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This paper is concerned with theoretical analysis of a heat and
moisture transfer model arising from textile industries, which
is described by a degenerate and strongly coupled parabolic
system. We prove the global (in time) existence of weak solution
by constructing an approximate solution with some standard
smoothing. The proof is based on the physical nature of gas
convection, in which the heat (energy) flux in convection is
determined by the mass (vapor) flux in convection.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical modeling for heat and moisture transport with phase change in porous textile mate-
rials was studied by many authors, e.g. see [5,6,11,14,18,22,24]. A typical application of these models
is a clothing assembly, consisting of a thick porous fibrous batting sandwiched by two thin fabrics.
The outside cover of the assembly is exposed to a cold environment with fixed temperature and rel-
ative humidity while the inside cover is exposed to a mixture of air and vapor at higher temperature
and relative humidity. In general, the physical process can be viewed as a multiphase and single (or
multi) component flow. In this process, the water vapor moves through the clothing assembly by
convection which is induced by the pressure gradient. The heat is transferred by conduction in all
phases (liquid, fiber and gas) and convection in gas. Phase changes occur in the form of evapora-
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Fig. 1. Experimental measurements of saturation pressure [4].

tion/condensation and/or sublimation. Based on the conservation of mass and energy and the neglect
of the water influence, the model can be described by

∂

∂t
(εCv) + ∂

∂x
(uεCv) = −Γce, (1.1)

∂

∂t

(
εCvg Cv T + (1 − ε)Cvs T

) + ∂

∂x
(εCvg uCv T ) = ∂

∂x

(
κ

∂T

∂x

)
+ λΓce. (1.2)

Here Cv is the vapor concentration (mol/m3), T the temperature (K), ε the porosity of the fiber, and
λ the latent heat of evaporation/condensation in the wet zone while in frozen zone, it represents
the latent heat of sublimation. Cvg and Cvs are the heat capacities of the gas and mixture solid,
respectively.

The evaporation/condensation (molar) rate of phase change per unit volume is defined by the
Hertz–Knudsen equation [12]

Γce = − E

R f

√
(1 − ε)(1 − ε′)

2π RM

(
Psat(T ) − P√

T

)
(1.3)

where R is the universal gas constant, R f is the radius of fibre, M the molecular weight of water
and E is the nondimensional phase change coefficient. The vapor pressure is given by P = RCv T
because of the ideal gases’ assumption. The saturation pressure Psat is determined from experimental
measurements, see Fig. 1.

The vapor velocity (volumetric discharge) is given by the Darcy’s law

u = − k

μg

∂ P

∂x
(1.4)

where k and μg are the permeability and viscosity of the vapor, respectively. For compressible flows,
μg is concentration-dependent with different forms in different applications, such as a linear form of
μg := μCv and a constant [1,6,9]. More general form can be found in [8,17]. Here we assume that μg

is a constant. The extension to some other cases is straightforward.
Numerical methods and simulations for the heat and moisture transport in porous textile materials

have been studied by many authors with various applications [2,19,22]. However, no theoretical analy-
sis has been explored for the above system of nonlinear equations. A simple heat and moisture model
was studied in [20], where the model was described by a pure diffusion process (without convec-
tion and condensation) with a non-symmetric parabolic part. There are several related porous media
flow problems from other physical applications. A popular one is a compressible (or incompressible)
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flow in porous media with applications in oil and underground water industries, which is described
by an elliptic pressure equation coupled with a parabolic concentration equation for incompressible
case and a system of parabolic equations for compressible case. The existence of weak solution for
the incompressible and compressible flows has been studied in [7,17] and [1,8,9], respectively. How-
ever, most of these works focus on isothermal case due to the nature of these applications, while
both temperature and phase change (condensation/evaporation) play important roles in the textile
model. Analysis for certain nonisothermal and incompressible flows in porous media was presented
in [3,25], where the fluid flows were described by a heat (temperature) equation coupled with an
elliptic pressure equation (when the Darcy’s law is used).

For the textile model, the water content in the batting area usually is relative small and one often
assumes that all these physical parameters involved in the system (1.1)–(1.2) are positive constants.
With nondimensionalization, the system (1.1)–(1.2) reduces to

{
ρt − (

(ρθ)xρ
)

x = −Γ (ρ, θ),

(ρθ)t + σθt − (
(ρθ)xρθ

)
x − (

κ(ρ)θx
)

x = λΓ (ρ, θ),
(1.5)

for x ∈ (0,1), t > 0, where (·)μ = ∂
∂μ for μ = x, t , ρ = ρ(x, t) and θ = θ(x, t) represent the density of

vapor and the temperature, respectively,

Γ (ρ, θ) = ρθ1/2 − ps(θ)

and ps(θ) ∼ Psat(θ)/θ1/2, σ and λ are given positive constants and κ(ρ) = κ1 + κ2ρ
2 is the heat

conductivity coefficient with κi (i = 1,2) being positive constants. A more general form of κ(ρ) can
be found in [21]. We consider a class of commonly used Robin type boundary conditions [5,6,11,23]
defined by

(ρθ)xρ|x=1 = α1(ρ1 − ρ(1, t)
)
, (ρθ)xρ|x=0 = α0(ρ(0, t) − ρ0), (1.6)

and

κ(ρ)θx|x=1 = β1(θ1 − θ(1, t)
)
, κ(ρ)θx|x=0 = β0(θ(0, t) − θ0), (1.7)

and the initial condition is

ρ(x,0) = ρ0(x), θ(x,0) = θ0(x), x ∈ (0,1), (1.8)

where α0,α1 represent the mass transfer coefficients, ρ0, ρ1 are the density of the gas in the inner
background and outer background, respectively, β0, β1 the heat transfer coefficients, and θ0, θ1 the
inner and outer background temperatures. We assume that all the parameters above are positive
constants.

Based on the experimental data in Fig. 1, we assume that ps is a smooth, increasing and nonneg-
ative function defined on R

+ which satisfies

lim
θ→0

ps(θ)

θ
= 0, lim

θ→∞
ps(θ)

θ1+η
= ∞ (1.9)

for some η > 0. For physical reasons, we set ps(θ) = 0 for θ � 0.
The objective of this paper is to establish the global existence of weak solution to the initial–

boundary value problem (1.5)–(1.8) under the general physical hypotheses (1.9) for the saturation
pressure function Γ . The difficulty lies on the strong nonlinearity and the coupling of equations. To
the best of our knowledge, there are no theoretical results for the underlying model. More important
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is its significant applications in textile industries. Also analysis presented in this paper may provide
a fundamental tool for theoretical analysis of existing numerical methods. Our proof is based on an
energy method and the equivalence of mass and heat transfer in convection.

2. The main result

Before we present our main result, we introduce some notations. Let T be a given positive number
in the following sections. We define

Ω = (0,1), I = (0, T ], Q t = Ω × (0, t], Q T = Ω × I,

W 2,1
2 (Q T ) = {

f ∈ L2(Q T )
∣∣ ft, fx, fxx ∈ L2(Q T )

}
.

Let D(Ω × [0, T )) be the subspace of C∞(R2) consisting of functions which have compact support in
R × [−∞, T ), restricted to Ω × [0, T ).

Now we give the definition of weak solution to the system (1.5)–(1.8) and then, state our main
result.

Definition 2.1 (Weak solution). We say that the measurable function pair (ρ, θ) defined on Ω ×[0, T ) is
a global weak solution to (1.5)–(1.8) if (ρ, θ) ∈ (L2(I; H1(Ω)))2 and the density ρ and the temperature
θ are nonnegative functions satisfying

T∫
0

α0(ρ(0, t) − ρ0)φ(0, t)dt +
T∫

0

α1(ρ(1, t) − ρ1)φ(1, t)dt

+
T∫

0

∫
Ω

(−ρφt + (ρθ)xρφx + Γ φ
)

dx dt =
∫
Ω

ρ0φ0 dx (2.1)

and

T∫
0

[
α0(ρ(0, t) − ρ0)θ(0, t) + β0(θ(0, t) − θ0)]ψ(0, t)dt

+
T∫

0

[
α1(ρ(1, t) − ρ1)θ(1, t) + β1(θ(1, t) − θ1)]ψ(1, t)dt

+
∞∫

0

∫
Ω

[−(ρθ + σθ)ψt + (ρθ)xρθψx + κθxψx − λΓ ψ
]

dx dt

=
∫
Ω

(ρ0θ0 + σθ0)ψ0 dx (2.2)

for any test functions φ,ψ ∈ D(Ω × [0, T )).

Theorem 2.1. If the initial data (ρ0, θ0) satisfies ρ0 ∈ L1+γ (Ω) (∀γ > 0), θ0 ∈ L∞(Ω) and ρ0 � 0, θ0 � θ

for some positive constant θ , then there exists a global weak solution (ρ, θ), in the sense of Definition 2.1, to
the initial–boundary value problem (1.5)–(1.8) such that
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ρ lnρ ∈ L∞(
0, T ; L1(Ω)

)
, ρ ∈ L4(Q T ), ρx ∈ L2(Q T );

θ, θ−1 ∈ L∞(Q T ), (1 + ρ)θx ∈ L2(Q T ). (2.3)

Remark 1. Theorem 2.1 shows the global-in-time existence of weak solutions to (1.5)–(1.8) in the
sense of Definition 2.1. However, the uniqueness of this kind of weak solutions is still open due to the
degeneracy and strong coupling of the system and will be investigated in the future.

Remark 2. We shall present the proof of Theorem 2.1 in Sections 3–4 by an energy method. Here,
we formally derive some energy estimates from which one can see clearly that the solution space
presented in (2.3) is reasonable.

Adding Eq. (1.5)1 multiplying by λ into (1.5)2 and then, integrating the resulting equation over Q t ,
we get

1∫
0

(λρ + ρθ + σθ)(x, t)dx −
t∫

0

[
(λ + θ)ρ(ρθ)x + κθx

]∣∣x=1
x=0 dτ

�
1∫

0

(λρ0 + ρ0θ0 + σθ0)(x)dx (2.4)

which with boundary conditions in (1.6)–(1.7) produces a basic energy estimate

1∫
0

(λρ + ρθ + σθ)(x, t)dx � CT + C

t∫
0

∥∥θ(·, τ )
∥∥

C(Ω)
dτ � CT ,

where CT is a positive constant depending on T , the initial values and the constants in boundary
conditions.

Moreover, subtracting Eq. (1.5)2 times (l + 1)θ l from Eq. (1.5)1 times lθ l+1 and then, integrating
the resulting equation over Q t with the boundary conditions (1.6)–(1.7), we arrive at

1∫
0

(ρ + σ)θ l+1(x, t)dx −
t∫

0

H3(x, τ )|x=1
x=0 dτ +

t∫
0

1∫
0

κl(l + 1)θ l−1|θx|2 dx dτ

+ (l + 1)

t∫
0

1∫
0

(λ + θ)ps(θ)θ l dx dτ

=
1∫

0

(ρ0 + σ)(θ0)
l+1(x)dx +

t∫
0

1∫
0

[
lθ l+1 + λ(l + 1)θ l]ρ√

θ dx dτ

+
t∫

0

1∫
0

ps(θ)θ l+1 dx dτ . (2.5)

In terms of the above inequality and some classical inequalities, we can obtain the following esti-
mate for the temperature θ
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1∫
0

(ρ + σ)θ l+1(x, t)dx + l(l + 1)

t∫
0

1∫
0

κθ l−1|θx|2 dx dτ + l

t∫
0

1∫
0

(λ + θ)ps(θ)θ l dx dτ � Cl+1
T

for any l � 0, where CT is independent of l, which implies

‖θ‖L∞(Q T ),‖θx‖L2(Q T ),‖ρθx‖L2(Q T ) � CT .

By applying the maximum principle to the temperature equation, we can also obtain a lower bound
for θ so that

∥∥θ−1
∥∥

L∞(Q T )
� CT .

Furthermore, multiplying Eq. (1.5)1 by lnρ , integrating the resulting equation over Q t and using the
boundary conditions (1.6)–(1.7), we can obtain

∫
[0,1]∩{ρ�1}

ρ lnρ(x, t)dx + 1

2

t∫
0

1∫
0

θ |ρx|2 dx dτ +
∫ ∫

[0,1]×[0,t]∩{ρ�1}
ρ lnρ dx dτ � CT . (2.6)

From (2.4)–(2.6), one can obtain these desired estimates for the solution space presented in (2.3).

Remark 3. In Theorem 2.1, we assume that the initial density satisfies ρ0 ∈ L1+γ (Ω) for some γ > 0
due to some technical reason in our approximation procedure. A more reasonable condition on the
initial density should be ρ lnρ ∈ L1(Ω), but this requires a more complicated regularization proce-
dure.

In the following sections, we denote by C p1,p2,...,pk a generic positive constant, which depends
solely upon p1, p2, . . . , pk , the physical parameters κ1, κ2, σ and λ and the parameters involved
in initial and boundary conditions. In addition, we denote by C(p1, p2, . . . , pk) a generic positive
function, dependent upon the physical parameters κ1, κ2, σ and λ and the parameters involved in
boundary conditions, which is bounded when p1, p2, . . . , pk are bounded.

3. Construction of approximate solutions

Throughout this section, we let ε be a fixed positive number which satisfies

0 < ε � min
{
ρ0,ρ1, θ0, θ1,1

}
,

and 0 < ν < ε. To prove the existence of global weak solutions to the system (1.5)–(1.8), we introduce
a regularized approximate system as follows:

ρt − ((
ε + (ρθ)ν

)
ρx

)
x − (

ρ(ρεθx)ε
)

x = −ρχε(
√

θ) + χε
(

ps(θ)
)
,

(ρθ + σθ)t − (
κεθx

)
x − ((

ε + (ρθ)ν
)
ρxθ

)
x − (

ρ(ρεθx)εθ
)

x

= λρχε(
√

θ) − λχε
(

ps(θ)
) + (λ + θ)

(
χε

(
ps(θ)

) − ps(θ)
)
, in Q T , (3.1)
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where χε is a cut-off function defined by

χε(h) =
{

h if |h| � ε−1,

sign(h)ε−1 if |h| � ε−1,

and

κε = κ1 + κ2(ρε)
2,

and the subscriptions ε, ν define the smoothing operators in general by fμ = Ext( f ) ∗ ημ with
μ = ν, ε. Here ημ is the standard mollifier and Ext(·) is the extension operator which extends any
measurable functions defined on ΩT to be zero on R

2 \ ΩT .

Remark 4. We give a further remark on the parameters ε, ν and the regularizations introduced
in (3.1). In order to treat the degenerate diffusion coefficient ρθ of Eq. (3.1)1 due to the possible
appearance of the vacuum state, i.e. ρ = 0, we add an artificial viscosity term −ερxx . We expect that
the term ρθ is nonnegative so that ε + (ρθ)ν is uniformly positive. Also we introduce a regulariza-
tion of ρθ by (ρθ)ν such that the coefficient is smooth and the constructed approximate solution
has a higher regularity. Although the equation for the energy equation (1.5)2 is a strictly parabolic
equation, the maximum principle cannot be used directly to the equation because of the strongly
coupling with the density. Thus we truncate the temperature θ in the nonlinear terms on the right
side of (3.1)2 by the cut-off function χε . Without the truncation, the term ps(θ

0) will be unbounded
for θ0 ∈ L2(I; H1(Ω)) (see Section 3.1). Then we derive the uniform bound of θ by the classical en-
ergy method. Correspondingly, we modify some nonlinear terms in view of the low regularity of the
solution. With those regularizations, we successfully construct a class of approximate solutions and
prove the compactness of the approximate solutions to get the desired weak solution.

The system (3.1) can be rewritten as

⎧⎪⎨
⎪⎩

ρt − ((
ε + (ρθ)ν

)
ρx

)
x − (

ρ(ρεθx)ε
)

x + ρχε(
√

θ) = χε
(

ps(θ)
)
,

(ρ + σ)θt − (
κεθx

)
x − [(

ε + (ρθ)ν
)
ρx + ρ(ρεθx)ε

]
θx − ρχε(

√
θ)θ + (λ + θ)ps(θ)

= λρχε(
√

θ).

(3.2)

The corresponding initial and boundary conditions are given by

(
ε + (ρθ)ν

)
ρx + ρ(ρεθx)ε

∣∣
x=1 = α1(ρ1 − ρ(1, t)

)
,(

ε + (ρθ)ν
)
ρx + ρ(ρεθx)ε

∣∣
x=0 = α0(ρ(0, t) − ρ0),

ρ(x,0) = ρ0ε(x) := (ρ0)ε(x) + ε,

κεθx
∣∣
x=1 = β1(θ1 − θ(1, t)

)
,

κεθx
∣∣
x=0 = β0(θ(0, t) − θ0),

θ(x,0) = θ0ε(x) := (θ0)ε(x). (3.3)

We prove the existence of approximate solutions (ρε,ν , θε,ν)(t, x) to the system (3.2)–(3.3) by
using the Leray–Schauder fixed point theorem. The following two lemmas are useful in our proof. The
first one can be found in [15] and [16]. The second one is given in [10] and its proof is only a slight
variation of the proof and so we omit it.
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Lemma 3.1 (Aubin–Lions). Let B1 ↪→↪→ B2 ↪→ B3 be reflective and separable Banach spaces. Then

{
u ∈ Lp(I; B1)

∣∣ ut ∈ Lq(I; B3)
}
↪→↪→ Lp(I; B2), 1 < p,q < ∞;{

u ∈ Lq(I; B2) ∩ L1(I; B1)
∣∣ ut ∈ L1(I; B3)

}
↪→↪→ Lp(I; B2), 1 � p < q < ∞.

Lemma 3.2 (Leray–Schauder). Let X be a Banach space, Y a closed convex cone of X centered at the origin
(y ∈ Y ⇒ ty ∈ Y , ∀t � 0). Let T : Y × [0,1] → Y be a completely continuous map such that T(x,0) = 0 for
all x ∈ Y . Suppose the map T has the property that the elements x ∈ Y which satisfy

x = T(x,σ ) (3.4)

for some σ ∈ [0,1] are uniformly bounded in X with respect to σ . Then the map T(·,1) has a fixed point in Y .
In other words, there exists x ∈ Y satisfying x = T(x,1).

3.1. Existence of approximate solutions

We define

X = {
u ∈ L2(I; H1(Ω)

) ∣∣ u � 0
}
, Y = {

u ∈ W 2,1
2 (Q T )

∣∣ u � 0
}
.

By Aubin–Lions lemma, Y ↪→↪→ X . Let ε and ν be given positive constants and the parameter s ∈
[0,1]. For any given (ρ0, θ0) ∈ X2, we define ρ to be the solution of the following linear parabolic
equation

ρt − ((
ε + (

ρ0θ0)
ν

)
ρx

)
x − (

ρ
(
ρ0

ε θ0
x

)
ε

)
x + sρχε

(√
θ0

) = sχε
(

ps
(
θ0)), (3.5)

with the initial and boundary conditions

⎧⎪⎨
⎪⎩

(
ε + (

ρ0θ0
)
ν

)
ρx + ρ

(
ρ0

ε θ0
x

)
ε
= α1

(
sρ1 − ρ

)
, at x = 1,(

ε + (
ρ0θ0

)
ν

)
ρx + ρ

(
ρ0

ε θ0
x

)
ε
= α0

(
ρ − sρ0

)
, at x = 0,

ρ(x,0) = sρ0ε(x), for x ∈ Ω.

(3.6)

Note that (3.5) is a parabolic equation with ε + (ρ0θ0)ν � ε since ρ0, θ0 ∈ X implies ρ0θ0 � 0. Now
with ρ in hand, we define θ to be the solution of the semi-linear parabolic equation

(ρ + σ)θt − (
κεθx

)
x − [(

ε + (
ρ0θ0)

ν

)
ρx + ρ

(
ρ0

ε θ0
x

)
ε

]
θx − sρχε

(√
θ0

)
θ + s(λ + θ)ps(θ)

= sλρχε
(√

θ0
)
, (3.7)

with the initial and boundary conditions

⎧⎪⎨
⎪⎩

κεθx = β1
(
sθ1 − θ

)
, at x = 1,

κεθx = β0
(
θ − sθ0

)
, at x = 0,

θ(x,0) = sθ0ε(x), for x ∈ Ω.

(3.8)

Note that the existence and uniqueness of the solution to the semi-linear equation (3.7)–(3.8) will be
proved in Appendix A.

Now let M denote the mapping from (ρ0, θ0, s) to (ρ, θ). Then we have the following lemma.
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Lemma 3.3. The mapping M : X2 × [0,1] → X2 is well defined, continuous and compact.

Proof. By the L2-theory of linear parabolic equations [13], there exists a solution ρ ∈ W 2,1
2 (Q T ) for

the system (3.5)–(3.6) such that

‖ρ‖W 2,1
2 (Q T )

� C
(
ε−1,

∥∥(
ρ0θ0)

ν

∥∥
C1(Q T )

,
∥∥(

ρ0
ε θ0

x

)
ε

∥∥
C1(Q T )

,‖ρ0ε‖H1(Ω), T
)
.

By noting the fact

∥∥ρ0
ε

∥∥
H1(Ω)

� Cε‖ρ0‖L1(Ω),
∥∥(

ρ0θ0)
ν

∥∥
C1(Q T )

� Cν,T
∥∥ρ0

∥∥
L2(Q T )

∥∥θ0
∥∥

L2(Q T )
,∥∥(

ρ0
ε θ0

x

)
ε

∥∥
C1(Q T )

� Cε,T
∥∥ρ0

ε θ0
x

∥∥
L1(Q T )

� Cε,T
∥∥ρ0

∥∥
L2(Q T )

∥∥θ0
x

∥∥
L2(Q T )

,

for the standard smoothing operator, we have

‖ρ‖W 2,1
2 (Q T )

� C
(
ε−1, ν−1,

∥∥ρ0
∥∥

X ,
∥∥θ0

∥∥
X , T

)
(3.9)

and therefore,

‖ρ‖L∞(Q T ) � ‖ρ‖W 2,1
2 (Q T )

� C
(
ε−1, ν−1,

∥∥ρ0
∥∥

X ,
∥∥θ0

∥∥
X , T

)
.

Let ρ+ = max{ρ,0}, ρ− = max{−ρ,0}. Then ρ = ρ+ − ρ− . By multiplying ρ− on both sides of
Eq. (3.5) and integrating the resulting equation over Q t , we get

1∫
0

|ρ−|2
2

dx +
t∫

0

1∫
0

(
ε + (

ρ0θ0)
ν

)∣∣ρ−
x

∣∣2
dx dτ +

t∫
0

1∫
0

(
sχε(

√
θ)|ρ−|2 + sχε

(
ps(θ)

)
ρ−)

dx dτ

+
t∫

0

(
α0

∣∣ρ−(0, τ )
∣∣2 + α0sρ0ρ−(0, τ )

)
dτ +

t∫
0

(
α1

∣∣ρ−(1, τ )
∣∣2 + α1sρ1ρ−(1, τ )

)
dτ

= −
t∫

0

1∫
0

ρ−ρ−
x

(
ρ0

ε θ0
x

)
ε

dx dτ

�
t∫

0

1∫
0

(‖(ρ0
ε θ0

x )ε‖L∞(Q T )

2ε
|ρ−|2 + ε

2

∣∣ρ−
x

∣∣2
)

dx dτ .

Notice that ρ− � 0. Thus we have that

1∫
0

|ρ−|2 dx � ‖(ρ0
ε θ0

x )ε‖L∞(Q T )

2ε

t∫
0

1∫
0

|ρ−|2 dx dτ .

By Gronwall’s inequality, we see that ρ− ≡ 0. Thus ρ = ρ+ � 0. This and (3.8) imply that ρ ∈
Y ↪→↪→ X .

Similarly, by the L2-theory of quasi-linear parabolic equations [13], there exists a solution θ ∈
W 2,1

2 (Q T ) for the system (3.7)–(3.8) and



B. Li et al. / J. Differential Equations 249 (2010) 2618–2642 2627
‖θ‖W 2,1
2 (Q T )

� C
(
ε−1, ν−1,

∥∥ρ0
∥∥

X ,
∥∥θ0

∥∥
X , T

)
. (3.10)

Let θ+ = max{θ,0}, θ− = max{−θ,0}. Then θ = θ+ − θ− . Multiplying θ−/(ρ + σ) on both sides of
Eq. (3.7) and integrating the resulting equation over Q t , we can get

1∫
0

|θ−|2
2

dx +
t∫

0

1∫
0

κε

ρ + σ

∣∣θ−
x

∣∣2
dx dτ +

t∫
0

1∫
0

s(λ + θ)ps(θ)

(ρ + σ)
θ− dx dτ

+
t∫

0

1∫
0

sλρχε
(√

θ0
) θ−

ρ + σ
dx dτ +

t∫
0

θ−(1, τ )

ρ(1, τ ) + σ
β1(sθ1 + θ−(1, τ )

)
dτ

+
t∫

0

θ−(0, τ )

ρ(0, τ ) + σ
β1(sθ1 + θ−(0, τ )

)
dτ

=
t∫

0

1∫
0

sρχε
(√

θ0
) |θ−|2
ρ + σ

dx dτ +
t∫

0

1∫
0

κεθ−
x

ρxθ
−

(ρ + σ)2
dx dτ

+
t∫

0

1∫
0

[(
ε + (

ρ0θ0)
ν

)
ρx + ρ

(
ρ0

ε θ0
x

)
ε

]
θ−

x
θ−

ρ + σ
dx dτ .

Since ps(θ) = 0 for θ � 0, we observe that (λ + θ)ps(θ)θ− = 0 a.e. in ΩT . By Cauchy inequality and
the estimations (3.8)–(3.9), we can estimate the terms in the right-hand side of the above equality.
Thus we obtain

1∫
0

|θ−|2 dx � C
(
ε−1, ν−1,

∥∥ρ0
∥∥

X ,
∥∥θ0

∥∥
X , T

) t∫
0

1∫
0

|θ−|2 dx dτ .

Gronwall’s inequality gives that θ− ≡ 0. Thus θ = θ+ � 0. This and (3.9) imply that θ ∈ Y ↪→↪→ X .
We conclude that the mapping M : X2 × [0,1] → X2 is a compact mapping.
Now we prove the continuity of the mapping M . For any (ρ̂0, θ̂0, ŝ) ∈ X2 × [0,1], let (ρ̂, θ̂ ) =

M(ρ̂0, θ̂0, ŝ). Then

ρ̂t − [(
ε + (

ρ̂0θ̂0)
ν

)
ρ̂x + ρ̂

(
ρ̂0

ε θ̂0
x

)
ε

]
x + ŝρ̂χε

(√
θ̂0

) = ŝχε
(

ps
(
θ̂0)), (3.11)

(ρ̂ + σ)θ̂t − (
κ̂εθ̂x

)
x − [(

ε + (
ρ̂0θ̂0)

ν

)
ρ̂x + ρ̂

(
ρ̂0

ε θ̂0
x

)
ε

]
θ̂x − ŝρ̂χε

(√
θ̂0

)
θ̂ + ŝ(λ + θ̂ )ps(θ̂)

= ŝλρ̂χε
(√

θ̂0
)
, (3.12)

with the initial and boundary conditions

⎧⎪⎨
⎪⎩

(
ε + (

ρ̂0θ̂0
)
ν

)
ρ̂x + ρ̂

(
ρ̂0

ε θ̂0
x

)
ε
= α1

(
ŝρ1 − ρ̂

)
, at x = 1,(

ε + (
ρ̂0θ̂0

)
ν

)
ρ̂x + ρ̂

(
ρ̂0

ε θ̂0
x

)
ε
= α0

(
ρ̂ − ŝρ0

)
, at x = 0,

ρ(x,0) = ŝρ (x), for x ∈ Ω,

(3.13)
0ε
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and

⎧⎪⎨
⎪⎩

κ̂εθ̂x = β1
(
ŝθ1 − θ̂

)
, at x = 1,

κ̂εθ̂x = β0
(
θ̂ − ŝθ0

)
, at x = 0,

θ(x,0) = ŝθ0ε(x), for x ∈ Ω.

(3.14)

Denote ρ̃ = ρ − ρ̂ and θ̃ = θ − θ̂ . Then ρ̃ satisfies the following equation,

ρ̃t − (F − F̂ )x + sρ̃χε
(√

θ0
) + (s − ŝ)ρ̂χε

(√
θ0

) + ŝρ̂
[
χε

(√
θ0

) − χε
(√

θ̂0
)]

= (s − ŝ)χε
(

ps
(
θ0)) + ŝ

[
χε

(
ps

(
θ0)) − χε

(
ps

(
θ̂0))], (3.15)

where

F = (
ε + (

ρ0θ0)
ν

)
ρx + ρ

(
ρ0

ε θ0
x

)
ε
,

F̂ = (
ε + (

ρ̂0θ̂0)
ν

)
ρ̂x + ρ̂

(
ρ̂0

ε θ̂0
x

)
ε
.

Multiplying Eq. (3.15) by ρ̃ and integrating over Q t gives

1∫
0

ρ̃2(x, t)dx +
t∫

0

1∫
0

ρ̃2
x dx dτ � C

[ t∫
0

1∫
0

ρ̃2 dx dτ + (s − ŝ)2 + ∥∥ρ0 − ρ̂0
∥∥2

X + ∥∥θ0 − θ̂0
∥∥2

X

]

with C = C(ε−1, ν−1,‖ρ0ε‖L2(Ω),‖ρ0‖X ,‖θ0‖X ,‖ρ̂0‖X ,‖θ̂0‖X , T ).
Thus Gronwall inequality implies that

‖ρ̃‖2
X � C

[
(s − ŝ)2 + ∥∥ρ0 − ρ̂0

∥∥2
X + ∥∥θ0 − θ̂0

∥∥2
X

]
.

Similarly, we can derive the equation for θ̃ and get

‖θ̃‖2
X � C

[
(s − ŝ)2 + ∥∥ρ0 − ρ̂0

∥∥2
X + ∥∥θ0 − θ̂0

∥∥2
X

]
.

Thus, the mapping M : X2 × [0,1] → X2 is continuous. The proof of Lemma 3.2 is complete. �
In addition, for s = 0 we see that M(ρ, θ,0) = 0 for any (ρ, θ) ∈ X2. Thus, by the Leray–Schauder

fixed point theorem, there exists a fixed point for the mapping M(·, ·,1) : X2 → X2 if all the functions
(ρ, θ) ∈ X2 satisfying

(ρ, θ) = M(ρ, θ, s) (3.16)

for some s ∈ [0,1] are uniformly bounded in X2. In fact, by the proof of Lemma 3.3, M maps
(ρ, θ, s) ∈ X2 ×[0,1] into Y 2. Therefore, if (ρ, θ) is a fixed point of M(·, ·,1), then (ρ, θ) ∈ W 2,1

2 (Q T ).
So we have the following theorem for the existence of approximate solutions (ρε,ν , θε,ν)(t, x).

Theorem 3.1. Under the assumptions of Theorem 2.1, the system (3.2)–(3.3) has a (strong) solution (ρ, θ) ∈
W 2,1

2 (Q T ) which satisfies
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ρ � ρε,T and θ T � θ � θ T for (x, t) ∈ Q T . (3.17)

‖ρ‖L∞(I;L4(Ω)),‖ρx‖L2(Q T ),‖ρρx‖L2(Q T ) � Cε,T ,

‖θ‖L∞(Q T ),‖ρ‖L∞(I;L1(Ω)),‖θx‖L2(Q T ),‖ρεθx‖L2(Q T ) � CT (3.18)

where ρε,T and Cε,T are positive constants which depend on ε and T , independent of ν; θ T , and θ T and CT

are positive constants, dependent upon T and independent of ε and ν .

By the Leray–Schauder fixed point theorem, it suffices to prove the uniform boundedness of func-
tions (ρ, θ) ∈ X2 satisfying Eqs. (3.16) and (3.17).

3.2. Uniform estimates

We assume that (ρ, θ) ∈ X2 and therefore, (ρ, θ) = M(ρ, θ, s) ∈ Y 2, for s ∈ [0,1], i.e., (ρ, θ) is a
(strong) solution of the following system,

ρt − ((
ε + (ρθ)ν

)
ρx

)
x − (

ρ(ρεθx)ε
)

x + sρχε(
√

θ) = sχε
(

ps(θ)
)
, (3.19)

(ρ + σ)θt − (
κεθx

)
x − [(

ε + (ρθ)ν
)
ρx + ρ(ρεθx)ε

]
θx − sρχε(

√
θ)θ + s(λ + θ)ps(θ)

= sλρχε(
√

θ), (3.20)

with the initial and boundary conditions

⎧⎪⎨
⎪⎩

(
ε + (ρθ)ν

)
ρx + ρ(ρεθx)ε = α1

(
sρ1 − ρ

)
, at x = 1,(

ε + (ρθ)ν
)
ρx + ρ(ρεθx)ε = α0

(
ρ − sρ0

)
, at x = 0,

ρ(x,0) = sρ0ε(x), for x ∈ Ω,

(3.21)

and

⎧⎪⎨
⎪⎩

κεθx = β1
(
sθ1 − θ

)
, at x = 1,

κεθx = β0
(
θ − sθ0

)
, at x = 0,

θ(x,0) = sθ0ε(x), for x ∈ Ω.

(3.22)

In this subsection, we derive some uniform estimates for solutions to the above initial–boundary
value problems.

Firstly we add Eq. (3.19) multiplying by (λ+θ) into (3.20) and then integrate the resulting equation
over Q t . We arrive at

1∫
0

(λρ + ρθ + σθ)(x, t)dx −
t∫

0

H2(x, τ )|x=1
x=0 dτ �

1∫
0

(λρ0ε + ρ0εθ0ε + σθ0ε)(x)dx

where

H2(x, τ ) = [
ερx + (ρθ)νρx + ρ(ρεθx)ε

]
(λ + θ) + κεθx.

With boundary conditions in (3.21)–(3.22), we have
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−H2(x, τ )|x=1
x=0 = α1(ρ(1, τ ) − sρ1)(λ + θ(1, τ )

) + α0(ρ(0, τ ) − sρ0)(λ + θ(0, τ )
)

+ β1(θ(1, τ ) − sθ1) + β0(θ(0, τ ) − sθ0)
� −α1sρ1θ(1, τ ) − α0sρ0θ(0, τ ) − λs

(
α1ρ1 + α0ρ0) − s

(
β1θ1 + β0θ0)

and therefore,

1∫
0

(λρ + ρθ + σθ)(x, t)dx � CT + C

t∫
0

∥∥θ(·, τ )
∥∥

C(Ω)
dτ , (3.23)

where

CT = (
λ + ‖θ0ε‖L∞

)‖ρ0ε‖L1 + σ‖θ0ε‖L∞ + [
λ
(
α1ρ1 + α0ρ0) + (

β1θ1 + β0θ0)]T .

Similarly, adding Eq. (3.20) multiplying by (l + 1)θ l with Eq. (3.19) multiplying by θ l+1 and inte-
grating the resulting equation over Q t , we arrive at

1∫
0

(ρ + σ)θ l+1(x, t)dx −
t∫

0

H3(x, τ )|x=1
x=0 dτ +

t∫
0

1∫
0

κεl(l + 1)θ l−1|θx|2 dx dτ

+ s(l + 1)

t∫
0

1∫
0

(λ + θ)ps(θ)θ l dx dτ

=
1∫

0

(ρ0ε + σ)(θ0ε)
l+1(x)dx + s

t∫
0

1∫
0

[
lθ l+1 + λ(l + 1)θ l]ρχε(

√
θ)dx dτ

+ s

t∫
0

1∫
0

χε
(

ps(θ)
)
θ l+1 dx dτ , (3.24)

where

−H3(x, τ )|x=1
x=0 = α1(ρ(1, τ ) − sρ1)[θ(1, τ )

]l+1 + α0(ρ(0, τ ) − sρ0)[θ(0, τ )
]l+1

+ (l + 1)β1(θ(1, τ ) − sθ1)[θ(1, τ )
]l + (l + 1)β0(θ(0, τ ) − sθ0)[θ(0, τ )

]l

= [
α1ρ(1, τ ) + (l + 1)β1 − α1sρ1][θ(1, τ )

]l+1 − (l + 1)β1sθ1[θ(1, τ )
]l

+ [
α0ρ(0, τ ) + (l + 1)β0 − α0sρ0][θ(0, τ )

]l+1 − (l + 1)β0sθ0[θ(0, τ )
]l

� −2l(l + 1)
[
β1(sθ1)l+1 + β0(sθ0)l+1]

when l is large enough. Since θ l � θ1/2 + θ l+1 for any θ � 0 and l � 1, by (3.23)–(3.24),
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1∫
0

(ρ + σ)θ l+1(x, t)dx + l(l + 1)

t∫
0

1∫
0

κεθ l−1|θx|2 dx dτ + sl

t∫
0

1∫
0

(λ + θ)ps(θ)θ l dx dτ

� Cl,T + C0s

t∫
0

1∫
0

l
(
1 + θ l+1/2)ρθ dx dτ

� C ′
l,T + C0sl

t∫
0

∥∥θ(·, τ )
∥∥l+3/2

L∞(Ω)
dτ (3.25)

where

Cl,T =
1∫

0

(ρ0 + σ)θ l+1
0 (x)dx + 2l(l + 1)

[
β1(sθ1)l+1 + β0(sθ0)l+1]

and C ′
l,T = Cl,T + Cl. Recall the Gagliardo–Nirenberg inequality

‖ f ‖L∞(Ω) � C‖ f ‖L2(Ω) + C‖ f ‖1/2
L2(Ω)

‖ fx‖1/2
L2(Ω)

, ∀ f ∈ H1(Ω).

With f = θ
l+1

2 in the above inequality, we obtain

∥∥θ(·, τ )
∥∥l+3/2

L∞(Ω)
� C2

2

1∫
0

θ l+3/2(x, τ )dx + C1
∥∥θ

l+1
2 (·, τ )

∥∥ 2l+3
2l+2

L2(Ω)

∥∥(
θ

l+1
2

)
x(·, τ )

∥∥ 2l+3
2l+2

L2(Ω)

and by Hölder’s inequality,

t∫
0

∥∥θ
l+1

2 (·, τ )
∥∥ 2l+3

2l+2

L2(Ω)

∥∥(
θ

l+1
2

)
x(·, τ )

∥∥ 2l+3
2l+2

L2(Ω)
dτ

� Cl

t∫
0

1∫
0

(
θ

l+1
2

) 4l+6
2l+1 dx dτ + 1

(l + 1)C0C1

t∫
0

1∫
0

κ
∣∣(θ l+1

2
)

x

∣∣2
dx dτ

� Cl

t∫
0

1∫
0

θ
(l+1)(2l+3)

2l+1 dx dτ + l + 1

4C0C1

t∫
0

1∫
0

κθ l−1|θx|2 dx dτ .

It follows that

t∫
0

∥∥θ(·, τ )
∥∥l+3/2

L∞(Ω)
dτ � C2

2

t∫
0

1∫
0

θ l+3/2 dx dτ + Cl

t∫
0

1∫
0

θ
(l+1)(2l+3)

2l+1 dx dτ

+ l + 1

4C0

t∫ 1∫
κ1θ

l−1|θx|2 dx dτ .
0 0
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By the assumption (1.9), we observe that C0C2θ
l+ 3

2 � ps(θ)θ l+1 + C for all θ � 0. Substituting the last
inequality into (3.25) gives

1∫
0

(ρ + σ)θ l+1(x, t)dx + l(l + 1)

2

t∫
0

1∫
0

κεθ l−1|θx|2 dx dτ + sl

2

t∫
0

1∫
0

ps(θ)θ l+1 dx dτ

� C ′
l,T + C3sl2

t∫
0

1∫
0

θ
(l+1)(2l+3)

2l+1 dx dτ , (3.26)

for l being large enough. Let l0 be a positive integer satisfying

(l0 + 1)(2l0 + 3)

2l0 + 1
= l0 + 1 + 2l0 + 2

2l0 + 1
< l0 + 1 + (1 + η)

where η is defined in (1.9). By noting the fact

C3θ
(l0+1)(2l0+3)

2l0+1 � 1

4l0
ps(θ)θ l0+1 + (Cl0)

l1

with l1 = 2(l0 + 2 + η)/η, we have

1∫
0

(ρ + σ)θ l0+1(x, t)dx + l0(l0 + 1)

2

t∫
0

1∫
0

κεθ l0−1|θx|2 dx dτ + sl

4

t∫
0

1∫
0

ps(θ)θ l0+1 dx dτ � C ′′
l0,T ,

where C ′′
l0,T = C ′

l0,T + CT (Cl0)l1 for some constant CT independent of l0. Furthermore,

sup
0�t�T

1∫
0

θ l0+1(x, t)dx +
T∫

0

1∫
0

∣∣(θ l0+1
2

)
x

∣∣2
dx dt � C ′′

l0,T

and by the Sobolev embedding inequality,

T∫
0

‖θ‖l0+1
L∞(Ω) dx dt � Cl0+1

T C ′′
l0,T .

Since l0 is a fixed positive integer dependent solely upon η, we obtain the estimate

T∫
0

‖θ‖L∞(Ω) dx dt � CT . (3.27)

From (3.23) and (3.25), we get

sup
0�t�T

1∫
(ρ + ρθ)dx � CT (3.28)
0
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and

1∫
0

(ρ + σ)θ l+1(x, t)dx + l(l + 1)

t∫
0

1∫
0

κεθ l−1|θx|2 dx dτ + sl

t∫
0

1∫
0

(λ + θ)ps(θ)θ l dx dτ

� Cl,T + C sl

t∫
0

1∫
0

ρθ dx dτ + C sl

t∫
0

‖θ‖1/2
L∞(Ω)

1∫
0

ρθ l+1 dx dτ

� (Cl,T + CT l) + C sl

t∫
0

‖θ‖1/2
L∞(Ω)

1∫
0

(ρ + σ)θ l+1 dx dτ .

Moreover, by using Gronwall’s inequality,

1∫
0

(ρ + σ)θ l+1(x, t)dx � (Cl,T + CT l) + (Cl,T + CT l)eCT l

and

‖θ‖Ll+1(Q T ) �
[
2(Cl,T + CT l)

] 1
l+1 eCT .

By taking l → ∞, we have

‖θ‖L∞(Q T ) � CT (3.29)

where we have noted the fact

C
1

l+1
l,T � CT .

By taking l = 1 in Eq. (3.25), we obtain

1∫
0

(ρ + σ)θ2(x, t)dx + 1

2

t∫
0

1∫
0

((
κ1 + κ2|ρε|2

)|θx|2 + sθ2 ps(θ)
)

dx dτ � CT ,

which implies that

‖θx‖L2(Q T ),‖ρεθx‖L2(Q T ) � CT . (3.30)

Secondly we present some estimates for ρ . Again by multiplying ρ on both sides of Eq. (3.19) and
integrating the resulting equation over Q T , with Gronwall’s inequality we get

sup
0�t�T

1∫
0

ρ2 dx +
T∫

0

1∫
0

|ρx|2 dx dt � Cε,T + C
(
ε,

∥∥(ρεθx)ε
∥∥

L∞(Q T )

)
� Cε,T , (3.31)

which together with the Sobolev embedding inequality gives
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T∫
0

1∫
0

ρ6 dx dt � Cε,T .

Once again, multiplying ρ3 on both sides of Eq. (3.19) and integrating the resulting equation over
Q T lead to

sup
0�t�T

1∫
0

ρ4 dx +
T∫

0

1∫
0

ρ2|ρx|2 dx dt � Cε,T . (3.32)

From (3.29), (3.30) and (3.31), we conclude that (ρ, θ) is uniformly bounded in X2. Thus, by the
Leray–Schauder fixed point theorem, there exists a fixed point (ρε,ν , θε,ν) for the mapping M(·, ·,1) :
X2 → X2 and (ρε,ν , θε,ν) is a solution of the system (3.2)–(3.3).

3.3. Positivity of the approximate solutions

Since θ is uniformly bounded by (3.29) with an upper bound independent of ε, the cut-off operator
χε can be removed from the system (3.2)–(3.3) because

χε
(

ps(θ)
) = ps(θ) and χε(

√
θ) = √

θ

for ε being small enough.
Finally we prove the positivity of the approximate solutions (ρε,ν , θε,ν). Let θ̃ δ = θet − δ. Then θ̃ δ

is the solution of the following problem,

(ρ + σ)θ̃δ
t − (

κεθ̃δ
x

)
x − [(

ε + (ρθ)ν
)
ρx + ρ(ρεθx)ε

]
θ̃ δ

x − (ρ + σ)θ̃δ − ρ
√

θ θ̃ δ + q̃
(
θet , δ

)
θ̃ δ

= ρ
√

θθet + λρ
√

θet + (ρ + σ)δ − (
λ + e−tδ

)
ps

(
e−tδ

)
et, (3.33)

with the initial and boundary conditions

⎧⎪⎨
⎪⎩

κεθ̃δ
x + β1θ̃ δ = β1

(
θ1et − δ

)
, at x = 1,

−κεθ̃δ
x + β0θ̃ δ = β1

(
θ0et − δ

)
, at x = 0,

θ̃ δ(x,0) = θ0ε(x) − δ, for x ∈ Ω,

(3.34)

where

q̃(θ̃ , δ) = (λ + e−t θ̃ )ps(e−t θ̃ ) − (λ + e−tδ)ps(e−tδ)

θ̃ − δ
et � 0.

By the assumption (1.9), the right-hand sides of Eqs. (3.33)–(3.34) are nonnegative if δ is small enough
(independent of ε and ν). Multiplying (θ̃ δ)−/(ρ + σ) on both sides of Eq. (3.33) and integrating the
resulting equation over Q t , we derive θ̃ δ � 0, i.e. θ � e−T δ, which together with (3.29) implies that

θ T � θ(x, t) � θ T for (x, t) ∈ Q T (3.35)

where θ T and θ T are positive constants independent of ε and ν .
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For ρ , we define ρδ = ρ − δ. Then ρδ is the solution of the following equation

ρδ
t − ((

ε + (ρθ)ν
)
ρδ

x

)
x − (

ρδ(ρεθx)ε
)

x + ρδ
√

θ = ps(θ) + δ
[
(ρεθx)ε

]
x − δ

√
θ, (3.36)

with the initial and boundary conditions

⎧⎪⎨
⎪⎩

(
ε + (ρθ)ν

)
ρδ

x + ρδ(ρεθx)ε + α1ρδ = α1
(
ρ1 − δ

) − δ(ρεθx)ε, at x = 1,

−(
ε + (ρθ)ν

)
ρδ

x − ρδ(ρεθx)ε + α0ρδ = α0
(
ρ0 − δ

) + δ(ρεθx)ε, at x = 0,

ρδ(x,0) = ρ0ε(x) − δ, for x ∈ Ω.

(3.37)

Note that by (3.35) we have ps(θ) � ps(θ T ), the right-hand sides of Eqs. (3.36)–(3.37) are nonnegative
if

δ = min

{
ε

2
,

ps(θ T )

2
√

θ T

,
min{ps(θ T ),α0ρ0,α1ρ1}

1 + 2‖(ρεθx)ε‖C1(Q T )

}
,

in which case ρδ � 0, or equivalently ρ � δ. On the other hand, from (3.30) we have

∥∥(ρεθx)ε
∥∥

C1(Q T )
� 1

ε2
‖ρεθx‖L1(Q T ) � Cε.

Thus, there exists a positive constant ρε,T such that

ρ � ρε,T for (x, t) ∈ Q T . (3.38)

The proof of Theorem 3.1 is complete.

4. Global existence

We have constructed an approximate solution (ρε,ν , θε,ν) to the system (3.1) and (3.3) (or equiva-
lently (3.2)–(3.3)) in the last section. In this section, we prove the global existence of weak solutions
for the system (1.5)–(1.8).

Firstly we fix ε > 0 and study the convergence as ν → 0. Since the system (3.19)–(3.20) reduces to
(3.2)–(3.3) when s = 1, the uniform estimates (3.29), (3.30), (3.31) and (3.35) given in the last section
still hold for the approximate solution (ρε,ν , θε,ν). We rewrite the first equation in (3.2) by

ρt = − fx + g

with g uniformly bounded in L2(Q T ) and

f = (
ε + (ρθ)ν

)
ρx + ρ(ρεθx)ε.

Since ρ is uniformly bounded in L∞(I; L2(Ω)) ∩ L2(I; H1(Ω)) ↪→ L6(Q T ), we derive that

∥∥ρ(ρεθx)ε
∥∥

L2(Q T )
,
∥∥(ρθ)ν

∥∥
L6(Q T )

,
∥∥(ρθ)νρx

∥∥
L

5
4 (Q T )

� Cε,T

and

‖ρt‖L5/4(I;W −1,5/4
(Ω))

� Cε,T .

0
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From the first equation in (3.1) we derive that

∥∥(ρθ + σθ)t
∥∥

L5/4(I;W −1,5/4
0 (Ω))

� Cε,T

where we have noted (3.29), and moreover, from (3.31), we observe that ρε,ν is uniformly bounded in
L6(I; L6(Ω))∩ L2(I; H1(Ω)) and ρε,ν

t is uniformly bounded in L5/4(I; W −1,5/4
0 (Ω)). Using Aubin–Lions

lemma, we conclude that there exists a sequence ν j → 0 such that

ρε,ν j → ρε strongly in Lp(Q T ) (∀1 � p < 6),

ρε,ν j → ρε strongly in L2(I; C(Ω)
)
,

ρε,ν j ⇀ ρε weakly in L2(I, H1(Ω)
)
,

ρ
ε,ν j
t ⇀ ρε

t weakly in L5/4(I; W −1,5/4
0 (Ω)

)
(4.1)

and

ρε,ν j (0, ·) → ρε(0, ·) and ρε,ν j (1, ·) → ρε(1, ·) strongly in L2(0, T ).

Similarly, by noting the uniform estimates (3.29), (3.30) and (3.35), we conclude that there exists a
subsequence of θε,ν j (also denoted by θε,ν j ) such that

θε,ν j → θε strongly in Lp(Q T ) (∀1 � p < ∞),

θε,ν j → θε strongly in L2(I; C(Ω)
)
,

θε,ν j ⇀ θε weakly in L2(I, H1(Ω)
)
,(

ρε,ν j θε,ν j + σθε,ν j
)

t ⇀
(
ρεθε + σθε

)
t weakly in L5/4(I; W −1,5/4

0 (Ω)
)

(4.2)

and

θε,ν j (0, ·) → θε(0, ·) and θε,ν j (1, ·) → θε(1, ·) strongly in Lp(0, T ), 1 � p < ∞.

Since (ρε,ν j , θε,ν j ) is a strong solution of the system (3.1) and (3.3), it satisfies

T∫
0

α0(ρε,ν j (0, t) − ρ0)φ(0, t)dt +
T∫

0

α1(ρε,ν j (1, t) − ρ1)φ(1, t)dt

+
T∫

0

∫
Ω

ρ
ε,ν j
t φ dx dt +

T∫
0

[(
ε + (

ρε,ν j θε,ν j
)
ν

)
ρ

ε,ν j
x + ρε,ν j

(
ρ

ε,ν j
ε θ

ε,ν j
x

)
ε

]
φx dx dt

=
T∫

0

∫
Ω

ps
(
θε,ν j

)
dx dt −

T∫
0

∫
Ω

ρε,ν j
√

θε,ν j φ dx dt

and



B. Li et al. / J. Differential Equations 249 (2010) 2618–2642 2637
T∫
0

1∫
0

[(
ρε,ν j + σ

)
θε,ν j

]
tψ dx dt +

T∫
0

β0(θε,ν j (0, t) − θ0)ψ(0, t)dt

+
T∫

0

β1(θε,ν j (1, t) − θ1)ψ(1, t)dt +
T∫

0

α0(ρε,ν j (0, t) − ρ0)θε,ν j (0, t)ψ(0, t)dt

+
T∫

0

α1(ρε,ν j (1, t) − ρ1)θε,ν j (1, t)ψ(1, t)dt +
T∫

0

1∫
0

κεθ
ε,ν j
x ψx dx dt

+
T∫

0

1∫
0

[(
ε + (

ρε,ν j θε,ν j
)
ν

)
ρ

ε,ν j
x θε,ν j + ρε,ν j

(
ρ

ε,ν j
ε θ

ε,ν j
x

)
ε
θε,ν j

]
ψx dx dt

= λ

T∫
0

1∫
0

[
ρε,ν j

√
θε,ν j − ps

(
θε,ν j

)]
ψ dx dt,

for any φ,ψ ∈ L5(I; W 1,5(Ω)). By taking the limit j → ∞, we obtain a global weak solution (ρε, θε)

to the approximate system

ρt − (
(ε + ρθ)ρx

)
x − (

ρ(ρεθx)ε
)

x = ps(θ) − ρ
√

θ,

(ρθ + σθ)t − (
κεθx

)
x − (

(ε + ρθ)ρxθ
)

x − (
ρ(ρεθx)εθ

)
x = λ

(
ρ
√

θ − ps(θ)
)
, (4.3)

with the boundary and initial conditions

(ε + ρθ)ρx + ρ(ρθx)ε|x=1 = α1(ρ1 − ρ(1, t)
)
,

(ε + ρθ)ρx + ρ(ρθx)ε|x=0 = α0(ρ(0, t) − ρ0),
ρ(x,0) = ρ0ε(x) := ρ0 ∗ ηε(x) + ε,

κεθx
∣∣
x=1 = β1(θ1 − θ(1, t)

)
,

κεθx
∣∣
x=0 = β0(θ(0, t) − θ0),

θ(x,0) = θ0ε(x) := θ0 ∗ ηε(x). (4.4)

Secondly, we study the convergence as ε → 0. To take the limit ε → 0, we need more uniform
estimates for ρ with respect to ε.

Clearly the system (3.2)–(3.3) reduces to the system (4.3)–(4.4) when ν = 0. Then the uniform
estimates (3.17) and (3.18) hold for the obtained solution (ρε, θε). From (3.32) we see that

‖ρθρx‖L2(Q T ) � Cε,T

and from the first equation of (4.3) we deduce that ρt ∈ L2(I; H−1
0 (Ω)). Note that lnρ ∈ L2(I; H1(Ω)).

By multiplying the first equation of (4.3) by lnρ and integrating the resulting equation over Q t , we
arrive at
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1∫
0

ρ lnρ(x, t)dx −
1∫

0

ρ(x, t)dx +
t∫

0

[
ερx + ρθρx + ρ(ρεθx)ε

]
lnρ

∣∣x=1
x=0 dτ +

t∫
0

1∫
0

θρ2
x dx dτ

�
1∫

0

ρ0ε lnρ0ε(x)dx −
1∫

0

ρ0ε dx −
t∫

0

1∫
0

(ρεθx)ερx dx dτ −
t∫

0

1∫
0

(
ρ
√

θ − ps(θ)
)

lnρ dx dτ .

Since

t∫
0

1∫
0

∣∣(ρεθx)ερx
∣∣dx dτ � 1

2

t∫
0

1∫
0

θρ2
x dx dτ + 1

2

t∫
0

1∫
0

|(ρεθx)ε|2
θ

dx dτ

� 1

2

t∫
0

1∫
0

θρ2
x dx dτ + CT ‖ρεθx‖2

L2(Q T )

� 1

2

t∫
0

1∫
0

θρ2
x dx dτ + CT ,

we get

∫
[0,1]∩{ρ�1}

ρ lnρ(x, t)dx + 1

2

t∫
0

1∫
0

θρ2
x dx dτ +

∫ ∫
[0,1]×[0,t]∩{ρ�1}

ρ lnρ dx dτ

�
1∫

0

ρ0ε| lnρ0ε|(x)dx +
∫

[0,1]∩{ρ�1}
ρ| lnρ|(x, t)dx

+
∫ ∫

[0,1]×[0,t]∩{ρ�1}
ρ| lnρ|dx dτ +

∫ ∫
[0,1]×[0,t]∩{ρ�1}

ps(θ) lnρ dx dτ + CT

� CT ,

which, together with (3.35), leads to

‖ρ lnρ‖L∞(0,T ;L1(Ω)),‖ρx‖L2(Q T ) � CT . (4.5)

From the inequalities (3.28) and (4.5) we derive that

‖ρ‖L2(0,T ;H1(Ω)) � CT (4.6)

and

‖ρ‖3
L∞(Ω) � ‖ρ‖3

L1(Ω)
+ ‖ρ‖3/2

L2(Ω)
‖ρx‖3/2

L2(Ω)

� CT + C‖ρ‖3/4
L1(Ω)

‖ρ‖3/4
L∞(Ω)‖ρx‖3/2

L2(Ω)

� CT + 1‖ρ‖3
L∞(Ω) + CT ‖ρx‖2

L2(Ω)
,

2
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which results in

T∫
0

‖ρ‖3
L∞(Ω) dt � CT + CT

T∫
0

‖ρx‖2
L2(Ω)

dt � CT .

It follows that

T∫
0

1∫
0

ρ4 dx dt �
( T∫

0

‖ρ‖3
L∞(Ω) dt

)(
sup

0�t�T

1∫
0

ρ dx

)
� CT , (4.7)

i.e. ρ is uniformly bounded in L4(Q T ).
Finally, we let

B1 = H1(Ω), B2 = L4(Ω), B3 = W −1,6/5
0 (Ω).

Then B1 ↪→↪→ B2 ↪→ B3 and {ρε} is uniformly bounded in L4(I; B2) ∩ L2(I; B1). From the first equa-
tion in (3.2), i.e.

ρt = [
ερx + ρθρx + ρ(ρθx)ε

]
x − ρ

√
θ + ps(θ),

we observe that {ρε
t } is uniformly bounded in L6/5(I; B3). By Aubin–Lions lemma, {ρε} is relatively

compact in L p(I; L4(Ω)) for 1 � p < 4. Thus, there exists a sequence ρε j such that lim j→∞ ε j = 0
and

ρε j → ρ strongly in Lp(
I, L4(Ω)

)
(∀1 � p < 4),

ρε j → ρ strongly in L2(I, C(Ω)
)
,

ρε j ⇀ ρ weakly in L2(I, H1(Ω)
)
,

ρ
ε j
t ⇀ ρt weakly in L6/5(I; W −1,6/5

0 (Ω)
)
. (4.8)

Similarly, by (3.17) and (3.18), there exists a subsequence of θε j (also denoted by θε j ) such that

θε j → θ strongly in Lp(Q T ) (∀1 � p < ∞),

θε j → θ strongly in L2(I, C(Ω)
)
,

θε j ⇀ θ weakly in L2(I, H1(Ω)
)
,(

ρε j θε j + σθε j
)

t ⇀ (ρθ + σθ)t weakly in L6/5(I; W −1,6/5
0 (Ω)

)
. (4.9)

Now we take the limit j → ∞ and by (4.8) and (4.9), we obtain a weak solution (ρ, θ) which satisfies
(2.1) and (2.2). The proof of Theorem 2.1 is complete.
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Appendix A. The solution to Eq. (3.7)–(3.8)

In Section 3.1, we claimed that the semi-linear parabolic equation (3.7)–(3.8) has a unique solution
in W 2,1

2 (Q T ). Here, we present the detailed proof. The problem (3.7)–(3.8) can be viewed as in the
following form:

(
ρ(x, t) + σ

)
θt − (

κεθx
)

x − b(x, t)θx − c(x, t)θ + p(θ) = f (x, t) (A.1)

with the initial and boundary conditions

⎧⎪⎨
⎪⎩

κεθx = β1
(
θ1 − θ

)
, at x = 1,

κεθx = β0
(
θ − θ0

)
, at x = 0,

θ(x,0) = θ0(x), for x ∈ Ω,

(A.2)

where ρ ∈ W 2,1
2 (Q T ), κε ∈ C∞(Q T ), c ∈ L∞(Q T ), f ∈ L∞(Q T ), |b| � C + C |ρx| and hence b ∈

L2(I; L∞(Ω)). The only nonlinearity is p(θ) = (λ + θ)ps(θ), which is a continuous function of θ ∈ R

(see (1.9) for the assumption of the function ps(θ)).
Eq. (A.1) can be written as the classical form

θt − κε

ρ + σ
θxx − κε

x + b

ρ + σ
θx − c

ρ + σ
θ + 1

ρ + σ
p(θ) = f

ρ + σ
. (A.3)

We can obtain the existence of solution for the above equation by a fixed point argument. Let θ0 ∈
L∞(Q T ) and θ be the solution of the following linear parabolic equation

θt − κε

ρ + σ
θxx − κε

x + b

ρ + σ
θx − c

ρ + σ
θ = f

ρ + σ
− 1

ρ + σ
p
(
θ0). (A.4)

Then

‖θ‖W 2,1
2 (Q T )

� C‖ f ‖L∞(Q T ) + C
∥∥p

(
θ0)∥∥

L∞(Q T )
.

Clearly the map M1 from θ0 ∈ L∞(Q T ) to θ ∈ W 2,1
2 (Q T ) is continuous and compact. Because

W 2,1
2 (Q T ) ↪→↪→ L∞(Q T ) for Ω ⊂ R

1, a fixed point of the map is a solution of Eq. (A.3) or (A.1).
By the Leray–Schauder fixed point theorem, it suffices to prove that all θ0 which satisfy the fol-

lowing equation

θ0 = sM1θ
0 (A.5)

for some s ∈ [0,1] are uniformly bounded in L∞(Q T ).
In fact, if we let θ = M1θ

0, then θ0 = sθ . It follows that θ is the solution of the following equation

θt − κε

ρ + σ
θxx − κε

x + b

ρ + σ
θx − c

ρ + σ
θ + 1

ρ + σ
p(sθ) = f

ρ + σ
.

Converting the above equation into the divergence form, we have

θt −
(

κε

ρ + σ
θx

)
+ b̃θx − c

ρ + σ
θ + 1

ρ + σ
p(sθ) = f

ρ + σ
, (A.6)
x
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where

|b̃| =
∣∣∣∣
(

κε

ρ + σ

)
x
− κε

x + b

ρ + σ

∣∣∣∣ � C + C |ρx|

and b̃ ∈ L2(I; L∞(Ω)). By the definition of ps(θ), ps(θ) = 0 for θ � 0 and ps(θ) > 0 for θ > 0. There-
fore, multiplying Eq. (A.6) by θk with k being an odd integer and integrating the result, we obtain

d

dt

∫
Ω

θk+1

k + 1
dx +

∫
Ω

κεk

ρ + σ
θk−1|θx|2 dx + β0(θ − θ0)θk

ρ + σ

∣∣∣∣
x=0

+ β1(θ − θ1)θk

ρ + σ

∣∣∣∣
x=1

� σ−1
∫
Ω

(‖ f ‖L∞(Q T )θ
k + ‖c‖L∞(Q T )θ

k+1)dx + C

δ
‖b̃‖2

L∞(Ω)

∫
Ω

θk+1 dx + δ

∫
Ω

θk−1|θx|2 dx

which implies that

d

dt

∫
Ω

θk+1 dx � (k + 1)Ck+1 + (k + 1)
(
C + ‖b̃‖2

L∞(Ω)

)∫
Ω

θk+1 dx.

By using Gronwall’s inequality, we further get

max
0�t�T

∫
Ω

θk+1 dx � e(k+1)
∫ T

0 (C+‖b̃‖2
L∞(Ω)

)dt
[
(k + 1)Ck+1 +

∫
Ω

θk+1
0 dx

]
.

It follows that

‖θ‖Lk+1(Q T ) � T
1

k+1 e
∫ T

0 (C+‖b̃‖2
L∞(Ω)

)dt
[
(k + 1)Ck+1 +

∫
Ω

θk+1
0 dx

] 1
k+1

� C,

where the constant C is independent of k. Let k → ∞, we obtain

‖θ‖L∞(Q T ) � C . (A.7)

Thus we have proved the existence of a solution θ ∈ W 2,1
2 (Q T ) for Eq. (A.3), which is also a solution

for Eq. (A.1), or equivalently a solution of Eq. (A.6) with s = 1. The uniqueness follows immediately
by noting the assumption (1.9) for the function ps(θ).
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