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We propose a closed formula for the tree-level one-point functions of non-protected operators belonging 
to an SU(3) sub-sector of the defect CFT dual to the D3–D5 probe brane system with background gauge 
field flux, k, valid for k = 2. The formula passes a number of non-trivial analytical and numerical tests. 
Our proposal is based on expressing the one-point functions as an overlap between a Bethe eigenstate of 
the SU(3) spin chain and a certain matrix product state, deriving various factorization properties of the 
Gaudin norm and performing explicit computations for shorter spin chains. As its SU(2) counterpart, the 
one-point function formula for the SU(3) sub-sector is of determinant type. We discuss the differences 
with the SU(2) case and the challenges in extending the present formula beyond k = 2.
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1. Introduction

The integrable structure of N = 4 SYM [1] has recently shown 
its power in the calculation of one-point functions in a certain 
defect version of the theory which is holographically dual to 
the D3–D5 probe brane system with background gauge field flux 
[2–4]. Using the tools of integrability a closed formula of deter-
minant form, valid for the tree-level one-point function of any 
non-protected operator from the SU(2)-sector and for any value of 
the string theory background gauge field flux, k, was derived [5,6]. 
The formula revealed interesting connections to recent work in 
condensed matter physics [7–9]. A burning question is, of course, 
whether the integrable structure allows one to extend the closed 
formula for one-point functions to other sectors than the SU (2)

sub-sector, to higher loop orders and to other set-ups involving 
defects. In reference [10] the calculation of loop corrections to 
one-point functions was initiated. Here, we take the first step in 
the direction of moving on to other sectors by presenting a closed 
formula for the tree-level one-point functions of non-protected op-
erators for k = 2 in the SU(3) sector which is a closed sub-sector at 
one-loop order. In the SU(2) case the k = 2 formula provided the 
starting point of a recursive relation, based on the transfer matrix 
of the integrable Heisenberg spin chain, which gave access to the 
one-point function for any value of k. Earlier, tree-level one-point 
functions of protected operators (chiral primaries) involving all six 
scalar fields of N = 4 SYM were evaluated both for the present 
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dCFT dual to the D3–D5 probe brane system [11] and for two in-
stances of a dCFT dual to a D3–D7 probe brane system [12]. For 
this type of computations the tools of integrability are, however, 
not needed.

We start by outlining the definition of the defect CFT in sec-
tion 2. Subsequently, in section 3 we revisit the SU(2) sub-sector 
and express the one-point functions for k = 2 in a form which sug-
gests a generalization to SU(3) which we treat in section 4. We end 
with a discussion and conclusion in section 5.

2. The holographic set-up and the defect CFT

By considering a probe D5 brane with geometry AdS4 × S2 em-
bedded in the usual AdS5 × S5 background one can engineer a 
system whose dual is a defect version of N = 4 SYM [2]. More 
precisely, the field theory consists of a co-dimension one defect 
placed at z = 0 which is the home of a hyper-multiplet of funda-
mental fields which have self interactions as well as interactions 
with the bulk N = 4 SYM fields [3]. If one furthermore arranges 
that k of the usual N D3 branes get dissolved into the D5 brane by 
allowing a background gauge field to have flux k through the S2

one can arrive at a situation where the gauge-group of N = 4 SYM 
is SU(N − k) on one side of the defect and SU(N) on the other. In 
the string theory language the dissolution of the k D3 branes into 
the D5 brane is described by the fuzzy funnel solution which in 
the field theory picture implies that three of the six scalar fields of 
N = 4 SYM acquire a non-vanishing vacuum expectation value on 
one side of the defect [4]. More precisely

�cl
i = −1

(
(ti)k×k 0k×(N−k)

0 0

)
, i = 1,2,3, z > 0 (1)
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�cl
i = 0, i = 4,5,6, (2)

where the three k × k matrices ti constitute a k-dimensional uni-
tary, irreducible representation of su(2), in particular[
ti, t j

]= iεi jktk. (3)

For z < 0 all classical fields are vanishing. Given the vevs in eq. (1)
it is clear that operators constructed from fields of the type �1, �2
and �3 will have non-vanishing one-point functions already at 
tree-level. Applying the arguments of Cardy [13] one gets that 
one-point functions in the present CFT with a defect at z = 0 are 
constrained to take the form

〈O�〉 = C

z�
, (4)

where C is a constant and � denotes the scaling dimension of 
the conformal operator O� in the theory without defect. It is well 
known that at one-loop order conformal single trace operators 
built from scalar fields are characterized as being Bethe eigenstates 
of an integrable SO(6) spin chain [14]. This fact makes it possible 
to write the one-point functions in the scalar sector as an over-
lap between a (unit normalized) Bethe eigenstate and a certain 
so-called matrix product state [5].

C =
(

8π2

λ

) L
2

L− 1
2 Ck, Ck = 〈MPSk|�〉

〈�|�〉 1
2

. (5)

Here the pre-factor is a normalization factor ensuring the canonical 
normalization of the two-point functions of N = 4 SYM, L de-
notes the number of fields in the single trace operators, λ is the 
’t Hooft coupling constant, |�〉 the Bethe Eigenstate and |MPSk〉
the matrix product state (to be detailed below) corresponding to 
the k-dimensional irreducible representation of SU(2).

3. The S U (2) sub-sector

An SU(2) sub-sector of N = 4 SYM consists of operators con-
structed from two types of complex scalar fields each built out 
of two of the theory’s real scalar fields. In the defect set-up de-
scribed above an interesting SU(2)-sub-sector can be constructed 
for instance as follows

Z = �1 + i�4, Y = �2 + i�5. (6)

The one-loop conformal operators of this sub-sector can be 
mapped to Bethe eigenstates of the Heisenberg spin chain [14]. 
By exploiting the integrability of the Heisenberg spin chain, it was 
possible to derive a closed expression of determinant type for Ck
valid for any operator of the SU(2) sub-sector and for any value 
of k [5,6]. A key role was played by the formula for k = 2 as it 
turned out that Ck for all higher values of k could be recursively 
related to this one. In the present letter we will present a similar 
closed formula for C2 for operators from the SU(3) sector. To set 
the scene for that and to motivate our formula we shall start by 
recapitulating the SU(2) results from [5] while slightly modifying 
the formulation.

The Heisenberg spin chain whose eigenstates correspond to the 
conformal operators is described by the Hamiltonian

H =
L∑

l=1

1 − Pl,l+1, (7)

where L is the length of the chain (equal to the number of fields 
in the single trace operator) and P is the permutation operator. To 
each site of this spin chain is associated a Hilbert space C2 with 
basis vectors |e1〉, |e2〉 corresponding to the fundamental represen-
tation of SU(2) (spin up and spin down). In the mapping of a single 
trace operator onto a spin chain state the field Z is mapped to |e1〉
and the field Y to |e2〉. For convenience, let us introduce the ma-
trix unities Ei

j := |e j〉〈ei |. Furthermore, we denote the matrix unity 
acting on the n-th site of the spin chain by (Ei

j)n . As the vacuum 
of the spin chain we choose the state |0〉L = | ↑ . . . ↑〉L . A Bethe 
state with M excitations (spin down) can then be written as

|{ui}〉 := N
∑

1≤m1<...<mM≤L

⎡
⎣ ∑

σ∈SM

Sσ

M∏
r=1

[
uσr + i

2

uσr − i
2

]mr
⎤
⎦

×
M∏

s=1

(E1
2)ms |0〉, (8)

where N is a normalization factor, SM is the permutation group 
of M elements and the S-matrices Sσ are defined by the decom-
position of the permutation into two-cycles with the S-matrix cor-
responding to the two-cycle (i j) given by

Si j = ui − u j − i

ui − u j + i
. (9)

For instance, S321 = S23S13S12. Moreover, N can be expressed in 
terms of the S-matrices by considering the reflection permuta-
tion N = 1/

√
SM,M−1,...1. The Bethe state (8) is an eigenstate of 

the spin chain Hamiltonian provided that the rapidities satisfy the 
Bethe equations

1 =
(un − i

2

un + i
2

)L M∏
m �=n

un − um + i

un − um − i
. (10)

The flipped spins constitute excitations which propagate along the 
spin chain with momentum p given by u = 1

2 cot
( p

2

)
. In order that 

a Bethe eigenstate can be identified with a single trace operator it 
must fulfill the cyclicity (i.e. zero-momentum) constraint.

M∏
n=1

(un − i
2

un + i
2

)
= 1. (11)

In the SU(2) sector the matrix product state which implements the 
insertion of the vevs corresponding to Z and Y into a conformal 
single trace operator represented by a Bethe eigenstate takes the 
form [5]

〈MPSk | = tra

L∏
l=1

(
〈e1| ⊗ t(k)

1 + 〈e2| ⊗ t(k)
2

)
, (12)

where the subscript a refers to the auxiliary k-dimensional space 
in which the generators ti act.

In [5,6] it was shown that only states with L and M even 
and with paired rapidities {ui} = {−ui} have a non-trivial overlap 
with the matrix product state and hence non-vanishing one-point 
functions. In particular, for k = 2, the one-point function can be 
expressed as

C2 = 21−L

√√√√√
⎡
⎣∏

j

u2
j + 1

4

u2
j

⎤
⎦ det G+

det G− , (13)

where G± are M
2 × M

2 matrices with matrix elements:

G±
jk =

(
L

u2 + 1
−
∑

K +
jn

)
δ jk + K ±

jk, (14)

j 4 n
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and K ±
jk are defined as

K ±
jk = 2

1 + (u j − uk
)2 ± 2

1 + (u j + uk
)2 . (15)

This result can be proven from the result for the overlap between 
a Bethe eigenstate and the (2m)-fold raised Néel state [9,8,7]. For 
an alternative derivation, see [15]. The expression for Ck for arbi-
trary k was derived in [6].

A key point in the generalization of the determinant for-
mula (13) to the SU(3) case is the observation, already made in [9]
in connection with the study of the overlap between the Néel state 
and a Bethe eigenstate, that the matrices G± are closely related to 
quantities which appear in the Gaudin formula for the norm of the 
Bethe eigenstate.

Consider the SU(2) Bethe equations (10) and define the norm 
functions φn as the logarithm of the right hand side of the Bethe 
equations

φn := −i log

⎡
⎣(un − i

2

un + i
2

)L M∏
m �=n

un − um + i

un − um − i

⎤
⎦ . (16)

The norm of a Bethe state is then completely given in terms of the 
derivatives of the norm function in the following way

〈{ui}|{ui}〉 =
M∏

i=1

[
u2

i + 1
4

]
det

M×M
∂mφn, (17)

where ∂m = ∂/∂um .
Recall that the only non-trivial one-point functions in the SU(2)

sector are obtained for Bethe eigenstates with an even number M
of rapidities such that {ui} = {−ui}. This property of the root set 
causes the Gaudin norm (17) to factorize. In order to see this, let 
us order the Bethe roots as follows {u1, . . . , u M

2
, −u1, . . . , −u M

2
}. 

For the corresponding eigenstate, the norm matrix ∂mφn then takes 
the following form

∂mφn =
(

A1 A2
A2 A1

)
, (18)

where

A1 = (∂mφn)m,n=1,...,
M
2

, A2 = (∂m+M/2φn)m,n=1,...,
M
2

. (19)

It is now easy to see that the determinant factorizes

det ∂mφn = det(A+)det(A−), A± := A1 ± A2. (20)

Remarkably, it turns out that the inner product of the MPS with 
the Bethe state is proportional to one of these factors

〈MPS|{ui}〉 ∝ det A+, (21)

in such a way that the one-point function can be written as

C2 = 21−L

√√√√√
⎡
⎣M/2∏

m=1

u2
m + 1

4

u2
m

⎤
⎦ det A+

det A−
. (22)

In other words, we find that for k = 2, the one-point func-
tion C2 is given by the quotient of the factors of the Gaudin 
determinant, with a slightly modified prefactor. We will see that 
this structure persists for the SU(3) sector as well.
4. The S U (3) case

In order to extend the SU(2) sector discussed above to SU(3)

we extend our definition of the complex scalar fields as follows

Z = �1 + i�4, Y = �2 + i�5, W = �3 + i�6.

(23)

Conformal single trace operators built from these three complex 
fields can be identified with the Bethe eigenstates of the integrable 
SU(3) Heisenberg spin chain. The Hamiltonian of the spin chain 
takes the same form as before, cf. eq. (7), but this time there is 
a Hilbert space C3 with basis elements |e1,2,3〉 associated to each 
site of the chain. We now choose the vacuum of the spin chain as 
|0〉L := |e1 . . . e1〉L and map this state to the operator Tr Z L . Let us 
also recall the matrix unities Ei

j := |e j〉〈ei |. The Bethe Ansatz for 
the SU(3) spin chain is worked out in detail for instance in [16]. 
Here, we will only collect the formulas that will be of importance 
for the following. The Bethe states are labeled by three discrete 
parameters L, M, N that correspond to the length of the spin chain, 
and the two Dynkin labels of su(3) and are constrained to obey 
L ≥ 2M ≥ 4N . In the language of single trace operators, L is again 
the total number of fields in the operator, M is the number of 
excitations, i.e. Y - and W -fields and N is the number of W -fields.

A Bethe state will be a linear combination of the form

|{vi; wi}〉 := NÑ ·
∑

1≤m1<...<mM≤L

∑
1≤n1<...<nN≤M

∑
σ∈SM

∑
τ∈SN

ψστ

N∏
r=1

(E2
3)mnr

·

M∏
s=1

(E1
2)ms |0〉, (24)

where SN are all permutations of N elements and the coefficient ψ

is given by

ψστ := ψ̃στ Sσ

M∏
r=1

[
vσr + i

2

vσr − i
2

]mr

, (25)

ψ̃στ := S̃τ

N∏
s=1

M∏
r=1

(wτs − vσr + i
2 )1−δr,M

wτs − vσr − i
2

. (26)

The factors N , Ñ again simply correspond to normalizations. Due 
to the fact that SU(3) has rank two, we have two S-matrices 
Sσ , ̃Sτ , which are defined by the decomposition of the permuta-
tion into two-cycles. The S-matrix corresponding to a single two-
cycle (i j) is given by

Si j = vi − v j − i

vi − v j + i
, S̃i j = wi − w j − i

wi − w j + i
. (27)

In terms of the S-matrices, the normalization constants are given 

by N = 1/
√
SM,M−1,...1 and Ñ = 1/

√
S̃N,N−1,...1. The total nor-

malization constant is simply a phase, but (5) is sensitive to this. 
Notice that in the case N = 0 we recover the Bethe wave function 
for SU(2).

In order for the state |{vm; wn}〉 with labels (L, M, N) to be an 
eigenstate the spectral parameters v, w have to fulfill the SU(3)

Bethe equations

1 =
( vm − i

2

vm + i
2

)L M∏ vm − vn + i

vm − vn − i

N∏ vm − wn − i
2

vm − wn + i
2

, (28)

n �=m n=1
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1 =
M∏

m=1

wn − vm − i
2

wn − vm + i
2

N∏
m �=n

wn − wm + i

wn − wm − i
. (29)

It can be shown that the cyclicity constraint on the states takes the 
same form as (11), just with u’s replaced by v ’s. The parameters v
are usually called the momentum carrying or physical roots and 
the parameters w are called auxiliary roots.

The norm of an SU(3) Bethe eigenstate can be computed via 
a generalization of the Gaudin formula [17,16]. To this end, one 
introduces two norm functions corresponding to the two Bethe 
equations (28) and (29)

φv
m := −i log

⎡
⎣( vm − i

2

vm + i
2

)L M∏
n �=m

vm − vn + i

vm − vn − i

N∏
n=1

vm − wn − i
2

vm − wn + i
2

⎤
⎦ ,

(30)

φw
n := −i log

⎡
⎣ M∏

m=1

wn − vm − i
2

wn − vm + i
2

N∏
m �=n

wn − wm + i

wn − wm − i

⎤
⎦ . (31)

The norm of a Bethe state is then given by

〈{vm; wn}|{vm; wn}〉 =
M∏

i=1

[
v2

i + 1
4

]
det

(M+N)×(M+N)
∂Iφ J , (32)

where the generalized indices I, J = 1, . . . M, M + 1, . . . M + N run 
over both the momentum carrying and auxiliary Bethe roots. No-
tice that the prefactor only includes the momentum carrying roots.

Let us now consider the inner product of a Bethe eigenstate 
|{vm; wn}〉 with the Matrix Product state for k = 2. In this case, 
the matrix product state is built of Pauli matrices which fulfill

σ 2
i = 1

4
, {σi,σ j} = 0. (33)

This implies that we can write any trace that occurs in the one-
point function of an operator corresponding to a Bethe eigenstate 
with labels L, M, N as

±tr[σ L−M
1 σ M−N

2 σ N
3 ]. (34)

It is easy to see that this is only non-zero in the following two 
cases

• L, M, N all even
• L, N odd and M even

Hence, only Bethe states with such labels will have a non-trivial 
one-point function. Moreover, from the anticommutation relations 
of the Pauli matrices, it quickly follows that

〈MPS|{vi; wi}〉 = 21−LNÑ ·∑
1≤m1<...

∑
1≤n1<...

(−1)
∑

mi+
∑

ni
∑

σ∈SM

∑
τ∈SN

ψστ .

(35)

As in the SU(2) case, the MPS is not an eigenstate of the Hamil-
tonian, but is an eigenstate of the momentum operator P with 
eigenvalue zero. It is also an eigenstate of the third conserved 
charge Q (3) = [H⊗1, 1 ⊗H] with eigenvalue zero [5]. This is anal-
ogous to the SU(2) case. This shows that only Bethe eigenstates 
which are annihilated by the third conserved charge can have non-
trivial one-point functions. Such states are parity singlet states for 
which {vi} = {−vi}. This pairing of the physical roots has impli-
cations for the auxiliary roots w as well. By combining the Bethe 
equations (28) for ±vm , we derive the following set of equations
1 =
N∏

n=1

vm − wn + i
2

vm − wn − i
2

vm + wn − i
2

vm + wn + i
2

. (36)

This defines a polynomial equation of degree N − 1 in v2
m . So, for 

fixed wn this gives us N − 1 possible solutions. Since Bethe states 
are trivial if two Bethe roots coincide and since M ≥ 2N , we find 
that the above equation can not lead to a non-trivial Bethe state 
unless it is trivially satisfied. This means the auxiliary roots wn
must satisfy {wn} = {−wn}. For even N this simply means that the 
auxiliary roots also must come in pairs. For odd N this means that 
one of the auxiliary roots is trivial w N = 0 and the remaining roots 
must come in pairs. In the following we will present a closed de-
terminant formula for the one-point functions of the SU(3) sector, 
similar to the one for the SU(2) subsector. We have to distinguish 
two cases, namely N even and N odd.

For even N , both the momentum carrying and the auxiliary 
roots come in pairs. Let us order them as {v1, . . . , v M

2
, −v1, . . . ,

−v M
2
} and {w1, . . . , w N

2
, −w1, . . . , −w N

2
}. It is again easy to see 

that the norm matrix ∂Iφ J takes a very symmetric form

∂Iφ J =

⎛
⎜⎜⎝

A1 A2 B1 B2
A2 A1 B2 B1
Bt

1 Bt
2 C1 C2

Bt
2 Bt

1 C2 C1

⎞
⎟⎟⎠ , (37)

where t stands for transposition and

A1 = ∂vmφv
n , m = 1, . . . M

2 , n = 1, . . . M
2 (38)

A2 = ∂vmφv
n , m = M

2 + 1, . . . M, n = 1, . . . M
2 (39)

B1 = ∂vmφw
n , m = 1, . . . M

2 , n = 1, . . . N
2 (40)

B2 = ∂vmφw
n , m = M

2 + 1, . . . M, n = 1, . . . N
2 (41)

C1 = ∂wmφw
n , m = 1, . . . N

2 , n = 1, . . . N
2 (42)

C2 = ∂wmφw
n , m = N

2 + 1, . . . N, n = 1, . . . N
2 . (43)

The determinant of the norm matrix factorizes. In particular, we 
have

det ∂Iφ J = det G+ det G−, G± =
(

A± B±
Bt± C±

)
, (44)

where A± = A1 ± A2 etc. This suggests a direct generalization 
of (22), more precisely

C({vi; wi}) = 21−L

√√√√√
⎡
⎣M/2∏

m=1

v2
m + 1

4

v2
m

⎤
⎦
⎡
⎣N/2∏

n=1

w2
n + 1

4

w2
n

⎤
⎦ det G+

det G−
.

(45)

For N = 0 this reduces to the SU(2) result. Moreover, for N = 2
we checked the overlap formula numerically for Bethe states with 
labels (L, M, N) = (8, 4, 2), (10, 4, 2), (12, 6, 2) for different numer-
ical solutions of the Bethe equations and perfect agreement is 
found to 50 digits. The next different value of N would be N = 4
and since L ≥ 2M ≥ 4N we find that the smallest such state has la-
bels (L, M, N) = (16, 8, 4). This Bethe state has in the order of 1012

terms, which makes it unaccessible from a practical point of view.
For odd N , the Bethe roots take the form

{v1, . . . , v M
2
,−v1, . . . ,−v M

2
} ∪ {w1, . . . , w N−1

2
,−w1, . . . ,

−w N−1
2

,0}.
Again, the norm matrix ∂Iφ J shows a symmetric form, but the ad-
ditional trivial auxiliary root w N = 0 introduces an additional row 
and column. More precisely, we have
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∂Iφ J =

⎛
⎜⎜⎜⎝

A1 A2 B1 B2 D1
A2 A1 B2 B1 D1
Bt

1 Bt
2 C1 C2 D2

Bt
2 Bt

1 C2 C1 D2
Dt

1 Dt
1 Dt

2 Dt
2 D3

⎞
⎟⎟⎟⎠ , (46)

where again t stands for transposition and

A1 = ∂vmφv
n , m = 1, . . . M

2 , n = 1, . . . M
2 (47)

A2 = ∂vmφv
n , m = M

2 + 1, . . . M, n = 1, . . . M
2 (48)

B1 = ∂vmφw
n , m = 1, . . . M

2 , n = 1, . . . N−1
2 (49)

B2 = ∂vmφw
n , m = M

2 + 1, . . . M, n = 1, . . . N−1
2 (50)

C1 = ∂wmφw
n , m = 1, . . . N−1

2 , n = 1, . . . N−1
2 (51)

C2 = ∂wmφw
n , m = N−1

2 + 1, . . . N, n = 1, . . . N−1
2 (52)

D1 = ∂w N φv
m, m = 1, . . . M

2 (53)

D2 = ∂w N φW
n , n = 1, . . . N−1

2 (54)

D3 = ∂w N φW
N . (55)

Remarkably, the determinant of the norm matrix again factorizes

det ∂Iφ J = det G+ det G−, (56)

G− =
(

A− B−
Bt− C−

)
, G+ =

⎛
⎝ A+ B+ D1

Bt+ C+ D2
2Dt

1 2Dt
2 D3

⎞
⎠ , (57)

suggesting the following formula for the one-point functions

C({vi; wi})

= 21−L

√√√√√
⎡
⎣M/2∏

m=1

v2
m + 1

4

v2
m

⎤
⎦
⎡
⎣(N−1)/2∏

n=1

w2
n + 1

4

w2
n

⎤
⎦ 1

4

det G+
det G−

. (58)

Comparing (45) to (58), we see that they are exactly the same 
up to the special terms that involve w N . Since this Bethe root is 
zero, it does not appear in the product that multiplies the quo-
tient of determinants, but rather gives an additional factor of 1

4 . 
We also find that G− is modified by supplementing it with an 
additional row and column. The formula (58) is supported by a 
number of highly non-trivial checks. We have checked our re-
sults analytically for N = 1, M = 2, 4 for any L. For N = 3 we 
checked the overlap formula numerically for Bethe states with la-
bels (L, M, N) = (13, 6, 3). This state has almost 150 million terms, 
which all conspire to give a perfect agreement for up to 50 digits.

5. Discussion and conclusion

Although our various checks of the formulas for the one-point 
functions of the SU(3) sub-sector give ample support that the for-
mulas are correct, an analytical proof thereof would be highly 
desirable. What is missing is a proof that the overlap of a Bethe 
eigenstate with the matrix product state can be written as a spe-
cific determinant in the same way as it was the case for the SU(2)

sub-sector. In the SU(2) case this could be proved by showing 
that the matrix product state was cohomologically equivalent to 
the Néel state in the case of M = L/2 [5] and to an appropri-
ately raised Néel state for M < L/2 [6] and combining this with 
the fact that the inner product between a Bethe eigenstate and 
the latter states was known already [7–9]. Alternatively, the over-
laps for M < L/2 could be related to overlaps involving so-called 
partial Néel states [5] and evaluated by identifying them with a 
partial version of the reflecting boundary domain wall partition 
function of the six vertex model [15]. Investigating the concept of 
Néel states and their overlaps with Bethe eigenstates in case of the 
SU(3) spin chain would be interesting not only for one-point func-
tions in the present defect version of N = 4 SYM, but also in its 
own right.

A question closely related to the above is whether the other 
determinant in the product formula for the Gaudin norm can be 
understood as the inner product of a Bethe eigenstate with some 
other state. This question also lacks an answer in the case of the 
SU(2) spin chain.

The results of the present paper deal entirely with the case 
k = 2 where k is equal to the difference in the rank of the gauge 
group between the two sides of the defect in the dCFT set-up and 
equal to the amount of background gauge field flux in the dual 
string theory set-up. At the moment comparisons between gauge 
theory and string theory are possible only in a certain double scal-
ing limit which implies that one should consider k → ∞ [11]. 
Hence, it would be very interesting to extend the present results 
to the case of general k. In the case of SU(2) it was possible to 
derive a two-step recursion relation which related the one-point 
function for higher even values of k to that for k = 2 and the 
one-point function for all higher odd values of k to that for k = 3. 
Solving the recursion relation furthermore revealed that the one-
point function for any k could be written as a pre-factor times 
that for k = 2 [6]. We find that this is still the case for N = 1
with the same prefactor and a rescaling L → L + 1 but our anal-
ysis has not revealed any similar structure of the result in other 
cases. The above mentioned recursion relation followed from the 
fact that the result of acting with the SU(2) transfer matrix on the 
matrix product state corresponding to a representation of rank k
could be decomposed into matrix product states corresponding to 
representations of rank k − 2 and k − 4, respectively. In the present 
case we have not been able to identify such a decomposition.

The fact that the calculation of one-point functions entails the 
natural appearance of an auxiliary vector space via the matrix 
product state might be taken as an indication that a reformulation 
of the calculation in the language of the algebraic Bethe ansatz 
could be possible and maybe even advantageous. Developing such 
a reformulation constitutes an interesting future direction of inves-
tigation. It would likewise be interesting to extend our discussion 
to the full SO(6) scalar sector of N = 4 SYM.
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