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Abstract 

The set of Gabriel topologies on a coherent quantale ordered under inclusion is a frame 
(studied by Rosenthal, Simmons and others). The set of all those Gabriel topologies that are 
inaccessible by directed joins (we call such topologies compact) is a subframe of it. When the 
quantale under consideration is commutative the frame of compact topologies is coherent. 
Several notions of spectra in ring theory appear as instances of this construction. When the 
quantale is non-commutative and coherent and its finite elements are closed under (right) 
implication then the frame of compact topologies is locally compact and compact. We present 
an interpretation of the notion of compact Gabriel topology on a coherent quantale in terms of 
deductively closed sets of formulae for a system of propositional logic without the contraction 
and possibly the exchange rule (but admitting weakening). Our local compactness (and the 
subsequent spatiality) results for the frame of compact topologies correspond to a completeness 
theorem for such a system. 0 1998 Elsevier Science B.V. All rights reserved. 

1991 Math. Subj. Class.: Primary 18B35; secondary 03625, 16S90 

0. Introduction 

A quantale is a complete lattice Q equipped with an associative binary operation &, 

which satisfies 

U&(Vbi) = Vi(a&bi) and (Vbi)&a = Vi(bi&a), 

for all elements a E Q and sets of elements {biE Q 1 i E I}. This implies the existence of 
two operators a +r - and a e1 - , right adjoint to a& - and - &a, respectively. All 
quantales considered in this work will be assumed to be right-sided, meaning that 

a&T < a for all a E Q, where T is the top element of the lattice. This implies that, for 
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all a, b E Q, u&b d a and that, if there is a unit element 1 for &, then 1 = T. An 

excellent introduction to the theory of quantales is given in [7] and is probably the 

only one where the subject is studied systematically. 

We study here Gabriel topologies on quantales, a notion that generalizes directly 

the classical one in ring theory, studied extensively in the 1960s in connection with 

localizations of Abelian categories and culminating in works like [lo]. The notion of 

Gabriel topology on a quantale makes sense only when the quantale is algebraic as 

a lattice, i.e. the finite elements generate. (The finite elements are also called compact 

in the literature; however, we reserve the term compact for other purposes.) The finite 

elements of the quantale play the role of the elements of the ring in the classical 

definition of a Gabriel topology on a category of modules. Further, in order to obtain 

any results about the set of topologies we need to assume that the quantale is 

coherent, i.e. that the top element is finite and that the finite elements are closed 

under &. 

The set of Gabriel topologies on a coherent quantale is a frame [7, Proposition 

4X3]. We give a proof of that result in the first section for the sake of completeness 

and since no explicit proof of this result appears in the literature. The proof indicated 

in [7], by adapting an argument in [9], requires an unnecessary (in this connection) 

complication: that of the correspondence of Gabriel topologies with a certain kind of 

nucleus. Our proof uses instead the traditional view of such topologies as filters. 

The focus of this work is the set of Gabriel topologies that are inaccessible by 

directed joins (we call such topologies compact). We show that this set is a subframe of 

the frame of all topologies. When the quantale is commutative we show that the frame 

of compact topologies is coherent. In Section 2 we describe the topologies that 

constitute the finite elements of the coherent frame in hand. As it is the case with every 

coherent frame, the finite elements of it form a distributive lattice. In Section 3 we 

show that this distributive lattice has a certain universal property. In the non- 

commutative case, when the finite elements of the quantale are closed under implica- 

tion, then the frame turns out to be a locally compact and compact one. 

In Section 3 we present some applications to the construction of various types of 

ring spectra. The frame of compact Gabriel topologies (on the quantale of ideals) of 

a commutative ring is isomorphic to (the frame of opens of) the dual Zariski spectrum 

of the ring. Similar descriptions are given for the Brumfiel spectrum of a commutative 

ordered ring as well as for the real Zariski spectrum of a commutative ring, by apply- 

ing our construction to the quantale of convex ideals and real ideals, respectively. 

Finally, we present an interpretation of the notion of compact Gabriel topology on 

a coherent quantale in terms of deductively closed sets of sentences (theories) for 

a system of propositional logic without the contraction and possibly the exchange rule 

(but admitting weakening). The calculus of these theories forms to a great extent the 

basis for the semantical analysis of these logics. Through our interpretation we are in 

a position to give some heretofore unobserved results in this connection. Our local 

compactness (and the subsequent spatiality) results for the frame of compact topolo- 

gies correspond to a completeness theorem for such a system. 
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These results extend certain parts of the author’s Ph.D thesis [S], where we dealt 

with Gabriel topologies on categories of algebras for finitary theories, whose unary 

operations are central. In particular, the connection between Gabriel topologies on 

modules over a commutative ring and the Zariski spectrum was first obtained there. 

1. Gabriel topologies and compact Gabriel topologies on quantales 

The definition of a Gabriel topology on a quantale that follows has been proposed 

by Rosenthal in [7, Definition 4.551: 

Definition 1.1. Let Q be an algebraic, right sided quantale. A filter S E Q is called 

a Gabriel topology on Q if it satisfies 

(Tl) If b E S and c is a finite element of Q then c -+,b E S. 

(T2) If b E S and, for all c d b, where c is finite, it is the case that c +,a E S, then 

a E S. 

Remarks. (a) We could postulate that S is non-empty and satisfies (Tl) and (T2). 

Then we can deduce that S is a filter by well known arguments as they appear in [lo]. 

The fact that they apply to our case is secured by the requirement that the quantale is 

right sided. 

(b) When the quantale Q is that of the right ideals on a ring this notion of Gabriel 

topology coincides with the classical one of a Gabriel topology on a ring: Considering 

that the finite elements of the quantale are in this case the finitely generated ideals, we 

have that the above axioms imply the classical ones, since, for an element a and an 

ideal I of the ring, (a) +,I = I : a. They are also implied, due to the fact that 

(a 1, .‘., a,) +,I = I: (al, . . . ,a,) z(I:a,)n . . . n(Z:a,). 

We will need the auxiliary notion of a pretopology on Q: A pretopology is 

a non-empty, upper closed S s Q, which satisfies (Tl). 

Topologies are obviously closed under intersection so, for every X c Q, there is 

a smallest topology containing X, in particular there is a smallest topology generated 

by a pretopology P. It can also be described by means of the following process, 

familiar from the ring case. Set: 

so = P, 

S a+l={a~Q13b~Sz such that, Vc d b, c finite, c -+,a E S,}, 

si = Uaci, S,, where 1; is a limit ordinal. 

This process stabilizes at some ordinal p and the required completion is S = Ucr G sS,. 

We use the process above to prove a well-known result, whose proof though does 

not appear explicitly in [7] or in the references given there. 
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Theorem 1.1. The set of Gabriel topologies, top(Q) on a (pre) coherent, right sided 
quantale Q, ordered by inclusion is a frame. 

Proof. As mentioned above, the intersection of any family of Gabriel topologies is 

a Gabriel topology so top(Q) is a complete lattice. The supremum of a family of 

topologies is not their set-theoretic union since it fails to satisfy (T2). It is, however, 

a pretopology, and the topology it generates is obviously the supremum of that family. 

In order to show the infinite distributive law, consider a topology T and a set 

(Si 1 i E I) of topologies. We need to show that (VSi)n T & //(Sin T ), the other 

inequality holding trivially. If the process of forming VSi, by completing the union of 

the Si’s under (T2), stabilizes at some ordinal /3, it suffices to show that, for all ordinals 

a <P, (U%),nT G (U(&nT)),. 
The claim is obviously true at the initial step and follows immediately at a limit 

ordinal step. So assuming that the claim holds for a, let us show it for a + 1. Let 

b E (USi),+ 1 n T. That means that b E T and there is an a E (IJ S,), such that, for all 

c < a, c finite, c +,b E (IJS,),. Then b V a E (u&),nT 5 (lJ(&nT)),. Suppose that 

f < b V a is finite. By the algebraicity of Q, a and b can be written as suprema of finite 

elements below them, a = //{hj 1 j E J>, b = V{gk 1 k E K), so f< g V h for some 

finite g = gk 9 b and h = hj < a. From this we get 

f+,b > (g V h) +,b = (g +,b) A (h +,b) = h -+,b. 

The latter equality follows by the right-sidedness of Q, since in this case the top 

element T of the quantale equals the multiplicative unit 1, hence g = 1 &g < b implies 

1 = T < g +,b. But h +,b E (US,), by the choice of h and h -),b E T, since T is 

a topology. It follows that f-+,b E (US&nT, hence b E (U(SinT)),+l. 0 

Remark. (a) We do not use the fact that the top element of the quantale is finite in the 

above proof. Hence the word coherent appears prefixed in the statement of the 

theorem. It appears also as if we have not used the fact that the finite elements of the 

quantale are closed under &, thus having arrived at a more general result than that in 

[7]. However, this is not the case, as precoherence is used in showing that the 

transfinite construction above yields indeed a Gabriel topology. 

(b) The proof above can be modified appropriately so that it gives the well-known 

result that the set of Gabriel topologies on a ring is a frame. It cannot, though, be 

applied directly as the quantale of right ideals may not be coherent in the non- 

commutative case (as the product of two finitely generated ideals need not be finitely 

generated). The result could be obtained using the formalism of quantales but a more 

general notion of Gabriel topology, introduced in [S]. We do not wish to pursue 

Gabriel topologies in that generality here. 

Definition 1.2. A topology S on an algebraic, right-sided quantale Q is called compact 

if, whenever {ai 1 i E Z> is a directed family of elements of Q with v{ai 1 i E Z} E S, then 

there is ai E S for some i E I. 
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The following is a fundamental technical result concerning the notion of compact 

topologies and is going to be used extensively in the sequel. 

Lemma 1.2. Let P be a pretopology on a precoherent, right-sided quantale Q satisfying 

the compactness property, i.e. that whenever {ai 1 i E I} is a directed family of elements of 
Q with v{ai 1 i E I} E P, then there is Ui E P, for some i E 1. Then the topology S gener- 

ated by P is compact. 

Proof. By the transfinite construction of S it suffices to show that for all ordinals CI, all 

directed sets {Ui ) i E I}, if v(ai 1 i E I> E S,, then there is ai E S,, for some i E I. 
Inspecting the construction and arguing inductively we are only presented with 

a problem at the successor ordinal step. 

Suppose that the claim holds for M and let x = V {pi ( i E I> E S,+ 1, where 

(pi ) i E I}, is directed. There is a b E S, so that for all finite c < b, c +,x E S,. The 

quantale is algebraic so we can write b = V { ck ( k E K }, with the cis finite. From the 

inductive hypothesis, there is a k E K with ck E S,. For that specific ck now 

(The equality holds in a coherent quantale, for all finite elements c and directed 

families (Ui ) i E I >: If f is a finite element of Q such that f < c +rV{ai I i E I}, 
equivalently, f&c < v{ai I i E I}, as the finite elements were assumed to be closed 

under &, there is j E I such that f&c < aj, equivalently, f < c ~,Uj.) Using once 

more now the inductive hypothesis, there is i E I with ck +,ai E S,. Then, for all finite 

e d ck, e +,Ui E S,, since e -t,ai >/ ck +,O+i. We conclude that ai E S,, for that specific 

iEI. 0 

The lemma has as a consequence the following result, which provides the focal 

point of this work. 

Theorem 1.3. The set top,(Q) of compact topologies on a coherent, right-sided quantale 
Q is a frame (a subframe of that of all Gabriel topologies). 

Proof. First we show that compact topologies are closed in the set of all topologies 

under the formation of arbitrary suprema. Let {Si ( i E Z} be a set of compact 

topologies. Its supremum in top(Q) is the completion S of the pretopology 

U{Si(iEI}, h’h b w ic o viously satisfies the compactness property. So by the preceeding 

lemma S is compact. If I is empty then its supremum, the smallest topology {T}, 

consisting alone of the top element of the quantale, is compact since we assumed that 

the quantale is coherent. 

Next, we show that compact topologies are closed in the set of all topologies under 

the formation of finite infima. The empty infimum being the largest topology, that is 

all of Q, is obviously compact. Binary infima are given by intersections, so let 

V{Ui I i E Z} E Sn T, where {Ui ( i E I} is directed and S, T are compact. There are i E I 
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andjEIwithaiESandajET.WecanfindkEIwithai~a,andaj~ak.Then 

ak E SnT, so SnT is compact. 0 

2. The coherence of the frame of compact topologies 

We investigate here the compactness, local compactness and coherence of the frame 

of compact Gabriel topologies. In order to show the two latter properties we impose 

further conditions on the quantale than those discussed in the first section. Compact- 

ness though holds more generally by virtue of the next lemma. 

Lemma 2.1. The union of a directed set of compact topologies is a compact topology. In 
other words, the supremum of a directed family of compact topologies is given by its 

set-theoretic union. 

Proof. Let (Si c Q ) i E I} b e a directed set of compact topologies. We have to argue 

that IJSi satisfies (T2) of Definition 1.1. Suppose that b E Q is such that there is an 

a E USi such that, for all finite c < a we have that c -+,b E USi. There is an i E I such 

that a E Si and for every finite c < a there is j depending on c, such that c +,b E Sj. 
Writing a as the directed supremum of elements smaller than it, a = V{CR 1 k E K}, we 
find from compactness a k E K so that Ck E Si. Let then j = j(Ck) be the index for which 

ck -+,b E Sj. Let / be such that Si 5 Sl and Sj E SI. Then ck E SI and, for all finite 

e < ck, e +,b E SI. SO b E Sl c USi, showing that USi satisfies (T2). 0 

Proposition 2.2. The frame of compact topologies on a coherent, right-sided quantale is 

compact. 

Proof. Let the directed set of compact topologies {Si c Q 1 i E Z} have as a supremum 

the largest topology, i.e. the quantale Q itself. From the preceeding lemma that means 

that USi = Q. So there is an i E I with the bottom element of Q belonging to Si, in 

which case we have that Si = Q. q 

The local compactness of the frame of compact topologies amounts to the existence 

of sufficiently many finite elements of the frame. We try to produce them as the 

smallest topologies containing a given finite element of the quantale. In order to 

ensure that what we get is a compact topology we will have to restrict the class of 

quantales that we are considering. The well behaving quantales are the ones satisfying 

either of the following two properties: 

(Cl) Commutativity, i.e. for all a, b in Q, a&b = b&a. 
(C2) For all finite elements c, d of Q, c +,d is again finite. 

The examples of quantales that we intend to capture with the first condition are 

those of ideals of a commutative ring or quotients of such by finitary quantic nuclei, as 

well as that of coherent frames. Also the results apply to the quantale of subalgebras of 
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the free algebra on one generator F (1) for an algebraic theory the unary operations of 
which are central. In this case the notion of Gabriel topology discussed here coincides 
with the generalized notion of topology on a category of algebras as presented in [ 11, 
a situation studied in [S]. The notion of product of two subalgebras, which makes the 
complete lattice of subalgebras into a quantale, is the following: Using the corres- 
pondance between elements of F (1) and unary operations of the theory, let s(x). t(y), 

where x E S, y E T, and S, T are subalgebras, denote the element of F(1) correspond- 
ing to the composite of the operations s(x) and t(y), where now s, t are endomor- 
phisms of F(1) corresponding to unary operations. The product S&T is then the 
subalgebra spanned by all such elements. 

The condition (C2) is inspired by the quantale of right ideals of a ring with the 
property that for every finitely generated right ideal F, every element a of the ring, 
F : a is again finitely generated. Such rings are called coherent [lo, 1.101. If the ring is 
non-commutative then the quantale of right ideals will usually fail to be coherent. The 
arguments that follow though apply mutatis mutandis to the case of (right-) coherent 
rings, showing that the frame of compact Gabriel topologies on such a ring is locally 
compact. The result in this form appears also in [S]. 

Lemma 2.3. Let Q be a coherent, right sided quantale satisfying either one of the 

conditions (Cl), (C2) above. Then the smallest topology containing a jinite element 

f E Q, denoted by S,, is compact. Moreover, it is ajnite element of the frame of compact 

topologies. 

Proof. If Q satisfies (Cl) then the principal filter r(f) is a pretopology because, if c E Q 
is finite then f B c +r f, since f&c = c&f<& Then, in view of the Lemma 1.2, S, is 
compact. 

If Q satisfies (C2) then t(f) need not be a pretopology but there is a smallest such 
that contains it given by 

Pf = (b E Q 1 Vc E Q, c finite, c -+I f < b} 

(the reader could consult [S] for the details of the anyway easy argument). Then (C2) 
ensures that Pr has the compactness property so that, by Lemma 1.2 again, S, is 
compact. 

In either case let S, E U Ti, where { Ti 1 i E Z} is a directed set of compact topologies 
(so, by Lemma 2.1, U Ti is its supremum). There is i E I with f E Ti so, since S, is the 
smallest topology containing f; Sf c Ti, proving the second claim. 0 

Proposition 2.4. If Q is a coherent, right sid ed quantale satisfying either of (Cl) or (C2), 

then top,(Q) is a locally compact frame. 

Proof. We want to show that every compact topology T is the supremum of the 
topologies of the form S, which it contains. In other words, if R is another topology 
and for all S,, S, c T implies S, E R, then T c R. Let a E T. Writing a as the 
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supremum of the finite elements f which it contains, we find f d a with f~ T, or 
equivalently S, G T. That implies S, G R, or, f~ R, from which we get that a E R. 

0 

From this point on we turn our attention exclusively to commutative coherent 
quantales. We analyze the topologies S, in this case and arrive at the proof of 
coherence for top,(Q). 

Lemma 2.5. If f is a finite element of the commutative, coherent, right sided quantale 

Q and b any element of Q then, with the above notations, b E S, $f there is an n E NO 

with fn d b, where f n = f & . . . &f (n times). 

Proof. Suppose b E S, = D. If b E t(f) then f 6 b. If b E t( f )A = U E<it( f )a then, 
there is an c( < 1, such that T E t( f ), and the conclusion is true of all a < 1. 

Ifb E t(f)a+ 1, then there is an a E r( f )a such that, for all finite c < a, c -+ b E t( f ),. 

There is a k E N, such that f k d a and f m < c + b. In particular, for the finite 
c=f’dawegetthat f”&f”=f”‘“<b. 

Conversely, suppose that there is a natural number n such that f n d b. We claim 
that b E I( f )n. This is so because for all finite c1 <J; we have that c1 + b E I( f )n_ 1. 

We verify this by fixing c1 and examining whether c2 + (cl + b) E r( f )n_2, for all 
finite c2 <f: After n - 1 steps the problem reduces to whether, for all finite c,_ I <f, it 
is the case that c, _ 1 + ( . . . (c2 -+ (cl -+ b) . . . ) E t( f ). This is indeed the case because 
~,_~&..~&c~&fdf”< b. 0 

Proposition 2.6. The topologies of the form S, are closed under intersection. More 

precisely, for two jinite elements f; g of a coherent commutative, right sided Q, 

S,nS, = S,“,. 

Proof. It is immediate that S f V 9 c SfnS,. For the other inequality, suppose that 
b E SfnSg. From the lemma above there are m, n E N,, with f” 6 b and g” < b. So 

f’ V g”’ 6 b and we can use this as to show, exploiting the distributive law of the 
quantale, that (f V g) max(m,n) d b. Once more the previous lemma gives that 

bESJVy. 0 

Summarizing the Propositions 2.2, 2.4 and 2.6 we have 

Theorem 2.7. The frame of compact topologies on a commutative, coherent, right sided 

quantale is coherent. 

We close this section giving a more precise description of the lattice of finite 
elements of the frame of compact topologies. 

Proposition 2.8. Zf f and g are jinite elements of a coherent, commutative, right sided 

quantale Q then S, V S, = S,,,. 
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Proof. Since f & g <f (commutativity plus right-sidedness) follows that S, c S,,, 
and similarly S, c Sfbs, so S, V S, E S,,,. For the other inequality it suffices to show 

that f&g E S, V S,. The latter is the completion of the pretopology S,uS, (set- 
theoreticunion). Butforallfinitecff,g<c-+(f&g). So f&gE(S,-uS,)l. 0 

Corollary 2.9. The frame of compact topologies on a commutative, coherent, right sided 
quantale Q is the ideal completion of the lattice L = {Sr 1 f E Q, f finite} (with the 
operations of meet and join as in Propositions 2.6 and 2.8). 

The frame of compact topologies on a coherent, commutative, right sided quantale 
is coherent, so [4, Theorem 11.3.41 it has enough points. We turn to characterize the 
points of the frame of compact topologies as those filters that are inaccessible by all 
joins. 

Proposition 2.10. A topology P corresponds to a point of the frame of compact 

topologies top,(Q), where Q is a coherent, commutative, right sided quantale, ifs, 
whenever the join a V b of two elements is in P, then either a or b is in P. 

Proof. We use the identification of points of a frame with its meet irreducible elements 

c4, P. 411. 
Let P be a meet-irreducible element of top,(Q), and suppose that a V b is in P. 

Assume first that a and b are finitely generated. Then S, nSb = S, V b s P, where, as 
above, S, is the smallest topology containing a. So, either S, c p, or Sb E p. Equiva- 
lently, either a, or b are in P. For general a and b then, write them as directed suprema 
of finitely generated elements, a = vfi, b = vgj. Then a V b = vfi V Vgj = 

V( fi V gj), where the supremum is directed, SO some fi V gj is in P, so one of the fi’s 
or the gj’s is in P, and so is the corresponding a or b. 

Conversely, suppose that P is a join-inaccessible set, and SnT z P. If S is not 
contained in P, then there is an element a of Q, which is in S but not in P. Then, for any 
b in T, a V b is both in S (being larger than a) and in T (being larger than b). So, it is in 
P. But a is not in P and, P being join-inaccessible, b has to be in P. So, T YZ P. 0 

3. Applications to ring theory and logic 

3.1. Universal property of the frame of compact Gabriel topologies and 
constructions of spectra 

We give here a number of examples where the construction of the frame of compact 
Gabriel topologies is available and we identify it with well-known constructions of 
spectra in ring theory. We start by indicating a universal property that the frame of 
compact Gabriel topologies possesses, on which we will rely for exhibiting the 
connections with the various ring spectra. 
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Recall from [7, Proposition 4.1.41 that a coherent quantale has the form Id](M), 
where M is a join semilattice with a top element and a binary associative operation, 
denoted abusively by &, such that a& - and - &a preserve finite suprema and 
a&T = a, for all a E M. 

Proposition 3.1. Let M be a multiplicative join semilattice as above, and L the distribu- 
tive lattice of finite elements of the frame of compact topologies on Idl(M). Then the 
(order reversing) map I3 : M -+ L, given by 0(a) = S,, is universal among maps from M to 
distributive lattice satisfying 

0) W) = IL, g(a V b) = g(a) A 8(b), 

(ii) Q(0) = TL, g(a&b) = g(a) V B(b). 

In other words, the (order preserving) map 8 : M + Lop is the unit of the (forgetful-free) 
adjunction between multiplicative join semilattices (and maps preserving & and V ) and 
distributive lattices. 

Proof. The fact that 8 defined above satisfies (i) and (ii) is the content of Propositions 
2.6 and 2.8. 

Now let cp : M + D be any other such map into a distributive lattice D. We extend 
cp along 0 by cp” : L -+ D, defined on S, by cp#(S,) = q(a). We show that ‘p# is well 
defined, i.e. when S, = Sb then q(a) = q(b). But S, = S6 means that b is in S, so, by 
Lemma 2.4 that there is k E NO such that b 2 ak. Applying then cp we get 
q(b) 2 q(ak) = q(a). By symmetry, the other inequality holds as well, proving that ‘p# 
is well defined. That ‘p# is a lattice homomorphism follows immediately from its 
definition and the fact that q satisfies (i) and (ii). 0 

Remark. Relatively recently Sun presented in [l l] a construction of the left adjoint to 
the forgetful functor from distributive lattices to multiplicative semilattices (called 
there monoidal lattices) in terms of multiplicatively prime ideals on monoidal lattices. 

Recall [4, V.31 that in order to give a constructive description of the Zariski 
spectrum (not relying on the existence of prime ideals), Joyal defined a notion of zeros 
for a commutative ring R to be a distributive lattice L and a map c : R + L satisfying 

(Z) 6) i(l) = IL, 

(ii) i(O) = TL, 

i(a + b) B i(a) A i(b), 

i(a.b) = i(a) V i(b). 

Then the frame of opens for the Zariski spectrum is Idl(LoP), where L is the universal 
notion of zeros for R, i.e. the universal solution to the problem of finding such a map i. 
Taking the ideal completion of the lattice L itself leads to what is called the domain 
spectrum or the cozariski spectrum (in [4]) of the ring. As a space, it has the same 
points as the Zariski spectrum and as subbasic opens the complements of the basic 
opens for the Zariski topology. It is used for representing the ring by a sheaf of integral 
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domains, while the Zariski spectrum is used for representing the ring by a sheaf of 

local rings. 

With Proposition 3.1 at hand it is easy to deduce the following: 

Theorem 3.2. When Q is the quantale of ideals of a commutative ring R then the lattice 

L of finite elements of the frame top,(Q) is the universal notion of zeros for the ring R. 

Proof. Let M be the multiplicative join semilattice of finitely generated ideals of R. 

The mapping q : R + M, given by r(a) = (a), where (a) is the principal ideal 

generated by a, is universal among mappings from R into multiplicative join semilatti- 

ces, satisfying the following properties: 

(i) ~(1) = R, rl(a + b) b s(a) v V(b), 

(ii) V(O) = CO), r(a.b) = q(a)&rl(b). 

The proof of that fact is a straightforward verification that we will not give here. Then 

the result follows immediately from Proposition 3.1 by defining the universal map as 

the composite [ = 80~ and noticing that a distributive lattice is just a multiplicative 

join semilattice with idempotent multiplication. 0 

Corollary 3.3. When Q is the quantale of ideals of a commutative ring, the frame 

top,(Q) is isomorphic to that of opens for the cozariski spectrum of the ring. 

Following the analysis of [4], we come to consider the construction of the Brumfiel 

spectrum of a commutative ordered ring, i.e. a commutative ring equipped with 

a partial order compatible with the ring structure: a 6 b implies a + c d b + c, a d b 

and c > 0 implies a. c < b . c and a2 3 0. The Brumfiel spectrum is defined as (the ideal 

completion of) the (dual of the) distributive lattice L universal among the ones 

admitting a mapping from R so that the conditions (Z), above, are satisfied as well as 

the following: 

(iii) 0 d a d b implies i(b) d [(a). 

We are going to obtain the Brumfiel spectrum by applying our construction to the 

quantale of convex ideals of the ring. Recall that an ideal I is called convex if whenever 

a d b d c and a E I, c E I then b E 1. For every ideal I there is a smallest convex ideal 

j (I) containing I, which is given by means of the following inductive process: 

j’(1) = {b E A 1 Ia, c E I so that a d b < c], 

j’““)(l) = j(“)‘(I), 

j(r) = Un<wjcnV). 

Again it is a straightforward verification that j is a quantic nucleus in the sense 

of [7] and that it is finitary, i.e. it commutes with directed unions of ideals. Actually it 
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does so at every step n of the inductive construction. It follows from 17, Proposition 4.1.33, 

that the set of convex ideals is a coherent (commutative) quantale. Then we obtain: 

Proposition 3.4. Let Q be the set of convex ideals of a commutative ordered ring. Then 
the lattice of finite elements of the frame top,(Q) is isomorphic to the (dual of) the 
Brumjiel spectrum of the ring. 

Proof. In view of Proposition 3.1 and the proof of Theorem 3.2, it suffices to prove 

that the mapping q : R + M to the set of finite elements of the quantale Q, given by 

q(a) = j(( a)), where j( (a)) is the convex hull of the principal ideal generated by a, 
satisfies condition (iii) above. But if 0 < a < b then a E j((b)), so j((a)) Ej((b)). 

Further, we come to the description of the real Zariski spectrum of a commutative 

ring [a]. Here we are not aware of any defining universal property of the spectrum, 

which is usually described by restricting the Zariski topology to the set of real prime 

ideals. Recall that an ideal I is real closed when X: + ... -t x,” E I implies that, for all 

i = 1, . . . , n, xi E I. Again there is a smallest real ideal containing any given ideal I, 

which is 

(cf. [2, Proposition 1.31). Once more r is a finitary quantic nucleus on the quantale 

Q of ideals of R, so it gives rise to a coherent commutative quantale, to which our 

construction can be applied. The identification of top,(Q) with (the dual of) the real 

Zariski spectrum is obtained then via our description of the points of top,(Q) in 

Proposition 2.10 and by comparing the Zariski topology with the one on the spatial 

reflection of the frame (cf. [4, p. 411). 

3.2. A logical interpretation of compact Gabriel topologies 

We indicate here a connection between compact Gabriel topologies on a coherent 

quantale on the one hand and deductively closed sets of sentences for a certain system 

of logic on the other. The logical system in mind is one that when presented in terms of 

Gentzen sequents it lacks the contraction rule and possibly the exchange rule, i.e. 

when a, p, 1/’ are formulae and r, d are finite sequences of formulae the following two 

deductions are not in general valid: 

The two rules above amount to the identities a& a = a and a&b = b&a in the algebra 

of propositions. The lack of these identities brings us to the realm of quantales. Indeed 

in all the present work we have been dealing with structures failing in general to satisfy 

the former identity (non idempotent quantales), while we have tried to give results 
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holding in the generality of noncommutative quantales (primarily Propositions 2.2 

and 2.4) thus avoiding to adopt the latter identity. Notice that having dropped as well 

the following rule (called the weakening rule): 

we would have fallen into the realm of linear logic. That would mean though that 

our algebra of propositions would fail to satisfy the inequality a&b d a, equiva- 

lently a < b +,a, which we have used repeatedly so far under the name of right- 

sidedness. 

Such logical systems have attracted the attention of various logicians, either out of 

philosophical considerations related to the concept of implication (relevant logics), or 

as resource conscious logics in computer science (linear logic), or as logics of inexact 

concepts (many valued logics). One work in the latter connection is [3], where the 

reader will find detailed arguments on how such a system provides a solid qualitative 

ground for dealing with vagueness and for resolving classical paradoxes deriving from 

the unprecautious use of rules of classical logic for manipulating sentences involving 

inexact concepts. 

To become more precise let us consider the system LBCK presented in [6] by Ono 

and Komori, which captures exactly the type of logic we have in mind, at least in the 

commutative case. Their noncommutative system LBCC does not serve our purposes as 

it has a single implication operator and extra deductive rule (apart from modus 

ponens). In the sequel we confine ourselves to the commutative case. Recall also from 

[12] that LBCK is the {&, V , A , +)-fragment of (commutative) intuitionistic linear 

logic. Thus, following the remarks in Chapter 8 of [12], the algebra of provably 

equivalent sentences of it is an implicational multiplicative lattice, meaning a multipli- 

cative semilattice as explained prior to Proposition 3.1 above, which is further 

a lattice and is equipped with an implication operation +, so that, for all elements a of 

it, a + - is right adjoint to a& -. 

By a theory for such a system LBCK we mean a set of sentences containing T 

and closed under modus ponens (such a set is called a pretheory in [6], where 

the term theory is reserved for sets of sentences closed under the extra deductive 

rule of Lncc). We obtain then the following interpretation of compact Gabriel 

topologies: 

Proposition 3.5. Let 9 be the ideal completion of the multiplicative lattice L of 
provably equivalent sentences of the system LBCK. Then Th(LBCK), the set of theories on 
L BCK, is order isomorphic to top,(Z), the set of compact Gabriel topologies on 9. 

Proof. We construct maps /.A : top,(z) + Th(LBcK) and v : Th(LBcK) + topw(&?) as- 

signing to a compact Gabriel topology S the theory /A(S) = {g E Lock ) 38 i” E [TflJ E 

S} and to the theory T the Gabriel topology v(T) = {x E 2 ) 5 E T and x > [[I), 

where E-1 means the equivalence class of (-). We really have to argue only that the two 
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maps take values in the sets indicated, as the fact that they are inverse to each other is 

immediate. Notice that we avoid to distinguish between elements of L and finite 

elements of 8. 

First if S is a Gabriel topology then p(S) is a theory: p(S) contains T. It is closed 

under modus ponens because if /I -+ y is in p(S) then, for all c E L with c d [PI], since 

c-[Yn 2 ~81-+lIYR = V-rIl, c + [yl] will be in S, from which follows that i[yJ E S 

by axiom (T2) for Gabriel topologies. Hence y E p(S). 

Conversely, if T is a theory then v(T) is a compact Gabriel topology: It satisfies (Tl) 

since, if c = [yn E L and x > [<I E v(T) (so that 5 E T), then c +x 2 c + i[[] = 

[y -+ (4 and the latter is in v(T), as 5 -+ (y + 5) is a theorem of LBcK and then applying 

modus ponens y -+ 5 is in T. Further, let x > [<I E v(T) and assume that, for all c d x 

with c = [TVS] E L, it is the case that c + y E v(T), so that in particular b < [c] --t y for 

some b = [/?I] E v(T) depending on c. Consequently, we have b&c = [/?I & [yj = 
[p&y] d y. But b&c is in v(T) from which follows that y E v(T), so that (T2) is 

satisfied, As for compactness, if Vxi E v(T), where the supremum is directed, by the 

very definition of v(T), there is c E L so that c < Vxi. But c is finite, so that, for some i, 

we have that c < Xi* 0 

Recall from [6,93], that a frame (generalization of the notion of Kripke frame) is 

a couple (M, K ), where M is a A -semilattice ordered monoid with the monoid 

operation distributing over A and K a distinguished subset satisfying the following 

two conditions (which essentially ensure that the poset K is adequate as a carrier of 

valuations): 

(i) if a E K and b.d.c < a then there is d’ E K with d d d’and b.d’.c G a and 

(ii) if a E K and b A c < a, then there is b’ E K with b’ A c < a. 
Under the above equivalence and using the characterization of our Proposi- 

tion 2.10 above together with the spatiality of the frame of compact Gabriel topolo- 

gies (which comes as a consequence of its local compactness, cf. [4, Theorem 4.33) we 

obtain the following result that extends Lemma 5.8, Theorem 5.9 and Theorem 5.12 

of 163 and resolves any possible conflict of terminology. 

Corollary 3.6. The set Th(LBcK) of theories for L BCK is a frame having enough points. 

The couple (ThLBcK), p), where 9’ is the set of its points of Th(LBcK), is a frame in 
the above sense. 

Proof. The monoid operation in this case is simply the join of theories (which, in the 

commutative case, coincides with the multiplication of theories defined in [6,§5]). As 

noted in Lemma 5.1 l(i) of [6], Th(LBCK) satisfies condition (ii) above simply by being 

distributive. As for condition (i) we can simply reproduce the argument given in 

Theorem 5.12 of [6] in the case of LBCK by simply using our Proposition 2.10. 0 

Recall also from [6] that, given a frame (M, K ), a valuation is a relation Itbetween 

members of K and propositional variables of L BcK satisfying that if a 11 p, b It p and 
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a A b d c then c 11 p. A valuation can be extended to a relation a IF 01 between elements 
of K and sentences of LBCK in the way we just turn to indicate below. A sentence a is 
valid for a valuation if, for all a E K, a Ik ~1. 

The set of 9 prime theories of LBCK can be used for defining a valuation for 
propositional variables and for extending it to all sentences of LBCK as follows: 
-When p is a propositional variable and P E 9 then P Jtp iff p E P; 

-Pjka A /I iff Plka and Pik/3; 
-PI~a&PiffPltclandPI~P; 
-PI(-aVfiiffeitherPIt_czorP(~fland 
- P /-a + p iff for all R E 9 P 11~1 implies P V R Ikfi. 
Then, following once more [6], we conclude that, for all sentence ~1, P lka iff CI E P. 

This allows us to state the final result of this work: 

Theorem 3.7. The logic LBCK is complete in the sense that a sentence c( is a theorem of 
L BCK iff a is valid for every valuation in every frame (M, K ) as above. 

Proof. Having kept ourselves away from syntactical details we do not give an 
argument for the “only if” part. For the converse, suppose that a is not a theorem of 
L BcK. Then the smallest Gabriel topology that contains it, SnUn, is not contained in the 
smallest topology {T}. From the spatiality of 9 follows that there exists a prime 
theory P such that {T} L P and S,,, $ P. Hence CI +! P and, from the comments above, 
c1 is not valid. 0 

It seems that everything said above could apply to a logical system lacking the 
exchange rule as well as the contraction rule. By modifying appropriately the notion 
of Gabriel topology, so as to ensure closure under both implications, the collection of 
them would still be a locally compact frame and the correspondence between theories 
and compact right Gabriel topologies would remain valid. The local compactness of 
the frame of theories would then still lead to a completeness result. We, however, 
refrain from carrying out here any details justifying this claim. 
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