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Abstract 
Research in finance and lots of other areas often encounter large-scale complex optimization problems 
that are hard to find solutions. Classic heuristic algorithms often have limitations from the objectives 
that they are trying to mimic, leading to drawbacks such as lacking memory-efficiency, trapping in 
local optimal solutions, unstable performances, etc. This work considers imitating market competition 
behavior (MCB) and develops a novel heuristic algorithm accordingly, which combines characteristics 
of searching-efficiency, memory-efficiency, conflict avoidance, recombination, mutation and 
elimination mechanism. In searching space, the MCB algorithm updates solution dots according to the 
inertia and gravity rule, avoids falling into local optimal solution by introducing new enterprises while 
ruling out of the old enterprises at each iteration, and recombines velocity vector to speed up solution 
searching efficiency. This algorithm is capable of solving large-scale complex optimization model of 
large input dimension, including Over Lapping Generation Models, and can be easily applied to solve 
for other complex financial models. As a sample case, MCB algorithm is applied to a hybrid 
investment optimization model on R&D, riskless and risky assets over a continuous time period. 
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1 Introduction 
Complex modeling technique is widely used in applications of finance, operations research and 

other areas. As the complexity of computation soars up, many intelligent heuristic algorithms are 
developed to improve efficiency. J Holland came up with Genetic Algorithm in his work Adaptation 
in Natural and Artificial Systems (J Holland, 1988) that can approach optimal solutions. Later in 1995, 
Particle Swarm Optimization algorithm (RC Eberhart, 1995) was put forward as another heuristic 
algorithm to achieve high computation efficiency by group’s mutual imitations. Intelligent algorithm 
research was divided to deterministic and nondeterministic algorithms after 1990s, and Simulated 
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Annealing algorithm (WL Goffe, 1994) as a popular probability based nondeterministic algorithm 
helped in solving problems in complex solution searching space. Later heuristic algorithms focuses on 
solving specific problems, for example, the harmony search algorithm (ZW Geem, 2001) for traveling 
salesman problem. More recent heuristic algorithms works on fundamental computer system control 
such as assigning Internet files (R Kolisch, 2015) and system state prediction (L Dong, 2015). 

However, the above works have their limitations respectively due to the restrictions of objects that 
they are trying to imitate. Some intelligent algorithms like GA do not have the memory of past 
searching history, while some other algorithms like PSO often stuck in local optimal solutions (JW 
Zhuo, 2011). And some nondeterministic algorithms such as SA are not efficient and fast enough in 
situations where the solution searching space is large and complex. If we apply Monte Carlo Method 
in such situations aiming to speed up searching process, we lose stability of the searching results. 
Recent works often try to combine these methods and create hybrid algorithms such as hybrid genetic 
algorithm, while many of them are till restricted by the original objects that their algorithms are trying 
to imitate. 

This paper focuses on finding another imitation object to build a new intelligent algorithm that 
could be capable of solving large-scale complex optimization problems with efficiency, stability and 
accuracy. We find out the Market Competition Behavior is a object that have comprehensive favorable 
characteristics to imitate in intelligent algorithm, and this algorithm can achieve efficiency, stability 
and accuracy that we want in complex searching space while avoiding local optimal solutions. We 
then use a novel investment decision case from financial engineering research to test and prove this 
algorithm.  

2 The Market Competition Behavior (MCB) Algorithm 

2.1 The Idea 
The objective of Market Competition Behavior is to make decisions within restrictions based on 

past information over a series of time to develop optimal product of best return (in a certain industry), 
which is very similar to the process of finding optimal solution in a complex system. Market players 
compete under certain rules, steadily and effectively develop their products toward the optimal point. 
Different market competition behaviors provide comprehensive characteristics for our intelligent 
algorithm to imitate and aggregates to overcome past algorithms’ drawbacks. 

2.2 Main Features for Imitation 
1. Dispersion: As many players are competing in a market and constantly updating products 

over time, we assume a dispersion of players in the market at the very beginning. 
2. Identification: Identification can be categorized into individual identification and group 

identification. If one player in the market develops a successful product, then very likely it 
will capture some features leading to success in market and develop product with similar 
features in the next release. This is individual identification. At the same time, other players 
in this market will also notice and learn from those successful features and try to incorporate 
those features into their next product release, which is group identification. 

3. Memory: The historical best selling product of the firm and historical best selling product of 
the market provides guidance for players in the market and allows them to develop better 
product faster. In other words, they keep their memory of historical product release and never 
produce products that are worse than before, which improves efficiency of developing toward 
the best product. 
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4. Vector-Recombination: The directions (vectors) of product development can recombine with 
each other across players in the market during competition. For example, one company may 
find out some features that are attractive to customers while another company may find out 
some other features, later it is likely that a company would try to combine features from both 
sides in their product development, which is the effect of vector-recombination. This 
improves the players’ possibility of finding optimal product. 

5. Elimination and Renewal: Once in a while some competitors are ruled out from the market 
due to bad performance, while some other new companies join the market trying to develop 
some new-featured products. The market characteristics by nature improve the overall 
performance of the players’ performance (through elimination) and prevent current players 
from being stuck in local optimal solution instead of global optimal solution (through 
renewal). 

6. Conflict Avoidance: The players would not collapse into each other and develop same 
products in market competition, which avoids repeated searching and unnecessary conflicts. 

2.3 Model and Flowchart for Algorithm Development 
In Market Competition Behavior (MCB) model each company is considered as a point in  

dimensional searching space

The objective optimization function is , which can be considered as return of 
each company in specific time. Each company point memorize the historical best return point it has 
found, which is local best point 

The update for the point set is subject to influences from three forces: 1) Inertia: the inertia from 
past movement take into consideration by multiplying a inertia multiplier  for the velocity, we use 

; 2) Gravity force from local best: each time when one point is being updated, it tends to be 
attracted by the historical best return it has found before, we call this local best gravity force ; 3) 
Gravity force from global best: for all the points (companies) in the searching space (market), they are 
attracted by the historical best return point that has been ever found, and this force is denoted as . 
Both gravity forces are inversely proportional to the Euclidean distance between each point and the 
historical best point, this feature allows points to quickly cluster to optimal point. Assume each point 
has ‘mass’ of 1, the update rule can be deducted as follows: 

  
Combining the above equations together, we get: 

. 
Above is the position update trajectory function. Here  is the update interim (  as default 

value), while multiplier  and  are the noise for gravity force, meaning other external factors that 
may influence direction and distance for point (product) update such as confidence level, management 
change or new information added in the market.  and  are set as Normal Random Numbers. 

As for the restriction functions, the  constrains are  and the constraint set 
is denoted as . For initialization and each update, all the new points added should satisfy , 
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otherwise it will be renewed until meeting this requirement. Especially, the allowable maximum 
velocity  is 10% to 20% proportional to the size of searching space. 

As for vector-recombination, each time we update the point set, its velocity as a vector will be the 
recombination of new velocity of this point and the velocity of current global best point if it returns a 
higher objective value than merely applying the its own new velocity. Basing on repeated simulation, 
we find this feature improves searching efficiency by approximately 20%. 

The simplified flowchart of MCB intelligent algorithm is shown below in Figure 1. 

Start MCB Algorithm 

Record Current Position and Value 

Reinitialize to Satisfy Constraints 

Update: Position Trajectory Function 

Position and Value for Global Optimal 

Velocity Recombination 

Max Iterations? 

Satisfy Constraints? 

ion Tra

y Reco

It

Partial Elimination and Renewal  

Random Initialization  om Init

Value fo

Figure 1: Flowchart of MCB Algorithm 
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3 Algorithm Application in Financial Investment Decision 

3.1 Continuous Time R&D, Riskless and Risky Assets Hybrid 
Investment Model 

In this paper we consider a hybrid investment decision across R&D, riskless and risky assets over a 
continuous time. Portfolio analysis with R&D project is a challenging work. On one hand, the value of 
R&D project can be estimated in many different ways and so is full of uncertainty. On the other hand, 
it needs to be considered together with risky and risk-free assets. Here we want to find out the best 
asset allocation strategy for different targets from that leads to optimal return. At each 
time spot , the allocable capital is: as starting capital. 

Assume  R&D projects to be considered. For R&D project, the market value (Economic Net 

Present Value) of each project can be calculated by adding its Real Option Value (ROV) and Net 

Present Value (NPV), which is:  We use B-S formula (F Black, 1973) to 

calculate ROV for each R&D project respectively: , 

 

 is the  R&D project’s NPV at time ,  is the capital investment (cost) for  R&D project. 
 is the risk-free interest rate,  is the standard variation of  R&D project’s market price.  is 

the standard normal distribution function.  
Assume there are  risky assets to be considered, investment in risky assets at time  is denoted as 
  and  denotes investment weigh and expected 

return rate on different assets at time . Therefore, the overall expected return from  to  is: 
. Weighs should be non-negative (assume shorting is not allowed) and add up to 1 for each 

time , .  
Investment in risk-free asset over  is:  Thus, the return from 

risk-free asset from  to  is: , where  is the risk-free return rate. 
As for the investment decision for  R&D project at time we use binary indicator  to 

quantify decision (1 means investing while 0 means not investing). The overall R&D investment at 
time  is:  Since we only make investment decision once for each potential R&D 
project, there is:  

The above investments on three targets are subjected to budget limit:  
for each time . 

Available capital at time  is determined by: .       
Through deduction we have: . The objective 

optimization function is the total available capital at exit time : 
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This is a typical complex optimization model in financial investment: it is an overlapping 
generation model with large input parameters, many constraints and high computation complexity. 
Here we apply MCB intelligent algorithm to this model as a testing case.  

In this model, we set investment periods number of risky assets and R&D projects 
 lag length for VAR is 6, market variation is 0.1, risk-free interest rate at 0.08, cost for each 

R&D project is =50, initial capital . Based on these parameters, we can randomly initiate 
 , and   
The MCB algorithm initialize 100 points upon initialization, each point’s  is a vector with the 

length of : the first  stands for binary variable , the next  stands for 
investment in risky asset , and the last  stands for weigh . The maximum velocity allowed for 
this three parameters are set at 0.5, 100 and 0.3 respectively. Each time when we receive a new point’s 
position ,  is set, then we can take turns to calculate  Once all  
and  are calculated, we can put them into objective function and get the objective value. Each time 
upon position update, the following 5 constraints are checked to see if satisfied: 

 

According to 100 times’ MCB algorithm running output, the optimal investment return of 1000 
initial capital after 10 periods is approximately 2420. The corresponding optimal investment strategy 
is: 

1) Invest the 4th R&D project at period 8, invest the 2nd R&D project at period 9, and invest the 1st, 
3rd, and 5th R&D project at period 10; 

2) Invest 
 

 

 
Our MCB intelligent algorithm successfully solve for this complex optimization problem within 20 

seconds, twice as effective as Simulated Annealing algorithm with similar optimal output. The starting 
point (optimal value at 2360), is the optimal value that Monte Carlo algorithm can find, while the 
MCB algorithm successfully find a higher optimal value at 2420, which is approximately 3% increase 
of investment return. Also, Monte Carlo method is high unstable in terms of the optimal value that it 
find in large-scale complex optimization model, while MCB algorithm almost always find the exact 
global optimal solution at around 2420. Figure 2 shows an one-time running result of MCB algorithm, 
as we can see, as iterations increase, the MCB algorithm steadily find better solution, and when it 
finds out a local optimal solution around Iteration No.24, it successfully get rid of local optimal and 
approaches the global optimal in the end. 
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Figure 2: Sample Outcome of Running MCB Algorithm on Financial Optimization Case 

4 Conclusions 
This paper develops a new intelligent algorithm that can cope with large-scale complex 

optimization problems. By imitating market competition behavior, it embraces the strengths of current 
heuristic algorithms such as efficiency, accuracy, and stability. On the other hands, it overcomes the 
problems of finding local optimal solutions and lacking memory in searching process. In the financial 
investment case, the test result proves its effectiveness. Further, we can cross-test MCB algorithm with 
classic optimization algorithms and improve it by considering other competition forces in the market 
such as substitutes. It can also be combined with other heuristic algorithms in different phases of 
searching process to optimize speed and accuracy.  
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