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Let X be a Banach space and T an m-accretive operator defined on a subset
D(T) of X and taking values in 2*. For the class of spaces whose bounded closed
and convex subsets have the fixed point property for nonexpansive self-mappings, it
is shown here that two boundary conditions which imply existence of zeroes for T,
appear to be equivalent. This fact is then used to prove that if there exists
xo€ED(T) and a bounded open neighborhood U of x,, such that
[ T(x4)| < r <|T(x)| for all x € UM D(T), then the open ball B(0; r) is contained
in the range of T.

Throughout this note we suppose X is a Banach space, and we use B(x; r)
to denote the open ball centered at x € X with radius » > 0 and oU to denote
the boundary of a subset U of X. We also use the notation
|A|=inf{]|x|: x €A}, A = X (see [1]).

An operator T:D(T)c X - 2¥ is said to be accretive if for each
u,v€D(T)and r >0,

lu —oll <lu—v+r(T(u) — T))|.

If in addition the range of I + rT is precisely X for all r > 0, then T is said to
be m-accretive. For this class of operator, the resolvent J,= (I +rT) ',
r> 0, is a single-valued nonexpansive mapping whose domain is all X; also
R(T)={y:y € T(x), x € D(T)} denotes the range of T.
The purpose of this work is to study the solvability of nonlinear equations
of the type ‘
z € T(x), (1)

where T is a multivalued m-accretive operator (without any continuity
assumptions). We first show that, for the class of spaces X whose bounded
closed and convex subsets have the fixed point property for nonexpansive
self-mappings, a mapping T: D(T) < X — 2* m-accretive has a zero iff there

* Present address: Department of Mathematics, University of Alabama in Huntsville,
Huntsville, Alabama 35899.
329
0022-247X/83 $3.00

Copyright © 1983 by Academic Press, Inc.
All rights of reproduction in any form reserved.



330 CLAUDIO MORALES

exists a bounded open neighborhood U(x,) (with x, € D(T)) for which
t(x — xy) & T(x) whenever x € UM D(T) and ¢ < 0. This theorem is then
used to show that if for some x € D(T),

| T(xq)| < r<|T(x)] for all x € UM D(T),

then B(0; r) < R(T). This result represents a significant generalization of
Theorem 2 of Kartsatos [3] who assumes (for single-valued mapping) that X
and X* are uniformly convex. We should also mention that our development
is independent of existence theorems of differential equations.

Finally, we obtain a new result which implies the existence of solution of
(1) for a certain type of single-valued operator satisfying some kind of sign
condition at infinity.

We start showing an extension of an author’s result ([6, Proposition 2})
for multivalued operators.

ProposITION. Let X be a Banach space and D a subset of X (with
0 € D), and let T:D - 2X be m-accretive. Then there exists a mapping
V: (—o0,0) - D defined by

Y() =x,
where tx, € T(x,). Moreover, this mapping ¥ has the following properties:

(i) Y is continuous.

(ii) If UcX is an open neighborhood of the origin for which
tx &€ T(x) for x€E0UND and t <0, then x,€ U for t < 0.

Proof. The existence of ¥ is an immediate consequence of the definition
of m-accretivity.

(i) Let t,s < 0. Since T is accretive, then for each r > 0 we have
lxe = x,ll <%, — X, + r(T(x,) — T(x,))|
< ”xt_xs + r(txt—sxs)“ (2)
and thus by choosing r = —1/t we conclude that
1#(e) = Pl <%l 1t = sl/le].
(ii)) Lett <0 and r=—1/t. Then by (2),
MEAESUIEA
<lef|x, — (Tx,) — T(0))/1|
<

lloll»
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where u, € T(0). If t > —o0, then x, — 0. Hence there exists £, < O such that
x,, € U. Since by (i) the set of eigenvectors is connected, it follows by (ii)
that x, € U for all + <O0.

Now we prove the main theorem of this paper.

THEOREM 1. Let X be a Banach space for which each nonempty
bounded closed convex subset has the fixed point property for nonexpansive
self-mappings, and let T: D(T) < X - 2% be m-accretive. Then the following
are equivalent:

(a) O0€R(T);
(b) E={x€ D(T): tx € T(x) for some t < 0} is bounded,

(c) there exists x, in D(T) and a bounded open neighborhood U of x,,
such that

Hx—x)&T(x) forx€dUND(T)and t <O. (3)

Progf. 1t is easily seen that (a)=> (b) and (a)= (c), we first show that
(b)=(a). Choose n&€N and x,€ E for which (—1/n)x, € T(x,). Let
L =limsup,_ | x,|. Then the set K = {x € X: limsup,_|lx —x,|| <L} is
a nonempty, bounded, closed, convex subset of X. Since |7TJ,x,| <|Tx,|
(see, e.g., [4,proof of the lemma]) and |Tx,| -0 as n— oo, K is also
invariant under J,. Hence, by assumption J, has a fixed point which is a
zero for T. (For equivalent versions of (b)= (a), see [4, 8]).

To prove (¢) = (a), one may assume without loss of generality that x, = 0.
Since by the Proposition the set E is bounded, then by the previous
implication the proof is complete.

Next we show two interesting corollaries of Theorem 1. First, we observe
that if X* denotes the dual space of X, then the normalized duality mapping
J: X - 2% is defined by

J(x) = {j € X*: (x, /) = x 1% 1/l = [l xII}
and for each x and y € X we let
[y, x], =sup{(y./):j € J(x)}

It is easily seen that [ax, x|, = a x| for all « € R.
Our first corollary is precisely Theorem 2.1 of |10].

CoOROLLARY 1. Let X be a Banach space whose nonempty closed convex

409/97/2-3
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and bounded subsets have the fixed point property for nonexpansive self-
mappings, let T: D(T) - 2¥ be m-accretive, and z € X for which

[y—zax]

lim inf > M(z) > —oo, q€(1,2) 4)

k(- ||y —z]|?

and y € T(x) is fulfilled. Then z € R(T).

Proof. Since the mapping U= T — z is clearly m-accretive, it would be
sufficient to show that the set E (defined in Theorem 1) is bounded. Suppose
there is a sequence {x,} <E such that |x,|— -+ as n— oo, and
t,x, € Ulx,) for t, <0. Then by (4) we have

X, x o xR
llmmeui—"]iz-—hmmf” "“71 .
n-ow ”tnanq n-00 ltn‘q

Since the sequence {¢,} is bounded, we conclude

which is a contradiction. It follows that E is bounded and, thus, Theorem 1
implies that U has a zero in D(T). Therefore z € R(T)

CoroLLARY 2. Let X, T and D(T) as in Corollary 1 and suppose that
Jfor some 6 > 0 the set

F={x& D(T):|| y| < J for some y € T(x)}

is nonempty and bounded. Then T has a zero.

Proof. Choose z € F. Suppose x € D(T) for which t(x — z) € T(x) where
t < 0. Then by the accretiveness of T,

X =zl <[x =z + H(T(x) — T(2))|
<lx—z+r(tx—2) =)l
for some y€& T(z) with | y||<d. By selecting r=—1/t, we obtain
lx —z|| <\l »ll/It] and therefore x &€ F. Since F is bounded, Theorem !

completes the proof.
We now use Theorem 1 to prove a generalization of Theorem 2 of [3].

THEOREM 2. Let X be Banach space for which each nonempty bounded
closed convex subset has the fixed point property for nonexpansive self-
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mappings, let T: D(T) < X - 2* be m-accretive with x, € D, and suppose U
is a bounded neighborhood of x, such that

[T(x)| < r<|T(x)|  Sfor all x€ UM D(T). (5
Then B(0;r) c R(T).

Before proving our Theorem 2, the following lemma will be used.

LEMMA. Under the assumptions of Theorem 1,
B(0; (r —|T(0)])/2) = R(T).

Proof. Without loss of generality, we may assume that x, =0 in (5). Let
T,(x)= T(x)— z for z € B(0; (r —|T(0))/2). Since T, is clearly m-accretive,
it suffices to show that tx & T.(x) for x € oUN D(T) and r < 0. Suppose
tx € T,(x) where x€dUND(T) and ¢ < 0. Then the accretiveness of T,
implies

x| <[x +r(T.(x) = T.(0))]

|
x4 rtx — ru||

VAN

for each u € T,(0). By choosing r=—1/t, we conclude that |jzx|| < |7,(0)].
On the other hand, since x € 8U N D(T) and ||z|| < (r —17(0)])/2, condition
(5) yields the fact

I T.(0)| <ITO)] + iz}
<llex+z]| = lz]
<lexlls

which is a contradiction. Then part (¢) of Theorem 1 is fulfilled, and hence
z € R(T).

Proof of Theorem 2. We follow the argument of Kirk and Schéneberg in
[4]. Let z € B(0; r) and define

£=1{t€|0,1): 1z € R(T)}.

By the lemma, & £ @. Let t;=sup &. Select t,€ & with ¢, -1y as n—> ©
and let z, € D(T) for which ¢,z € T(z,). Define T,, by

T,(x)=T(x+2z,)—t,z, xeD(T)—z,.
Then 0 € T,(0), and if x€ 2UND(T) — z,,,

1T, x)| > r =1,z
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Since T, is m-accretive and satisfies (5), the lemma implies
B(O; (r —1,112[)/2) = R(T,)-

However, there exists ¢ > ¢, and n € N so that

=) |zl <(r—1,1lz)/2,

and therefore we may select w, € D(T) — z, such that (t—t¢,)z€ T (w,),
implying that ¢z € T(w, + z,). Hence t € & and thus f;,=1€ &.

By a slight modification of the set F mentioned in Corollary 2, we are able
to improve this result as follows.

CoOROLLARY 3. Let X, T and D(T) as in Theorem 2 and suppose that for
some 6 > 0 the set

F={xeD(T):|| y|| <o for some y € T(x)}

in nonempty and bounded. Then B(0; ) < R(T).
Progf. Since F is nonempty and bounded, there exist x, € F and an open
ball B(x,;u) for some u > 0 such that F < B(x,;u). Therefore
[T(xe)| < 6 | T(x)] for x € 0B(x,; 1) N D(T).

Then Theorem 2 implies that B(0; 6) < R(T).
We now prove Theorem 3 of Kirk and Schoneberg [4] for the class of
spaces aiready mentioned in previous theorems.

CoroLLARY 4. Let X, T and D(T) as in Theorem 2. Suppose for some
Xxq € D(T),
| T(xg)] < r< linu’ inf | T(x)|. (6)
X||— 0O

XeD(T)

Then B(0; r) < R(T).

Proof. Inequality (6) implies the existence of an ¢ > 0 so that inf{] T(x)}:
[|x]i > e} > r. By choosing d > O (large enough) such that B(0; ¢) < B(x,; 9),
we conclude that

| T(xp)| < r < | T(x)| for x € dB(xy;90) N D(T)

and thus, by Theorem 2, the proof is complete.
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Theorem 2 will be used in the proof of our next result for single-valued
mappings. We recall that a mapping 7: D < X - X is said to be g-expansive
on D if for every x,y € D

ITC) =T 2 8l x = » ),

where ¢ is a strictly increasing mapping from R~ into R* with ¢(0) = 0.

THEOREM 3. Let X be as in Theorem 2. Suppose T:D c X - X is m-
accretive and ¢-expansive mapping on D. Then T(G) is open whenever
G c D is open. Moreover, if B(x,;r)< D for some x,€ D and r > 0, then
B(T(x,); 6(r)) < T(B(x,, r))-

Proof. Let T(x)= T(x + x,) — T(x,), x € D — x,. Then
1T > ¢(r) > | T(0) | =0

for all x € @B(0;r). Since T is also m-accretive, Theorem 2 implies that
B(0; ¢(r)) < R(T) and thus B(T(x,); ¢(r)) < T(B(x,;r)). The openness of
T(G) is an immediate consequence of the above.

Finally, we prove a new result which involves condition (3) introduced in
Corollary 1 for g = 1. We first review some definitions. Let X be a Banach
space and 4 = X. Following |5] we define the measure of noncompactness of
A, y|A]=infld >0:4 can be covered by a finite number of sets of
diameter d}. A continuous mapping T: D — X, D c X, is called a condensing
(or densifying) mapping [2, 8] if y[T(4)] < y[A4] for all bounded set 4 < D
with y[4] > 0. It follows immediately that any compact operator is con-
densing.

THEOREM 4. Let X be a Banach space, z an element of X and T: X - X
a mapping satisfying

(i) I—T is condensing on X;

(i) timinf L) =5 X)L *l

oo || T(X) — 2] >M(z) > —oo.

Then z € R(T).

Proof. Let U(x)=x— T(x) + z. Since U is also condensing, it suffices to
show that the set

E = {x € X: U(x) = Ax for some 4 > 1}

is bounded. Suppose there exists a sequence {x,} in E for which ||x,]| = + o
as n— co. Then
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(T —zox ]y (= 4) X, X,
lim inf 1 nlt _ lim inf n) Xus Xuly
n- o H Txn - ZH n-0 H (1 _'ln) xn”

e (L= Al
= lim inf ———>—"—
oo (A, — D x|

= —lim inf || x,]|
n—oc

- —-—w’

which is a contradiction. Hence E is bounded. Since E — B(0, R) for some
R >0, the operator U satisfies the Leray—Schauder condition on ¢B (i.e.,
U(x) # Ax for x € 6B and A > 1). Therefore, Theorem 7 of [7] implies that U
has a fixed point in X, and thus z € R(T).

The following corollary is an immediate consequence of Theorem 4, being
an interesting generalization of Proposition 1.2 of Torrejon [10].

COROLLARY 5. Let X be a Banach space of finite dimension, z an
element of X and T: X - X a continuous mapping satisfying

[T(x) —z,x],

i} lim inf > M(z) > —o0.
O e ey 2 ME> e

Then z € R(T).
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