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Abstract Recognizing human actions in video sequences has been a challenging problem in the last

few years due to its real-world applications. A lot of action representation approaches have been

proposed to improve the action recognition performance. Despite the popularity of local

features-based approaches together with ‘‘Bag-of-Words’’ model for action representation, it fails

to capture adequate spatial or temporal relationships. In an attempt to overcome this problem, a

trajectory-based local representation approaches have been proposed to capture the temporal infor-

mation. This paper introduces an improvement of trajectory-based human action recognition

approaches to capture discriminative temporal relationships. In our approach, we extract trajecto-

ries by tracking the detected spatio-temporal interest points named ‘‘cuboid features’’ with match-

ing its SIFT descriptors over the consecutive frames. We, also, propose a linking and exploring

method to obtain efficient trajectories for motion representation in realistic conditions. Then the

volumes around the trajectories’ points are described to represent human actions based on the

Bag-of-Words (BOW) model. Finally, a support vector machine is used to classify human actions.

The effectiveness of the proposed approach was evaluated on three popular datasets (KTH,

Weizmann and UCF sports). Experimental results showed that the proposed approach yields

considerable performance improvement over the state-of-the-art approaches.
� 2015 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information,

Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Over the past years, human action recognition in videos has
been a growing field of research in computer vision with many
real-world applications, such as video surveillance, video
indexing/browsing, recognizing gestures, human–computer

interfacing and analysis of sport-events. However, it is still a
challenging problem because of cluttered backgrounds, illumi-
nation changes, different physiques of humans, variety of
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clothing, camera motion, partial occlusions, viewpoint
changes, scale variation of video screen, etc.

Generally, human action recognition procedure consists of

two main steps: action representation, and action learning and
classification. Existing action recognition approaches are
classified by Weinland et al. [1] based on action representation

into two main approaches: global and local representations.
Global representation approaches focus on detecting the whole
body of the person by using background subtraction or track-

ing. Silhouettes, contours or optical flow are usually used for
representing the localized person. These representations are
more sensitive to viewpoint changes, personal appearance
variations and partial occlusions.

In local representation approaches, videos are represented
as a collection of small independent patches. These patches
involve the regions of high variations in spatial and time

domains. Centers of the patches are called spatio-temporal
interest points (STIPs). The detected points are described by
capturing the appearance and/or motion information from

their patches and clustered to form a dictionary of prototypes
or visual-words. Each action sequence is then represented by
Bag of Words model (BOW) [2]. Recently, these approaches

have become very successful approaches for human action
recognition. They overcome some limitations of global repre-
sentation such as sensitivity to noise and partial occlusion
and the necessity of accurate localization by background

subtraction and tracking.
Several STIPs detectors have been proposed to determine

the spatio-temporal interest locations in videos. For example,

Laptev [3] extended Harris corner detector for the spatio-
temporal case and propose Harris3D detector, Dollar et al.
[4] proposed the Cuboid detector by applying 1-D Gabor

filters temporally, Willems et al. [5] proposed Hessian detector
which measures the saliency with the determinant of the 3D
Hessian matrix, and Wang et al. [6] introduced Dense sampling

detector that extracts STIPs at regular positions and scales in
space and time. Also, various descriptors for STIPs have been
proposed such as Gradient descriptor [4], Histogram of
Oriented Gradients (HOG) and Histogram of Optical Flow

(HOF) descriptors [2], 3D Scale-Invariant Feature Transform
(3D SIFT) [7], 3D Gradients descriptor (HOG3D) [8] and
the extended Speeded Up Robust Features descriptor

(ESURF) [5].
Despite the popularity of local representation approaches,

it has some drawbacks. One of the main drawbacks is the

ignorance of spatial and temporal relationships between local
features. This may be a major problem in human action recog-
nition. The spatial and/or temporal connections between the
detected low-level action parts are necessary to introduce

intrinsic characteristics of actions. A lot of attempts have been
made to weaken this limitation of the local representation
approaches based on BOW model. To capture these relation-

ships early work was introduced such as Laptev et al. [2],
Liu and Shah [9], Gilbert et al. [10], Zhang et al. [11] and
Bregonzio et al. [12].

This paper introduces an enhancement of the recently pro-
posed approaches which called trajectory-based local represen-
tation approaches [13–19]. These approaches capture some

temporal relationships between the detected interest points
by tracking them throughout the video. They differ in the tra-
jectory generation and representation methods used. In this
framework, we track the STIPs detected by Cuboid detector
using SIFT-matching, then after some refinement we use the
tracked points to form the action trajectories and then we
describe the volumes around these trajectories’ points. These

features are represented with a Bag-of-Words (BOW) model.
Finally, human actions are classified using a Support Vector
Machine. In order to evaluate the proposed approach, we train

and recognize action models on three popular datasets, KTH
[20], Weizmann [21] and UCF Sports [22].

This paper is organized as follows. Section 2 reviews the

previous related work. Section 3 describes the proposed
trajectory-based approach for video representation. Section 4
presents the experimental setup, datasets and discusses the
obtained results. Finally, Section 5 concludes the paper.

2. Related work

Recent works [13–19] show good results for action recognition

in which the local spatio-temporal volumes are determined by

using the trajectories of the interest points through video

sequences. These trajectory-based approaches leverage the

motion information extracted from the spatio-temporal

volumes and utilize different methods for representation.

Messing et al. [13] allowed a bag-of-features model to capture

a significant amount of non-local structure by tracking

Harris3D interest points [3] with the Pyramid Lucas–Kanad

e–Tomasi (KLT) tracker [23]. For action classification,

Trajectories are represented by computing quantized velocities

over time which called ‘‘velocity history’’. Matikainen et al.

[14] introduced a trajectory-based motion features which called

‘‘trajectons’’. Trajectories are produced using a standard KLT

tracker. For trajectories representation, clustering trajectories

is performed using K-means and then an affine transformation

matrix is computed for each cluster center. Sun et al. [15] gen-

erated their trajectories by matching SIFT descriptors between

consecutive frames based on a unique-match constraint that

yields good motion trajectories. Actions are then described in

a hierarchical way where three levels of context information

are exploited. Sun et al. [16] also extracted long-duration

trajectories by combining both KLT tracker and SIFT descrip-

tor matching. Moreover, random points are sampled for

tracking within the region of existing trajectories to capture

more salient image structures. For action representation,

spatio-temporal statistics of the trajectories are used. Raptis

and Soatto [17] proposed spatio-temporal feature descriptors

that capture the local structure of the image around trajecto-

ries. These descriptors are a computation of HOG or HOF

descriptors along the trajectories. The final descriptor is

applied in action modeling and video analysis. Bregonzio

et al. [18] presented an action representation based on fusing

the trajectories generated by both KLT tracker and SIFT

matching with the extracted spatio-temporal local features.

This fusion enhanced the trajectory-based action representa-

tion approaches to be able to recognize actions under realistic

conditions such as small camera movement, camera zooming,

and shadows. Wang et al. [19] introduced dense-trajectories

and used the motion boundary histograms (MBH) [24] as a

trajectory descriptor. Points are detected by dense sampling

detector and checked by Shi and Tomasi criterion [25] then

tracked using a dense optical flow field. Trajectories are

described with four different descriptors (trajectory shape,

HOG, HOF and MBH).
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In order to generate reliable and robust trajectories, it is
necessary to extract good keypoints and track them accurately.
In [14–17], trajectories are extracted by tracking spatially

salient points, such as SIFTs or corners. However, in low-
resolution videos with cluttered background and fast motion,
the number of resulting keypoints is far from sufficient which

increases redundancy and noise level. Due to its spares repre-
sentation base, tracking Harris3D STIPs as in [13] enhances
the generated trajectories but using KLT tracker does not

guarantee the corresponding point in the next frame is a
feature point. Also, the temporal scalability of 3D interest
points is limited to capture only the short (simple) movements.
Finally, tracking the densely sampled STIPs achieved a great

success [19], but still not discriminative enough because of
the large number of extracted trajectories and its computation-
ally consumption. The effect of using optical flow in tracking is

decreased in dense trajectories due to the large number of
feature points.

In this paper, we go further on the trajectory-based

approaches for a local representation of human actions. Our
trajectories are characterized by its generation. We select the
cuboid detector as a point detector to generate denser trajecto-

ries and matching the spatial information of the detected
STIPs over consecutive framers to extract their actual move-
ments. Furthermore, to overcome the short temporal scalabil-
ity of the detected STIPs, the flow vectors computation is used

as a linker and/or explorer for short trajectories.

3. Proposed approach

The goal of the proposed approach is to represent actions by
extracting local spatio-temporal features with rich motion
information from videos. STIPs are detected, as a first step,

using Cuboid detector [4]. Then, around every point, 2D
SIFT descriptor [26] is computed to build trajectories using
SIFT-matching between STIPs in consecutive frames. The

extracted trajectories are enhanced and described. Finally,
each video sequence is represented using the Bag of features
models. The system architecture is illustrated in Fig. 1.

3.1. Feature extraction

In this approach, we initially extract STIPs in each video
sequence. Among different detectors that have been proposed

in the last few years, we have selected Cuboid detector pro-
posed by Dollar et al. [4]. It overcomes the drawback of the
sparsity STIP detectors (e.g. Harris3D and 3D Hessian) which

detect small number of stable interest points detected [1].
Furthermore, the sampling of spatial–temporal volume of
Cuboid detector is denser than other dense sampling detectors

[6]. Dollar et al. [4] detected the locally periodic motion by
applying a set of separable linear filters (Gaussian filter applied
on the spatial domain and 1-D Gabor filter applied tempo-

rally). The response function for a stack of images denoted
by I(x,y,t) is given by

R ¼ I � g � hevenð Þ2 þ I � g � hoddð Þ2 ð1Þ

where g(x,y;r) is the 2D spatial Gaussian smoothing kernel,
and heven and hodd are a quadrature pair of 1D Gabor filters

which are applied temporally. They are defined as
hevenðt; s;xÞ ¼ �cosð2ptxÞe�t
2=s2 ; and

hoddðt; s;xÞ ¼ �sinð2ptxÞe�t
2=s2 ð2Þ

with x ¼ 4=s. The two parameters r and s of the response
function R correspond roughly to the spatial and temporal
scales of the detector. The local maxima of the response func-

tion are the interest points. These interest points correspond to
the local regions where the complex motion patterns are
occurred. In the presented experiments, we detect the interest
points at multiple scales of r = {2, 4} as spatial scales and

s = {2, 4} as temporal scales for each video sequence to
capture the essence of human action.

3.2. Trajectory-based feature description

The second stage in the presented approach consists of four
steps to describe the detected interest points by their trajecto-

ries throughout the video frames. These steps are described as
follows:

3.2.1. Trajectories generation

Trajectories are extracted from each video by describing the
spatial information of the detected STIPs using SIFT descrip-
tor [26] and then searching for their matches between the con-

secutive frames. Due to its robustness to the variations of
viewing conditions, SIFT descriptors were used for STIP
matching and tracking in consecutive frames. To mitigate the
effect of incorrect matches we follow the windowing approach

for matching proposed by Sun et al. [15]. Such approach con-
siders that any point p in frame i can be matched with one can-
didate point p0 in frame i+ 1 and must be located within a

spatial window M · M around point p. This consideration dis-
cards the matches that are too far apart based on the observa-
tion of most realistic motions which cannot be very fast. The

generated trajectories by this windowing approach may
automatically end when reaching the shot boundaries or with
considerable occlusions. Experimental results showed that

the spatial matching window of size 32 · 32 gives good results
over the tested dataset.

3.2.2. Trajectories enhancement (linking and exploring)

After tracking STIPs over all frames, motion trajectories of
varying lengths are generated. Examples for generated trajec-
tories are shown in Fig. 2. It can be observed that there are
very short and long trajectories generated for motion represen-

tation. Due to the matching errors, occlusions of interest
points, camera motion, viewpoint changes, and scales varia-
tion of video screen, short trajectories can be treated as

uncompleted trajectories. Therefore, the future of these
uncompleted trajectories must be explored.

The exploration process is carried out by estimating the

optical flow vectors for the next frame by the KLT method
[23] within a window of size W · W. Then, describing the esti-
mated location by SIFT descriptor and again searching for its

match in the next frames. Finding a match means that a link-
ing between two trajectories has been performed. The explo-
ration by KLT method continues till finding SIFT match or
reaching to a limited length of frames. Fig. 3 illustrates the

proposed linking and exploration approach. Experimental



Figure 1 Diagram of the proposed method for human action recognition.

Figure 2 Examples of generated trajectories for four actions. The first row is for walking action, the second row is for swinging bar

sport, the third row is for running action and the fourth is for jacking action.
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Figure 3 Illustration of linking and exploring process.
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results showed that W = 10 gives good results over the tested
dataset.

In all presented experiments, trajectories less than 10 frames
length are considered as uncompleted trajectories and thus

need to be linked or explored. The exploration process is
terminated after the length of trajectory reaches 10 frames.
Fig. 4 shows the generated trajectories before and after linking

and exploring. From Fig. 4, it can be observed that the
proposed linking and exploring method performs well under
different video conditions such as varying video scales as

shown in the first row and complex background with small
camera motion as shown in the second row. Furthermore, it
generates reliable trajectories under controlled video environ-

ments as shown in the last two rows in Fig. 4.

3.2.3. Trajectories pruning

After linking and exploring the trajectories, short trajectories

still exist. These trajectories can be considered as noisy tracks
and can be pruned. Moreover, static trajectories that do not
have motion information are removed. Also, trajectories with

sudden large displacements are pruned. We follow Wang
et al. approach [19] to detect such trajectories by measuring
the displacement vector between two consecutive trajectory
points. The trajectory is removed if any displacement is larger

than 70% of the overall displacement. The effect of pruning
stage is illustrated in Fig. 5. Finally, trajectories longer than
a pre-defined minim length (10 frames) are automatically

segmented into smaller fixed length trajectories (L = 10
frames). Again any short trajectory segments are removed.
Now our trajectories are ready for description.

3.2.4. Trajectories description

In this work we adopted the approach of Wang et al. [19] to
describe our trajectories. For each motion trajectory, four

descriptors were computed: Trajectory shape descriptor [19],
HOG (histograms of oriented gradients) [2], HOF (histograms
of optical flow) [2] and MBH (motion boundary histograms)
[19]. Each descriptor captures some specific characteristics of
the video content.

In our experiments, as we fix the trajectory length to 10
frames, the final dimension of the trajectory shape descriptor
is 18. It captures the shape information of a trajectory by com-

puting its displacement vectors. Moreover, a volume along the
extracted trajectories of size 32 · 32 · 10 and a grid size
3 · 3 · 2 are used for HOG, HOF and MBH descriptors. To

describe the appearance information inside the volumes,
4-bins histogram of gradient orientations (HOG) is computed
for each cell which yields a feature vector of length 72. Also,
5-bins histogram of optical flow (HOF) is used to quantize

the grid cells to capture the motion information. The HOF
descriptor vector length is 90. MBH is another motion descrip-
tor for trajectories which describes the motion in x and y direc-

tions respectively. For each direction, 5-bins histogram of
optical flow is used to quantize the grid cells of trajectory
volume. The final feature vector dimension is 180.

3.3. Representation & classification

We follow the general framework of the local-based action

representation approaches and use the standard bag of words
model for video representation. The visual words (or code-
book) are built from training data by using k-means clustering
algorithm with the Euclidean distance. Then, each video is rep-

resented as the frequency histogram of the codebook elements.
In our experiments, the codebook is built on a subset of 60,000
randomly selected training features to limit the complexity.

Due to the random initialization of k-means clustering algo-
rithm, we report the best result over 10 runs. When using dif-
ferent descriptors for action description, the codebook for each

one is built separately.
For classification, we use a non-linear support vector

machine (SVM) with the v2 kernel [2];

KðHi;HjÞ ¼ exp � 1

2A

XV
n¼1

hin � hjn
� �2
hin þ hjn

 !

where Hi = {hin} and Hj = {hjn} are the histograms of word
occurrences, V is the codebook size and A is the mean value

of distances between all training samples. The average accu-
racy over all classes is reported for the performance measure-
ment. The C parameter trades off the misclassification of

training examples against simplicity of the decision surface.
Low C makes the decision surface smooth, while high C aims
to classify all training examples correctly. The best classifica-
tion parameters C and A are selected by a grid search on all

values of 2x where x is in the range �5 to 16 and 2 y where y
is in the range 3 to �15, respectively.

4. Experimental setup and results

The proposed approach is firstly evaluated based on the clas-
sification accuracy with four descriptors: TD, HOG, HOF,

MBH and their combination at different codebook sizes.
Secondly, more tests have been done to evaluate the influence
of the trajectories parameters: matching window size, explor-

ing window size, trajectory length, neighborhood size and cell
grid structure size. The final evaluation has been carried out by



Figure 4 Examples of the generated trajectories before and after linking and exploring for four actions. First column is before linking

and second column is after. The first row is for walking action, the second row is for swinging bar sport, the third row is for running action

and the fourth is for jacking action.
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comparing our results with the state-of-the-art results. The
evaluations have been performed on three popular datasets:

Weizmann, KTH and UCF sports. These datasets are chosen
to test the performance of our proposed approach on the con-
strained and non-constrained environments with different

conditions.

4.1. Datasets

KTH Dataset is the most commonly used dataset for the eval-

uations of action recognition approaches [20].1 It consists of
600 videos performed by 25 different actors for six basic
actions: walking, jogging, running, boxing, hand waving, and

hand clapping (see Fig. 6, top). The actions were captured with
a static camera under constrained environment in four
1 http://www.nada.kth.se/cvap/actions/.
different scenarios: indoors, outdoors, outdoors with scale
variation, and outdoors with different clothes. Each video is

sampled by 25 fps with the resolution 160 · 120 pixel.
Following the original setup of the authors, a multi-class
SVM classifier has been trained on sequences of 16 actors

and evaluated by the sequences of the remaining 9 actors
according to 5-fold cross-validation.

Weizmann Dataset [21]2 contains 93 video sequences show-
ing nine different actors, each performing ten actions: bend,

skip, jumping-jack, jump-forward-on-two-legs, jump-in-place-
on-two-legs, gallop sideways, wave-one-hand, wave-two-
hands, run and walk (see Fig. 6, middle). They have a spatial

resolution 180 · 144 pixel and captured with a fixed camera
2 http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.

html.

http://www.nada.kth.se/cvap/actions/
http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html


Figure 5 Examples of the generated trajectories before and after pruning for four actions. First column is before pruning and second

column is after. The first row is for walking action, the second row is for swinging bar sport, the third row is for running action and the

fourth is for jacking action.

Human action recognition 193
25 fps under the same lighting condition. Leave-One-Out
Cross-Validation (LOOCV) is used to train SVM classifier.

UCF sports dataset [22]3 contains 150 video samples for ten
different types of human actions in sport broadcasting videos:
diving, golf swinging, kicking, weight-lifting, horse-riding, run-

ning, skateboarding, swinging 1 (on the pommel horse and
floor), swinging 2 (at the high bars) and walking (see examples
in Fig. 6, bottom). The videos have different frame rate and

high image resolution. We follow the setup of Wang et al.
[6], the dataset is extended by adding a horizontally flipped
version of each sequence to the dataset and each sequence is

subsampled to its half spatial resolution to decrease the high
3 http://www.crcv.ucf.edu/data/UCF_Sports_Action.php.
memory requirements. For evaluation, Leave-One-Out
Cross-Validation (LOOCV) is used to train SVM.

4.2. Classification accuracy

Table 1 presents the best performance of the proposed

approach for different descriptors on three datasets (KTH,
Weizmann and UCF sports). Also, the classification accuracies
at different codebook sizes for the three datasets are shown in

Fig. 8.
For KTH dataset: The best result of our approach 95.36%

is obtained with the HOF descriptor at codebook size 3000 as

shown in Fig. 7(a). In the second place, MBH and the combi-
nation report 94.9% at codebook size 3000. Finally, TD and

http://www.crcv.ucf.edu/data/UCF_Sports_Action.php


Figure 6 Sample frames from KTH (top), Weizmann (middle), and UCF Sports (bottom) human action datasets.

Table 1 The action recognition accuracy of the proposed

approach using different descriptors and applied to KTH,

Weizmann and UCF Sports datasets.

KTH Weizmann UCF sports

TD 88.42 94.44 75

HOG 88.42 97.77 84.26

HOF 95.36 96.66 88.152

MBH 94.9 95.55 86.77

Combination 94.9 96.66 89.97
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HOG descriptors achieve accuracy 88.42% at codebook size
4000. The confusion matrix of the best classification result
on the KTH dataset is shown in Table 2. It is interesting to

note that the leg-related actions (‘‘jog’’, ‘‘run’’, ‘‘walk’’) are
more confused with each other. There is a small confusion
between ‘‘wave’’ and ‘‘clap’’ by a ratio 2.77%.

Weizmann dataset: According to the results in Table 1 (sec-
ond column) and Fig. 7(b), HOG descriptor achieves the best
result of 97.77% among the tested descriptors at codebook size

2000. Comes in the second place is HOF descriptor and the
combination by 96.66% at codebook sizes 1000 and 3000,
respectively. MBH descriptor obtains 95.55% at codebook size

1000. In the last place, TD descriptor achieved 94.44% at
codebook size 3000. It can be observed that Weizmann dataset
needs small visual words for video representation than KTH
dataset. It may be explained by the little variations in this

dataset.
The confusion matrix of recognition results for HOG

descriptor on the Weizmann dataset is presented in Table 3.
The confusion occurs between the actions ‘‘jump’’ and ‘‘skip’’
by a ratio 11.11% when using the proposed trajectory-based

approach with HOG descriptor.
Our approach is also tested for more complex actions and

background video variations on UCF Sports dataset.

According to the presented results in Table 1 (third column)
and Fig. 7(c), the combination of the computed descriptors
is superior descriptor for the UCF dataset which obtains
89.97% accuracy at codebook size 4000. HOF descriptor

obtains 88.15% and 86.77% for MBH descriptor at codebook
size 3000. TD and HOG descriptors achieve accuracy 74.82%
and 84.26% at codebook sizes 1000 and 4000, respectively. The

high performs of TD descriptor at small codebook size 1000
can be explained by that it described the actions with short
dimension vectors (18 dimension) which yields a lot of similar-

ity between the different actions representation.
The confusion matrix of the best classification result on the

UCF sports dataset is shown in Table 4. It can be observed
that the recognition accuracies of actions ‘‘dive,’’ ‘‘kick,’’

‘‘lift,’’ ‘‘walk,’’ ‘‘swing1’’ and ‘‘swing2’’ reach 100%. Another
observation is that high confusion is occurred between the
actions ‘‘ride,’’ ‘‘run’’ and ‘‘skate’’. It should be noted that

the videos of these actions have a cluttered backgrounds and
some of them were captured with a moving camera.
Therefore, this confusion is reduced by using the combination.

4.3. Evaluation of trajectory parameters

In this section, the influence of the different parameter settings

for the proposed trajectory is evaluated. KTH dataset is
selected to report the results because of its middle level of
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Figure 7 Classification accuracies for different descriptors at

different codebook sizes for (a) KTH dataset, (b) Weizmann

dataset, and (c) UCF sports dataset.

Table 2 Confusion matrix for the best classification result of

HOF descriptor on KTH dataset.

(%) Box Clap Wave Jog Run Walk

Box 100 0 0 0 0 0

Clap 0 100 0 0 0 0

Wave 0 2.77 97.22 0 0 0

Jog 0 0 0 94.44 5.55 0

Run 0 0 0 16.69 83.33 0

Walk 0 0 0 2.77 0 97.22
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difficulty. We study the impact of matching window size,
exploring window size, trajectory length, neighborhood size,

cell grid structure. All evaluations are carried out for one
parameter at a time and the other parameters are fixed to
the default values, i.e., matching window size M = 32, trajec-

tory length L = 10, exploring window size W = 10, neighbor-
hood size N= 32 and cell grid structure nx,y = 3, nt = 2.
Based on the experimental results presented in Fig. 8, the code-
book size is fixed to 3000 and HOF descriptor is used for
Table 3 Confusion matrix for the best classification result of HOG

(%) Bend Jack Jump P-Jump Run

Bend 100 0 0 0 0

Jack 0 100 0 0 0

Jump 0 0 100 0 0

P-Jump 0 0 0 100 0

Run 0 0 0 0 88.8

Side 0 0 0 0 0

Skip 0 0 11.11 0 0

Walk 0 0 0 0 0

Wave1 0 0 0 0 0

Wave2 0 0 0 0 0
trajectory description. The trajectory parameters are evaluated
based on the classification accuracy.

The evaluation results of the matching window size (M) in

Fig. 8(a) show that the classification accuracy is increased by
increasing the window size till reaching the size 32 · 32. A
decrement in classification accuracy is observed after this

size. This occurs because using large window size causes a high
ratio of matching errors and generates a large number of bad
trajectories. The same reasons can explain the evaluation

results of the exploring window size (W) that presented in
Fig. 8(b).

The evaluation results of the trajectory length (L) presented
in Fig. 8(c) show that the classification accuracy is decreased

by increasing the length beyond L= 10. It should be noted
that most of the STIPs which were extracted with different
detectors represent regions of short range motion and varied

rapidly with time. Therefore, depending on the used detector
and trajectory generation approach, the ratio of wrong paths
is increased beyond the predefined trajectory length. For the

same reasons, the suitable neighborhood size used for trajec-
tory description is 32 · 32 with grid cell structure 3 · 3 · 2 as
shown in Fig. 8(d) and (e).
4.4. State-of-the-art comparison

KTH dataset: Among the results of the previously published
trajectory-based local representation approaches [13,16,17,19],

our method achieves the highest recognition accuracy of
95.36% as shown in Table 5 (first column). Messing et al.
[13] reported 74% using the velocity histories description for

their trajectories. Sun et al. [16] obtained 86.8% using the
trajectories statistics description. When we compare with the
TD description of our trajectories, an improvement of

14.42% is obtained above Messing et al. [13] and 1.62% above
descriptor on Weizmann dataset.

Side Skip Walk Wave1 Wave2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

8 0 11.11 0 0 0

100 0 0 0 0

0 88.88 0 0 0

0 0 100 0 0

0 0 0 100 0

0 0 0 0 100



Table 4 Confusion matrix for the best classification result of the descriptors combination on UCF sports dataset.

DIVE GOLF KICK LIFT RIDE RUN SKATE SWING1 SWING2 WALK

DIVE 100 0 0 0 0 0 0 0 0 0

GOLF 0 88.88 0 0 0 0 0 0 0 11.11

KICK 0 0 100 0 0 0 0 0 0 0

LIFT 0 0 0 100 0 0 0 0 0 0

RIDE 0 0 0 0 75 8.33 16.66 0 0 0

RUN 0 0 0 0 15.4 69.23 0 0 0 7.7

SKATE 0 0 0 0 0 16.66 66.66 0 0 16.66

SWING1 0 0 0 0 0 0 0 100 0 0

SWING2 0 0 0 0 0 0 0 0 100 0

WALK 0 0 0 0 0 0 0 0 0 100

(a) (b)

(c) (d)

(e)
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Figure 8 Evaluation of trajectory parameters (a) matching window size, (b) exploring window size, (c) trajectory length, (d)

neighborhood size, (e) grid structure.
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Sun et al. [16]. Moreover, Raptis and Soatto [17] reported
94.8% using the HOG/HOF tracklets description.

Comparing to dense trajectories proposed by Wang et al.
[19] (see Table 6, second column), our trajectories achieve
0.1% lower performance in case of MBH descriptor. An

improvement of 1.4% is achieved by HOG descriptor and
2% by HOF descriptor. TD descriptor of the proposed trajec-
tories reports 1.4% lower than the accuracy obtained by dense

trajectories. The descriptors combination of our trajectories
results in 0.7% improvement over the dense trajectories. We
have to note that the length of dense trajectories is fixed to
15 frames in [19] and the codebook size = 4000. It is longer
than our trajectories and that explains the lower results of

TD descriptor. Also, due to the use of Cuboid detector (denser
than dense sampling) and SIFT matching, the number of gen-
erated trajectories is lower than dense trajectories and more

curved.
The proposed method obtains large improvement over the

traditional KLT and SIFT-trajectories computed in Wang

et al. [19]. Additional comparison of the proposed method with
the state-of-the-art in the literature is presented in Table 7. On
KTH dataset, we obtain 95.63% with the HOF descriptor



Table 5 Comparison with previous trajectory-based

approaches of local action representation for KTH and UCF

sports datasets.

KTH UCF sports

Messing et al. [13] 74.00%

Sun et al. [16] 86.80%

Raptis and Soatto [17] 94.80% Bregonzio et al. [18] 86.90%

Wang et al. [19] 95.00% Wang et al. [19] 88.00%

Our method 95.36% Our method 89.97%
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which is comparable to the state of the art, i.e., 95.7% [27].
Note that the several works of human action recognition in

the literature were evaluated using different methods and with
different conditions.

Comparing our approach on Weizmann dataset with the

state-of-the-art results shows that we obtain a comparable
result of 97.77% using HOG descriptor with [28] as shown
in Table 7 (second column).

For UCF sports dataset, as shown in Table 5 (second
column) Bregonzio et al. [18] reported recognition accuracy
86.90% by combining the KLT and SIFT tracks with the
detected spatio-temporal points. When comparing the pro-

posed approach performance with that of dense trajectories
[19] (see Table 6, third column), we observed that a large
improvement is achieved over dense trajectories. The largest

improvement is 11.35% gained for HOF descriptor. Around
3% is improved for MBH descriptor and 2% for the descrip-
tors combination. The HOG descriptor of the proposed

trajectories gives similar results as dense trajectories.
Again TD descriptor reports 0.4% lower than dense trajec-
tories. The achieved improvement of the motion descriptors
Table 6 Comparison with the dense trajectories approach proposed

Description method KTH

Dense trajectories (%) Our trajector

TD 89.8 88.4

HOG 87.0 88.4

HOF 93.3 95.36

MBH 95.0 94.9

Combination 94.2 94.9

Table 7 Comparison of the proposed approach with the state-of-th

KTH Weizmann UCF sports

Dollar et al. [4] 81.20% Bregonzio et al. [12

Laptev et al. [2] 91.80% Seo and Nilanfar [

Gilbert et al. [10] 94.50% Wang et al. [30]

Kovashka and Grauman [29] 94.53%

Gilbert et al. [27] 95.70%

Our method 95.36% Our method
indicates that our trajectories capture good motion informa-
tion from videos under uncontrolled environments. As
shown in Table 7 (third column), the proposed trajectory-

based approach obtained better results than the current
state-of-the-art approaches.
5. Conclusions

In this paper, a trajectory-based approach for local action rep-
resentation has been proposed. The objective is to explore the
temporal relationships between the spatio-temporal interest
locations in video sequences which characterized human

actions. Our method differs from previous trajectory-based
approaches in the extracted key points and tracking methodol-
ogy. The spatio-temporal interest points are selected to reduce

the redundancy and noise level. On the other hand, the
tracking methodology is designed to extract reliable and robust
trajectories which are able to describe the motion information

under occlusions, camera motion, viewpoint changes, and
scales variations. The experiments are carried out on three
popular datasets (KTH, Weizmann and UCF sports) under

the framework of the Bag-of-Words model and non-linear
Support Vector Machine.

The experimental results demonstrated that an improve-
ment of 2% is achieved by the proposed approach when eval-

uated on the UCF sports dataset over the latest trajectory-
based approaches (dense trajectories) proposed by Wang
et al. [19]. Also, an improvement of 0.4% is achieved when

evaluated on the KTH dataset over the dense trajectories
approach.

Comparing with the traditional local-based action represen-

tation approaches, the proposed approach reports a compara-
ble results for KTH and Weizmann datasets and improves the
current state-of-the-art results for UCF sports dataset.
by Wang et al. [19] for KTH and UCF sports datasets.

UCF sports

ies (%) Dense trajectories (%) Our trajectories (%)

75.4 75

84.3 84.26

76.8 88.152

84.2 86.77

88.0 89.97

e-art for three datasets.

] 96.66%

28] 97.50%

96.70%

Wang et al. [6] 85.60%

Kovashka and Grauman [29] 87.27%

97.77% Our method 89.97%
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