Nonlinear Equations Involving *m*-Accretive Operators

CLAUDIO MORALES

Department of Mathematics, Pan American University, Edinburg, Texas 78539

Submitted by K. Fan

Let X be a Banach space and T an m-accretive operator defined on a subset D(T) of X and taking values in 2^{X} . For the class of spaces whose bounded closed and convex subsets have the fixed point property for nonexpansive self-mappings, it is shown here that two boundary conditions which imply existence of zeroes for T, appear to be equivalent. This fact is then used to prove that if there exists $x_0 \in D(T)$ and a bounded open neighborhood U of x_0 , such that $|T(x_0)| < r \le |T(x)|$ for all $x \in \partial U \cap D(T)$, then the open ball B(0; r) is contained in the range of T.

Throughout this note we suppose X is a Banach space, and we use B(x; r) to denote the open ball centered at $x \in X$ with radius r > 0 and ∂U to denote the boundary of a subset U of X. We also use the notation $|A| = \inf\{||x||: x \in A\}, A \subset X$ (see [1]).

An operator $T: D(T) \subset X \to 2^X$ is said to be accretive if for each $u, v \in D(T)$ and r > 0,

$$||u-v|| \leq |u-v+r(T(u)-T(v))|.$$

If in addition the range of I + rT is precisely X for all r > 0, then T is said to be *m*-accretive. For this class of operator, the resolvent $J_r = (I + rT)^{-1}$, r > 0, is a single-valued nonexpansive mapping whose domain is all X; also $R(T) = \{y: y \in T(x), x \in D(T)\}$ denotes the range of T.

The purpose of this work is to study the solvability of nonlinear equations of the type

$$z \in T(x), \tag{1}$$

where T is a multivalued *m*-accretive operator (without any continuity assumptions). We first show that, for the class of spaces X whose bounded closed and convex subsets have the fixed point property for nonexpansive self-mappings, a mapping $T: D(T) \subset X \to 2^X$ *m*-accretive has a zero iff there

* Present address: Department of Mathematics, University of Alabama in Huntsville, Huntsville, Alabama 35899.

CLAUDIO MORALES

exists a bounded open neighborhood $U(x_0)$ (with $x_0 \in D(T)$) for which $t(x-x_0) \notin T(x)$ whenever $x \in \partial U \cap D(T)$ and t < 0. This theorem is then used to show that if for some $x \in D(T)$,

$$|T(x_0)| < r \leq |T(x)|$$
 for all $x \in \partial U \cap D(T)$,

then $B(0; r) \subset R(T)$. This result represents a significant generalization of Theorem 2 of Kartsatos [3] who assumes (for single-valued mapping) that X and X* are uniformly convex. We should also mention that our development is independent of existence theorems of differential equations.

Finally, we obtain a new result which implies the existence of solution of (1) for a certain type of single-valued operator satisfying some kind of sign condition at infinity.

We start showing an extension of an author's result ([6, Proposition 2]) for multivalued operators.

PROPOSITION. Let X be a Banach space and D a subset of X (with $0 \in D$), and let $T: D \to 2^X$ be m-accretive. Then there exists a mapping $\Psi: (-\infty, 0) \to D$ defined by

$$\Psi(t) = x_{t}$$

where $tx_t \in T(x_t)$. Moreover, this mapping Ψ has the following properties:

(i) Ψ is continuous.

(ii) If $U \subset X$ is an open neighborhood of the origin for which $tx \notin T(x)$ for $x \in \partial U \cap D$ and t < 0, then $x_i \in U$ for t < 0.

Proof. The existence of Ψ is an immediate consequence of the definition of *m*-accretivity.

(i) Let t, s < 0. Since T is accretive, then for each r > 0 we have

$$|x_{t} - x_{s}|| \leq |x_{t} - x_{s} + r(T(x_{t}) - T(x_{s}))|$$

$$\leq ||x_{t} - x_{s} + r(tx_{t} - sx_{s})||$$
(2)

and thus by choosing r = -1/t we conclude that

$$\|\Psi(t) - \Psi(s)\| \le \|x_s\| |t-s|/|t|.$$

(ii) Let t < 0 and r = -1/t. Then by (2),

$$|T(x_t)| \le |t| ||x_t|| \le |t| |x_t - (T(x_t) - T(0))/t| \le ||u_0||,$$

where $u_0 \in T(0)$. If $t \to -\infty$, then $x_t \to 0$. Hence there exists $t_0 < 0$ such that $x_{t_0} \in U$. Since by (i) the set of eigenvectors is connected, it follows by (ii) that $x_t \in U$ for all t < 0.

Now we prove the main theorem of this paper.

THEOREM 1. Let X be a Banach space for which each nonempty bounded closed convex subset has the fixed point property for nonexpansive self-mappings, and let $T: D(T) \subset X \to 2^x$ be m-accretive. Then the following are equivalent:

(a) $0 \in R(T);$

(b) $E = \{x \in D(T): tx \in T(x) \text{ for some } t < 0\}$ is bounded;

(c) there exists x_0 in D(T) and a bounded open neighborhood U of x_0 , such that

$$t(x - x_0) \notin T(x)$$
 for $x \in \partial U \cap D(T)$ and $t < 0.$ (3)

Proof. It is easily seen that (a) \Rightarrow (b) and (a) \Rightarrow (c), we first show that (b) \Rightarrow (a). Choose $n \in \mathbb{N}$ and $x_n \in E$ for which $(-1/n) x_n \in T(x_n)$. Let $L = \limsup_{n \to \infty} \|x_n\|$. Then the set $K = \{x \in X: \limsup_{n \to \infty} \|x - x_n\| \leq L\}$ is a nonempty, bounded, closed, convex subset of X. Since $|TJ_{\lambda}x_n| \leq |Tx_n|$ (see, e.g., [4, proof of the lemma]) and $|Tx_n| \to 0$ as $n \to \infty$, K is also invariant under J_{λ} . Hence, by assumption J_{λ} has a fixed point which is a zero for T. (For equivalent versions of (b) \Rightarrow (a), see [4, 8]).

To prove $(c) \Rightarrow (a)$, one may assume without loss of generality that $x_0 = 0$. Since by the Proposition the set *E* is bounded, then by the previous implication the proof is complete.

Next we show two interesting corollaries of Theorem 1. First, we observe that if X^* denotes the dual space of X, then the normalized duality mapping $J: X \to 2^{X^*}$ is defined by

$$J(x) = \{ j \in X^* \colon (x, j) = ||x||^2, ||j|| = ||x|| \}$$

and for each x and $y \in X$ we let

$$[y, x]_+ = \sup\{(y, j); j \in J(x)\}.$$

It is easily seen that $[\alpha x, x]_{+} = \alpha ||x||^{2}$ for all $\alpha \in \mathbb{R}$.

Our first corollary is precisely Theorem 2.1 of [10].

COROLLARY 1. Let X be a Banach space whose nonempty closed convex

and bounded subsets have the fixed point property for nonexpansive selfmappings, let $T: D(T) \rightarrow 2^X$ be m-accretive, and $z \in X$ for which

$$\liminf_{\|x\|\to\infty} \frac{[y-z,x]_+}{\|y-z\|^q} \ge M(z) > -\infty, \qquad q \in [1,2)$$
(4)

and $y \in T(x)$ is fulfilled. Then $z \in R(T)$.

Proof. Since the mapping U = T - z is clearly *m*-accretive, it would be sufficient to show that the set *E* (defined in Theorem 1) is bounded. Suppose there is a sequence $\{x_n\} \subset E$ such that $||x_n|| \to +\infty$ as $n \to \infty$, and $t_n x_n \in U(x_n)$ for $t_n < 0$. Then by (4) we have

$$\liminf_{n \to \infty} \frac{[t_n x_n, x_n]_+}{\|t_n x_n\|^q} = -\liminf_{n \to \infty} \frac{\|x_n\|^{2-q}}{|t_n|^{q-1}}.$$

Since the sequence $\{t_n\}$ is bounded, we conclude

$$\liminf_{n\to\infty}\frac{|t_nx_n,x_n|_+}{\|t_nx_n\|^q}=-\infty$$

which is a contradiction. It follows that E is bounded and, thus, Theorem 1 implies that U has a zero in D(T). Therefore $z \in R(T)$

COROLLARY 2. Let X, T and D(T) as in Corollary 1 and suppose that for some $\delta > 0$ the set

$$F = \{x \in D(T) : ||y|| \leq \delta \text{ for some } y \in T(x)\}$$

is nonempty and bounded. Then T has a zero.

Proof. Choose $z \in F$. Suppose $x \in D(T)$ for which $t(x-z) \in T(x)$ where t < 0. Then by the accretiveness of T,

$$||x - z|| \le |x - z + r(T(x) - T(z))|$$

 $\le ||x - z + r(t(x - z) - y)||$

for some $y \in T(z)$ with $||y|| \leq \delta$. By selecting r = -1/t, we obtain $||x - z|| \leq ||y||/|t|$ and therefore $x \in F$. Since F is bounded, Theorem 1 completes the proof.

We now use Theorem 1 to prove a generalization of Theorem 2 of [3].

THEOREM 2. Let X be Banach space for which each nonempty bounded closed convex subset has the fixed point property for nonexpansive self-

mappings, let $T: D(T) \subset X \to 2^X$ be m-accretive with $x_0 \in D$, and suppose U is a bounded neighborhood of x_0 such that

$$|T(x_0)| < r \leq |T(x)| \qquad \text{for all } x \in \partial U \cap D(T). \tag{5}$$

Then $B(0; r) \subset R(T)$.

Before proving our Theorem 2, the following lemma will be used.

LEMMA. Under the assumptions of Theorem 1,

$$B(0; (r - |T(0)|)/2) \subset R(T).$$

Proof. Without loss of generality, we may assume that $x_0 = 0$ in (5). Let $T_z(x) = T(x) - z$ for $z \in B(0; (r - |T(0)|)/2)$. Since T_z is clearly *m*-accretive, it suffices to show that $tx \notin T_z(x)$ for $x \in \partial U \cap D(T)$ and t < 0. Suppose $tx \in T_z(x)$ where $x \in \partial U \cap D(T)$ and t < 0. Then the accretiveness of T_z implies

$$\|x\| \leq |x + r(T_z(x) - T_z(0))|$$
$$\leq \|x + rtx - ru\|$$

for each $u \in T_z(0)$. By choosing r = -1/t, we conclude that $||tx|| \leq |T_z(0)|$. On the other hand, since $x \in \partial U \cap D(T)$ and ||z|| < (r - |T(0)|)/2, condition (5) yields the fact

$$|T_{z}(0)| \leq |T(0)| + ||z||$$

< ||tx + z|| - ||z||
\$\le ||tx||,

which is a contradiction. Then part (c) of Theorem 1 is fulfilled, and hence $z \in R(T)$.

Proof of Theorem 2. We follow the argument of Kirk and Schöneberg in [4]. Let $z \in B(0; r)$ and define

$$\mathscr{E} = \{t \in [0, 1] : tz \in R(T)\}.$$

By the lemma, $\mathscr{E} \neq \emptyset$. Let $t_0 = \sup \mathscr{E}$. Select $t_n \in \mathscr{E}$ with $t_n \to t_0^-$ as $n \to \infty$ and let $z_n \in D(T)$ for which $t_n z \in T(z_n)$. Define T_n , by

$$T_n(x) = T(x+z_n) - t_n z, \qquad x \in D(T) - z_n.$$

Then $0 \in T_n(0)$, and if $x \in \partial U \cap D(T) - z_n$,

$$|T_n(x)| \ge r - t_n ||z||.$$

Since T_n is *m*-accretive and satisfies (5), the lemma implies

$$B(0; (r-t_n ||z||)/2) \subset R(T_n).$$

However, there exists $t \ge t_0$ and $n \in \mathbb{N}$ so that

$$(t-t_n) ||z|| < (r-t_n ||z||)/2,$$

and therefore we may select $w_n \in D(T) - z_n$ such that $(t - t_n) z \in T_n(w_n)$, implying that $tz \in T(w_n + z_n)$. Hence $t \in \mathscr{E}$ and thus $t_0 = 1 \in \mathscr{E}$.

By a slight modification of the set F mentioned in Corollary 2, we are able to improve this result as follows.

COROLLARY 3. Let X, T and D(T) as in Theorem 2 and suppose that for some $\delta > 0$ the set

$$F = \{x \in D(T) : \|y\| < \delta \text{ for some } y \in T(x)\}$$

in nonempty and bounded. Then $B(0; \delta) \subset R(T)$.

Proof. Since F is nonempty and bounded, there exist $x_0 \in F$ and an open ball $B(x_0; \mu)$ for some $\mu > 0$ such that $F \subset B(x_0; \mu)$. Therefore

$$|T(x_0)| < \delta \leq |T(x)|$$
 for $x \in \partial B(x_0; \mu) \cap D(T)$.

Then Theorem 2 implies that $B(0; \delta) \subset R(T)$.

We now prove Theorem 3 of Kirk and Schöneberg [4] for the class of spaces already mentioned in previous theorems.

COROLLARY 4. Let X, T and D(T) as in Theorem 2. Suppose for some $x_0 \in D(T)$,

$$|T(x_0)| < r \leq \liminf_{\substack{||x|| \to \infty \\ x \in D(T)}} |T(x)|.$$
(6)

Then $B(0; r) \subset R(T)$.

Proof. Inequality (6) implies the existence of an $\varepsilon > 0$ so that $\inf\{|T(x)|: ||x|| \ge \varepsilon\} \ge r$. By choosing $\delta > 0$ (large enough) such that $B(0; \varepsilon) \subset B(x_0; \delta)$, we conclude that

$$|T(x_0)| < r \leq |T(x)|$$
 for $x \in \partial B(x_0; \delta) \cap D(T)$

and thus, by Theorem 2, the proof is complete.

334

Theorem 2 will be used in the proof of our next result for single-valued mappings. We recall that a mapping $T: D \subset X \to X$ is said to be ϕ -expansive on D if for every $x, y \in D$

$$||T(x) - T(y)|| \ge \phi(||x - y||),$$

where ϕ is a strictly increasing mapping from \mathbb{R}^+ into \mathbb{R}^+ with $\phi(0) = 0$.

THEOREM 3. Let X be as in Theorem 2. Suppose $T: D \subset X \to X$ is maccretive and ϕ -expansive mapping on D. Then T(G) is open whenever $G \subset D$ is open. Moreover, if $B(x_0; r) \subset D$ for some $x_0 \in D$ and r > 0, then $B(T(x_0); \phi(r)) \subset T(B(x_0, r))$.

Proof. Let
$$T(x) = \tilde{T}(x + x_0) - T(x_0), x \in D - x_0$$
. Then
 $\|\tilde{T}(x)\| > \phi(r) > \|\tilde{T}(0)\| = 0$

for all $x \in \partial B(0; r)$. Since \tilde{T} is also *m*-accretive, Theorem 2 implies that $B(0; \phi(r)) \subset R(\tilde{T})$ and thus $B(T(x_0); \phi(r)) \subset T(B(x_0; r))$. The openness of T(G) is an immediate consequence of the above.

Finally, we prove a new result which involves condition (3) introduced in Corollary 1 for q = 1. We first review some definitions. Let X be a Banach space and $A \subset X$. Following [5] we define the measure of noncompactness of A, $\gamma[A] = \inf\{d > 0: A$ can be covered by a finite number of sets of diameter $d\}$. A continuous mapping $T: D \to X$, $D \subset X$, is called a *condensing* (or densifying) mapping [2, 8] if $\gamma[T(A)] < \gamma[A]$ for all bounded set $A \subset D$ with $\gamma[A] > 0$. It follows immediately that any compact operator is condensing.

THEOREM 4. Let X be a Banach space, z an element of X and $T: X \rightarrow X$ a mapping satisfying

(i) I - T is condensing on X;

(ii)
$$\liminf_{\|x\|\to\infty} \frac{|T(x)-z,x|_+}{\|T(x)-z\|} \ge M(z) > -\infty.$$

Then $z \in R(T)$.

Proof. Let U(x) = x - T(x) + z. Since U is also condensing, it suffices to show that the set

$$E = \{x \in X: U(x) = \lambda x \text{ for some } \lambda > 1\}$$

is bounded. Suppose there exists a sequence $\{x_n\}$ in E for which $||x_n|| \to +\infty$ as $n \to \infty$. Then

CLAUDIO MORALES

$$\liminf_{n \to \infty} \frac{[T(x_n) - z, x_n]_+}{\|Tx_n - z\|} = \liminf_{n \to \infty} \frac{[(1 - \lambda_n) x_n, x_n]_+}{\|(1 - \lambda_n) x_n\|}$$
$$= \liminf_{n \to \infty} \frac{(1 - \lambda_n) \|x_n\|^2}{(\lambda_n - 1) \|x_n\|}$$
$$= -\liminf_{n \to \infty} \|x_n\|$$
$$= -\infty,$$

which is a contradiction. Hence E is bounded. Since $E \subset B(0, R)$ for some R > 0, the operator U satisfies the Leray-Schauder condition on ∂B (i.e., $U(x) \neq \lambda x$ for $x \in \partial B$ and $\lambda > 1$). Therefore, Theorem 7 of [7] implies that U has a fixed point in X, and thus $z \in R(T)$.

The following corollary is an immediate consequence of Theorem 4, being an interesting generalization of Proposition 1.2 of Torrejón [10].

COROLLARY 5. Let X be a Banach space of finite dimension, z an element of X and $T: X \rightarrow X$ a continuous mapping satisfying

(i)
$$\liminf_{\|x\|\to\infty} \frac{[T(x)-z,x]_+}{\|T(x)-z\|} \ge M(z) > -\infty.$$

Then $z \in R(T)$.

References

- M. G. CRANDALL AND T. M. LIGGETT, Generation of semi-groups of non-linear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298.
- M. FURI AND A. VIGNOLI, A fixed point theorem in complete metric spaces, Boll. Un. Mat. Ital. 2 (1969), 505-506.
- 3. A. G. KARTSATOS, Some mapping for accretive operators in Banach spaces, J. Math. Anal. Appl. 82 (1981), 169-183.
- 4. W. A. KIRK AND R. SCHÖNEBERG, Zeros of *m*-accretive operators in Banach spaces, *Israel J. Math.* 35 (1980), 1–8.
- 5. K. KURATOWSKI, Sur les espaces complets, Fund. Math. 15 (1930), 301-309.
- 6. C. MORALES, Remarks on pseudo-contractive mappings, J. Math. Anal. Appl. 87 (1982), 158-164.
- 7. W. V. PETRYSHYN, Structure of the fixed point set of k-set-contractions, Arch. Rational Mech. Anal. 40 (1971), 312-328.
- 8. S. REICH AND R. TORREJÓN, Zeros of accretive operator, Comment. Math. Univ. Carolin. 21 (1980), 619-625.
- 9. B. N. SADOVSKY, On a fixed point principle, Functional Anal. Appl. 1 (1967), 74-76.
- R. TORREJÓN, Remarks on nonlinear functional equations, Nonlinear Anal. TMA 6 (1982), 197-207.