keratinocytes but also possibly
between Ns and keratinocytes. For func-
tional investigations, we implemented
live-cell imaging combined with chemi-
cal or mechanical stimulation, allowing
selective activation of one cell type
while recording responses simulta-
neously from both types. Responses to
these stimuli were visualized using the
non-ratiometric calcium dye Fluo8 acet-
oxymethyl ester. To activate only Ns, a
membrane-depolarizing concentration
of KCl was added to the somata contain-
ing central compartment. The induced
depolarization is transmitted along the
Ns into the lateral compartment,
indicated by a calcium response
(Supplementary Figure S1a online). For
specific activation of nociceptive Ns,
capsaicin was added to the lateral com-
partment (Supplementary Figure S1b
online; Caterina et al., 2007).

In coculture of Ns and keratinocytes
in the lateral compartment, we observed
an interaction between both cell types.
In the experiment shown in Figure 2a–d,
KCl was first applied to the central
compartment. After an immediateAbbreviations: AFM, atomic force microscopy; N, neurite
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transient increase in calcium concentra-
tion in the N in the lateral compartment,
two of the adjacent keratinocytes (K1
and K4) also clearly responded
(Figure 2d). There was a delay of 10
and 34 seconds between peak of the
neuronal response and response onset in
the keratinocytes. Differential interfer-
ence contrast and fluorescence micro-
photographs show the arrangement of
the keratinocytes and the Ns (Figure 2b
and c). As the keratinocytes were not
exposed to KCl, their calcium transients
can be attributed specifically to activa-
tion of the Ns and consecutive release of
mediators such as ATP or neuropep-
tides. It is, however, conceivable that
the second responding keratinocyte is
activated by local diffusion of com-
pound(s) released from the first one. To
test whether the phenotype of the N is
nociceptive, a subsequent capsaicin
application to the lateral compartment

was administered; it induced a transient
calcium increase in the N, supporting
its nociceptive nature. There was no
response in keratinocytes, possibly
because of depleted stores in the N. In
another experiment, the time course of
the responses of the keratinocytes was
similar; however, one keratinocyte
showed oscillation and possibly a small
response after the capsaicin application
(Supplementary Figure S2a–c online).
When capsaicin was applied to the
coculture as first stimulus, there was an
immediate response in the N and
delayed responses in the nearby kerati-
nocytes (Supplementary Figure S2d–f
online). For normal human epidermal
keratinocytes, expression of functional
TRPV1 has been reported (Jain et al.,
2011), but only about 3% of cells
responded with a calcium influx within
the first 30 seconds after applica-
tion of capsaicin (Inoue et al., 2002).

Similarly, in our cultured porcine kerati-
nocytes, the proportion of cells respond-
ing to capsaicin (1mM) within the first 10
seconds was 2.6% (n¼1441 cells; one
animal; Supplementary Figure S3
online). Thus, because responses in
keratinocytes in the coculture experi-
ments occurred in the vicinity of the
Ns, it is likely that they were due to
neuronal activation.

Selective activation of keratinocytes
was achieved by focal mechanical sti-
mulation. To this end, we implemented
the AFM for locally precise and force-
controlled stimuli to single keratinocytes.
Commonly, it is used as an imaging device
for the nanoscaled three-dimensional
visualization of surface topographies
(Figure 1d) or as a tool to measure inter-
molecular and intramolecular forces
(Hinterdorfer and Dufrêne, 2006; Niland
et al., 2011). In this study, the atomic force
microscope was combined with live-cell
calcium imaging to allow mechanical
stimulation of one keratinocyte and
simultaneous detection of changes in the
calcium concentration in adjacent Ns and
keratinocytes (Figure 2e–h). In these experi-
ments, we used a single lumen chamber as
the somata-containing compartment
(Figure 2e). The mechanical stimulus was
applied to one preselected keratinocyte
through the tip of the atomic force micro-
scope cantilever, oscillating with a fre-
quency of 1Hz and a loading force of
up to 500pN for 60 seconds. As the
cantilever interferes with the view on the
stimulation site, the local response cannot
be assessed. In the experiment shown, 6
seconds after starting the mechanical sti-
mulation of a keratinocyte (K stimulation;
Figure 2f), a transient increase in calcium
concentration in a nearby N was detected,
likely due to released endogenous com-
pound(s) from the stimulated keratinocyte.
With a delay of 10 and 31 seconds,
respectively, adjacent keratinocytes (K3,
K4, and K5) responded as well (Figure 2h).

In summary, our study demonstrates,
using AFM, structurally, nanoscaled
close contact between keratinocytes
and N terminals in vitro. Functionally,
we show a direct cross talk between Ns
and keratinocytes in coculture using a
compartmented chamber and live-cell
imaging. Chemical activation of neurons
resulted in calcium responses in kerati-
nocytes and mechanically stimulated
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keratinocytes activated sensory Ns.
In vivo, modulation of nonsynaptic cross
talk between the cell types has major

implications for tissue homeostasis and
sensory function in health and diseases
such as dermatitis or neuropathy, and

the described in vitro coculture system
permits the detailed study of neuron–
keratinocyte interaction.
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