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1. Introduction

1.1. Motivations and contributions

There are several methods to count the number of real roots of an univariate polynomial p(x) ∈
R[x]. Without any doubt, the most famous ones are the Sturm and Sylvester methods. They have been

intensively studied and developed.

We show how Sturm and Sylvester methods can be both “coded" by two canonical tridiagonal

matrices which can be viewed as dual (Theorem 7).
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Together with Theorem 10, it gives a possible alternate presentation for real roots counting (see [2]

for the other existing techniques).

Ourwork can also be related to a question fromNumerical Analysis. Given amonic polynomial p(x)
whose roots are all real, how can we construct (with a “reasonable algorithm") a symmetric matrix

whose characteristic polynomial is p(x)?
An affirmative answer has been given by Fiedler [4] using arrow matrices. Another solution has

been proposed by Schmeisser [11] using tridiagonal matrices. It can also be viewed as the so-called

Routh-Lanczos algorithm, closely related to the Sturm method.

We generalize this construction to the case of a polynomial p(x) with real or complex roots, and

show how to construct a symmetric matrix A such that p(x) is proportional to det(xJ − A) where J is

a signature matrix (i.e. diagonal with ±1 on the diagonal).

We may also view our work as a contribution to the question of determinantal representation of

polynomials. The problem is to write a given polynomial p(x) (with d variables) as

p(x) = λdet

⎛
⎝J −

d∑
i=1

xiAi

⎞
⎠ ,

where λ ∈ R, Ai is a symmetric matrix and J is a signature matrix. It has a lot of applications such as

Operator Theory, Control Theory andLinearMatrix Inequalities.Of particular interest for applications is

the case of unitary determinantal representation (when J is the identity). See [8,7] formore background

and results.

For univariate polynomials (d = 1), the question is trivial if we are allowed to use the roots of

the polynomial p(x). By considering the reciprocal polynomial of p(x) our method gives an algorithm

(not using the roots) for finding a determinantal representation of p(x) via tridiagonal matrices. Al-

though there is a gap between dimension one and higher dimensions, maybe the explicit construction

we present, together with the link with the number of real roots, could give some ideas to obtain

determinantal representations for some particular cases in higher dimension.

In Theorem 8, we obtain a determinantal expression of p(x) of the form

det(D)p(x) = det(xD − Td),

where D is (only) diagonal and Td is tridiagonal and symmetric, but all the involved entries belong to

the field generated by the coefficients of p(x). For instance, no square root is needed as in the formulas

given by [4,11].

As an application, let us mention the following fact: it is well know that a given polynomial with

rational coefficients cannot necessarily be written as the characteristic polynomial of a symmetric

matrix with rational entries. In this case, the previous determinantal formula could be used as a

substitute.

In summary, our results concern several topics: thedualitybetweenSturmandSylvester algorithms,

the generalization of Fielder’s result to any univariate polynomial, the effective construction of a

tridiagonal determinantal representation for any univariate polynomial (the entries lying in the field

generated by the coefficients of the given polynomial). It enlights some natural connections between

questions fromdifferent areas: numerical analysis, real roots counting, determinantal representations.

To show how naturally arise these connections, let us say some words about the results contained in

[5].

This last paper appeared at the same period than [4] (which is one of the main motivations for

our work). The techniques involved in [4,5] are very similar. In [4] Fiedler answered a question from

numerical analysis, and in [5]hegave (although it isnot formulated in the terminologyofdeterminantal

representations) the construction of a definite determinantal representation for a rational algebraic

curve satisfying the so-called Real Zero condition. Moreover, he announced that the result is false

for a general algebraic curve satisfying the Real Zero condition (hypothesis (b) in [5]), and gave a

counterexample.

Unfortunately, it follows from a deep result of Helton and Vinnikov [8] on determinantal

representations, that any real algebraic curve satisfying the Real Zero condition does admit a definite

determinantal representation. Alternatively, one can check elementary that the announced
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counterexample in [5] does not satisfy the Real Zero condition, and also that there is a mistake in

the computation of the number of real roots in [5, Eq. (5)].

We think that this particular example illustrates how fruitful could be the connections between

the different topics involved in our article.

1.2. Organization of the paper

In Section 2, we introduce signed remainder sequences of two given monic polynomials p(x) and
q(x) of respective degrees n and n − 1. We give a presentation of this sequence through a tridiagonal

matrix Td(p, q). Next, we give a decomposition of this tridiagonal matrix as Td(p, q) = LCT
p L

−1 where

L is lower triangular and CT
p is the transpose of the companion matrix associated to p(x).

In Section 3, we introduce the duality between the Sturm and Sylvester algorithm, first when the

polynomial p(x) has only simple and real roots, and then in Theorem 7 we generalize it to the generic

case.

More precisely, on the one hand we have{
p(x) = det(xIdn − Td(p, q)),
q(x) = det(xIdn−1 − Td(p, q)n−1)

with the conventions that Idn (or Id in short) denotes the identity matrix of Rn×n and Ak ∈ Rk×k

(respectively Ak ∈ Rk×k) denotes the kth principal submatrix (respectively the kth antiprincipal subma-

trix) of A which corresponds to extracting the first k (respectively the last k) rows and columns in the

matrix A ∈ Rn×n.

On the other hand, we consider a natural Hankel (hence symmetric) matrix H(q/p) ∈ Rn×n asso-

ciated to p(x) and q(x). Generically it admits an LU decomposition of the formH(q/p) = KJKT where J

is a signature matrix (a diagonal matrix with coefficients±1 on the diagonal) and K is lower triangular.

Then, we introduce the tridiagonal matrix Td = K−1CT
p K , which is such that p(x) = det(xIdn − Td).

If we consider that the matrices Td(p, q) and Td represent linear mappings in some basis, then the

duality Theorem 7 means that one matrix can be deduced from the other simply by reversing the

ordering of the basis.

We shall mention that, in the case when all the roots of p(x) are real, the existence of a tridi-

agonal and symmetric matrix Td given by the signed remainders sequence of p(x) and q(x) to-

gether with the identity p(x) = det(xIdn − Td) corresponds to the Routh-Lanczos algorithm which

answers a structured Jacobi inverse problem. Namely, the question to find a real symmetric tridi-

agonal matrix A with a given characteristic polynomial p(x) such that the characteristic polyno-

mial of its principal minor An−1, of size n − 1, is proportional to p′(x). We refer to [3] for a survey

on the subject. One aim of Section 4 is to generalize the Routh-Lanczos algorithm to a polynomial

all of whose roots are not necessarily real. It provides another answer to a question of Fiedler [4]

which proposes a solution using symmetric arrow matrices instead of tridiagonal and symmetric

ones.

In Section 4, we focus on the question of counting real roots and the question of determinantal

representation. We say that p(x) = det(J − xA) is a determinantal representation of the polynomial

p(x) if J ∈ Rn×n is a signature matrix and A ∈ Rn×n is a symmetric matrix.

Remark that we may transform the identity p(x) = det(J − xA) into p∗(x) = det(xJ − A) where

p∗(x) is the reciprocal polynomial of p(x). If we write

p∗(x) = det(J) × det(xId − AJ),

then this shows a connectionwith the results of Section 3when thematrix AJ is tridiagonal. More pre-

cisely, we establish that such a determinantal representation is always possible and wemay even find

a family of representations for a given polynomial p(x). We also show that given such a determinantal

representation for a polynomial p(x), its number of real roots is at least equal to the signature of the

signature matrix J.

Finally, in Section 5 we conclude with some worked examples.
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2. Tridiagonal representation of signed remainders sequences

2.1. Definitions

Letα = (α1, . . . ,αn),β = (β1, . . . ,βn−1) andγ = (γ1, . . . , γn−1)be three sequencesof real num-

bers. We set the tridiagonal matrix Td(α,β , γ ) to be:

Td(α,β , γ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αn γn−1 0 . . . 0

βn−1 αn−1 γn−2

. . .
...

0 βn−2

. . .
. . . 0

...
. . .

. . .
. . . γ1

0 . . . 0 β1 α1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Letp(x)andq(x)be twomonicpolynomialsof respectivedegreesnandn − 1.WesetSRemS(p, q) =
(pk(x))k to be the signed remainders sequence of p(x) and q(x) defined in the following way:⎧⎨

⎩
p0(x) = p(x),
p1(x) = q(x),

pk(x) = qk+1(x)pk+1(x) − εk+1β
2
k+1pk+2(x),

(1)

where⎧⎪⎪⎨
⎪⎪⎩

pk(x), qk+1(x) ∈ R[x],
εk+1 ∈ {−1,+1},
βk+1 is a positive real number,

pk+2(x) is monic and deg pk+2 < deg pk+1.

(2)

This is a finite sequencewhich stops at the step just beforewe reach the zero polynomial as remainder.

Let us assume that there is no degree breakdown in SRemS(p, q). Namely:

(∀k ∈ {0, . . . , n}) (deg pk = n − k). (3)

Then, qk+1(x) is a degree one polynomial which we write qk+1(x) = (x − αk+1) with αk+1 ∈ R.

Another consequence is that gcd(p, q) = 1.

Let γk+1 = εk+1βk+1 and consider the following tridiagonal matrix:

Td(p, q) = Td(α,β , γ ).

Wemay readon thismatrix all the informations about the signed remainders sequenceSRemS(p, q).
For a given tridiagonalmatrix Td = Td(α,β , γ ) ∈ Rn×n, we define the first principal lower diagonal

(respectively the first principal upper diagonal) of Td to be the sequence β = (β1, . . . ,βn−1) (respec-
tively γ = (γ1, . . . , γn−1)). We will say that these first principal diagonals are non-singular if all the

coefficients βi (respectively γi) are non-zero.

Note that the no degree breakdown assumption (3) implies that the principal diagonals of Td(p, q)
are non-singular.

Proposition 1

(i) To any tridiagonal matrix Td = Td(α,β , γ ) with non-singular principal diagonals, we may canon-

ically associate a (unique) couple of monic polynomials p(x) and q(x) of respective degrees n and

n − 1 such that the sequence SRemS(p, q) has no degree breakdown and such that for all k the

characteristic polynomial of Tdk is equal to pn−k(x):

det(xIdk − Tdk) = pn−k(x).

(ii) To any couple of monic polynomials p(x) and q(x) of respective degrees n and n − 1 such that

SRemS(p, q) has no degree breakdown, we may associate a unique tridiagonal matrix with non-

singular principal diagonalsTd(p, q) = Td(α,β , γ ) satisfying for all k,βk > 0andγk = εkβk where

εk = ±1.
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(iii) When we have (i) and (ii), the matrix Td(p, q)) × P is tridiagonal and symmetric, with

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

εn−1 × · · · × ε1
. . .

ε2 × ε1
ε1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(iv) When we have (i) and (ii), the sequence of signs in the leading coefficients of the signed remainders

sequence SRemS(p, q) is:
(1, 1, ε1, ε2, ε1 × ε3, ε2 × ε4, ε1 × ε3 × ε5, . . . , εn−1 mod 2 × · · · × εn−3 × εn−1).

Proof. Concerning (i), thepolynomialsp(x)andq(x)are taken tobep(x) = det(xIdn − Td)andq(x) =
det(xIdn−1 − Tdn−1). Then, we set for all k,

δn−k(x) = det(xIdk − Tdk)

(where Tdk is the kth principal submatrix of Td) and we develop the determinant

δ0(x) = det(xIdn − Td)

with respect to the last row. We get

δ0(x) = (x − α1)δ1(x) − (β1γ1)δ2(x).

Repeating this process, we obtain the same recurrence relation as the one defining the sequence

(pk(x))k in (1). Since δ0(x) = p0(x) and δ1(x) = p1(x), we get the desired identity.

Point (ii) follows straightforward from the beginning of the section, whereas (iii) and (iv) follow

from elementary computation. �

To the tridiagonal matrix Td(p, q), we may associate also another natural polynomial remainder

sequence: SRemS(p, q) = SRemS(p, q̄) where
{
p(x) = det(xIdn − Td),

q̄(x) = det(xIdn−1 − Tdn−1),

with the convention that Tdk is the kth antiprincipal submatrix of Td.

The signed remainders sequence SRemS(p, q) will be considered as the dual signed remainders

sequence of SRemS(p, q). This only means that we may read on a tridiagonal matrix from the top left

rather than from the bottom right !

For cosmetic reasons we will write Td(p, q) in place of Td(p, q̄). We obviously have:

Td(p, q) = Ad × Td(p, q) × Ad, (4)

where Adn ∈ Rn×n (Ad in short) stand for the anti-identity matrix of size n:

Adn =

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 0 1
... . .

.
. .
.

0

0 . .
.

. .
. ...

1 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

.

2.2. Companion matrix

We denote by AT the transpose of the matrix A ∈ Rn×n and we define the companion matrix of the

polynomial p(x) = xn + an−1x
n−1 + · · · + a0 to be
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Cp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0 −a0

1
. . .

... −a1

0
. . .

. . .
...

...
...

. . .
. . . 0 −an−2

0 . . . 0 1 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We recall a well-known identity (see for instance [3]):

Proposition 2. Let p(x) and q(x) be two monic polynomials of respective degrees n and n − 1 such that

SRemS(p, q) has no degree breakdown.
Then there is a lower triangular matrix L such that

Td(p, q) = LCT
p L

−1. (5)

To be self-contained, we also give a brief proof:

Proof. With the notation of Section 2.1, let P(x) = (γ1 . . . γn−1pn(x), . . . , γ1p2(x), p1(x)). A direct

computation gives

P(x) (Td(p, q))T = xP(x) + (0, . . . , 0,−p(x)) .

Let U be the upper triangular matrix whose columns are the coefficients of the polynomials of P(x) in
the canonical basis C(x) = (1, x, . . . , xn−1). In other words:

C(x)U = P(x).

Besides, we have

C(x)Cp = xC(x) + (0, . . . , 0,−p(x)).

Thus

C(x)CpU = xC(x)U + (0, . . . , 0,−p(x)) since p1(x) is monic

= P(x) (Td(p, q))T

= C(x)U (Td(p, q))T .

We deduce the identity

V(x1, . . . , xn)CpU = V(x1, . . . , xn)U (Td(p, q))T

for anyVandermondematrixV(x1, . . . , xn)whose lines are (1, xi, . . . , x
n−1
i ) for i = 1 . . . n. Ifwe choose

the n reals x1, . . . , xn to be distinct, then V(x1, . . . , xn) becomes invertible and we get:

Td(p, q) = LCT
p L

−1,

where L is the lower triangular matrix defined by L = UT . �

The following result says that the decomposition generically exists for any tridiagonal matrix, and

is also unique:

Proposition 3. Any tridiagonal matrix Td with non-singular principal diagonals can be written Td =
LCT

p L
−1 where p(x) = det(xId − Td) and L is a lower triangular matrix. Moreover the matrix L is unique

up to multiplication by a real number.

Proof. The existence is given by Propositions 1 and 2.

We comenow to the unicity. Assume that L1C
T
p L

−1
1 = L2C

T
p L

−1
2 where L1 and L2 are lower triangular.

Then, L = L
−1
2 L1 is a lower triangular matrix which commute with CT

p .
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If L = (ti,j)1� i,j � n, then

LCT
p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 t1,1 0 . . . 0
... t2,1 t2,2

. . .
...

...
...

. . . 0

0 tn−1,1 . . . . . . tn−1,n−1

? . . . . . . . . . ?

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

CT
p L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t2,1 t2,2 0 . . . 0

t3,1 t3,2 t3,3
. . .

...
...

. . .
. . . 0

tn,1 . . . . . . tn,n−1 tn,n
? . . . . . . . . . ?

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus t1,1 = t2,2 = · · · = tn,n and t2,1 = t3,2 = · · · = tn,n−1 = 0 and t3,1 = t4,2 = · · · = tn,n−2 =
0, and so on until tn,1 = 0. We deduce that L = λId and we are done. �

2.3. Sturm algorithm

As a particularly important case of signed remainders sequences, we shall mention the Sturm

sequence which is SRemS(p, q) where q is taken to be the derivative of the polynomial p(x) up to

normalization, i.e. q = p′/deg (p).
For a given finite sequence ν = (ν1, . . . , νk) of elements in {−1,+1}, we recall the Permanence

minus Variations number:

PmV(ν1, . . . , νk) =
k−1∑
i=1

νiνi+1.

Here the sequence ν will stand for the sequence of signs of leading coefficients in SRemS(p, q). Then
the Sturm Theorem [2, Theorem 2.50] says that the number PmV(ν) is exactly the number of real roots

of p(x).
If we assume that the polynomial p(x) has n distinct real roots, then the Sturm sequence has no

degree breakdown and for all kwe have νk = 1. Hence we get a symmetric tridiagonal matrix Td(p, q)
which has the decomposition Td(p, q) = LCT

p L
−1 where L is the lower triangular matrix defined as in

Section 2.2. In particular, the last row of L gives the list of coefficients of the polynomial q(x) in the

canonical basis.

3. Duality between Sturm and Sylvester algorithms

3.1. Sylvester algorithm

Let us introduce the symmetric matrix Newtp(n) = (ni,j)0� i,j � n−1 defined as

ni,j = Trace (Ci+j
p ) = Ni+j

which is nothing but the (i + j)thNewton sumof the polynomial p(x). To bemore explicit, ifα1, . . . ,αn

denote all the complex roots of the polynomial p(x), then the kth Newton sum is the real number

Nk = αk
1 + · · · + αk

n .

Recall that the signature sign(A) of a real symmetric matrix A ∈ Rn×n is defined to be the number

p − q, where p is the number of positive eigenvalues of A (countedwithmultiplicity) and q the number

of negative eigenvalues of A (counted with multiplicity). The Sylvester Theorem (which has been

generalized later by Hermite: [2, Theorem 4.57]) says that thematrix Newtp(n) is invertible if and only
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if p(x) has only simple roots, and also that sgn(Newtp(n)) is exactly the number of distinct real roots

of p(x).
In particular, if the polynomial p(x) has n distinct real roots, then the matrix Newtp(n) is positive

definite. Thus, by the Choleski decomposition algorithm, we can find a lower triangular matrix K such

that Newtp(n) = KKT . Let us show how to exploit this decomposition.

First, we write

p(x) = det(xId − CT
p ).

Then, we introduce a useful identity (which will be discussed in more details in the forthcoming

section):

Newtp(n)Cp = CT
pNewtp(n),

So, we get:

p(x) = det(xId − K−1CT
p K).

Note that thematrixK−1CT
p K is tridiagonal. Our purpose in the following is to establish a connection

with the identity

p(x) = det(xId − LCT
p L

−1)

obtained in Proposition 3.

More generally, we will point out a connection between tridiagonal representations associated to

signed remainders sequences on one hand, and tridiagonal representations derived from decomposi-

tions of some Hankel matrices on the other hand.

3.2. Hankel matrices and intertwining relation

Roughly speaking, the idea of the previous section is to start with the canonical companion identity

p(x) = det(xId − CT
p )

and then to use a symmetric invertible matrix H satisfying the so-called intertwining relation

HCp = CT
p H. (6)

Since H is supposed to be symmetric invertible, Eq. (6) only says that the matrix HCp is symmetric.

It is a classical and elementary result that a matrix H satisfying Eq. (6) is necessarily an Hankel matrix.

Definition 1. We say that the matrix H = (hi,j)0� i,j � n−1 ∈ Rn×n is an Hankel matrix if hi,j = hi′ ,j′
whenever i + j = i′ + j′. Then, it makes sense to introduce the real numbers ai+j = hi,j which allow

to write in short H = (ai+j)0� i,j � n−1.

Let s = (sk)bea sequenceof real numbers.WedenotebyHn(s)orbyHn(s0, . . . , s2n−2) the following

Hankel matrix of Rn×n:

Hn(s) = (si+j)0� i,j � n−1 =

⎛
⎜⎜⎜⎜⎝

s0 s1 . . . sn−1

s1 . .
.

sn
... . .

.
. .
. ...

sn−1 sn . . . s2n−2

⎞
⎟⎟⎟⎟⎠ .

We get from [2, Theorem 9.17]:

Proposition 4. Let p(x) = xn + an−1x
n−1 + · · · + a0 and s = (sk) be a sequence of real numbers. The

following assertions are equivalent

(i) (∀k � n) (sk = −an−1sk−1 − . . . − a0sk−n).
(ii) There is a polynomial q(x) of degree deg q < deg p such that
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q(x)

p(x)
=

∞∑
j=0

sj

xj+1
.

(iii) There is an integer r � n such that det(Hr(s)) �= 0, and for all k > r, det(Hk(s)) = 0.

Whenever these conditions are fulfilled, we denote by Hn(q/p) the Hankel matrix Hn(s).

Back to the intertwining relation (6): it is immediate that an Hankel matrix H is a solution if and

only if the (finite) sequence (s0, . . . , s2n−2) satisfies the linear recurrence relation of Proposition 4 (i),
for k = n, . . . , 2n − 2.

For further details and developments about the intertwining relation, we refer to [8].

The vector subspace ofHankelmatrices inRn×n satisfying relation (6) has dimensionn and contains

a remarkable element, that is the Hankel matrix Newtp(n) that was considered in Section 3.1 about

Sylvester algorithm. Indeed, it is a well-known and elementary fact that the Nk ’s are real numbers

which verify the Newton identities:

(∀k � n) (Nk + an−1Nk−1 + · · · + a0Nk−n = 0) .

3.3. Barnett formula

Letp(x) = xn + an−1x
n−1 + · · · + a0 andq(x)a (non-necessarilymonic)polynomial inR[x]whose

degree is � n − 1.

Amongall the bases ofR[z]/p(z) thatwill be interesting for the following, let usmention the canon-

ical basis C = (1, x, . . . , xn−1) and also the (degree decreasing) Horner basis H(x) = (h0, . . . , hn−1)
associated to the polynomial p(x) which is defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0(x) = xn−1 + an−1x
n−2 + · · · + a1,

...

hi(x) = xn−1−i + an−1x
n−2−i + · · · + ai+1 = xhi+1(x) + ai+1,

...
hn−2(x) = x + an−1,

hn−1(x) = 1.

We come to a central proposition which is a consequence of the Barnett formula. It has been estab-

lished in [1] using direct matrix computations. For the convenience of the reader, wewill give here an-

other proofwhich has the particularity of not using the notion of Bezoutian, as it is classical to proceed.

Proposition 5. Let p(x) and q(x) be two polynomials such that deg q < deg p = n and let PCH be the

change of basis matrix from the canonical basis C to the Horner basis H. We have

q(CT
p ) = Hn(q/p)PCH.

Proof. We first note that it is enough to check the formula for q(x) = 1, since the formula is linear in

the polynomial q(x) and also stable by multiplication by x since we have

Lemma 6. If deg q < (deg p) − 1, then Hn(xq/p) = CT
p Hn(q/p).

Proof. It is a direct application of Proposition 4(i). �

Now we check the formula when q(x) = 1.

The change of basis matrix PCH is in fact the following Hankel matrix

PCH = Hn(a1, . . . , an−1, 1, 0, . . . , 0) ∈ Rn×n

with the usual notation p(x) = xn + an−1x
n−1 + · · · + a0.



R. Quarez / Linear Algebra and its Applications 433 (2010) 1082–1100 1091

We remark also that Hn(1/p) = Hn(0, . . . , 0, 1, sn, . . . , s2n−2) for some real numbers sn, . . . , s2n−2

which satisfy the following relations given by Proposition 4(i):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sn = −an−1,

sn+1 = −an−1sn − an−2,
...
s2n−2 = −an−1s2n−3 − . . . − a1.

It enables us to check that

Idn = Hn(0, . . . , 0, 1, c1, . . . , cn1) × Hn(a1, . . . , an−1, 1, 0, . . . , 0) = Hn(1/p) × PCH

and get the desired Formula. �

To end the section, we show how Sturm and Sylvester algorithms can be considered as dual, in the

case where all the roots of p(x) are real and simple, say x1 < · · · < xn. Then, q(x) = p′(x)/n has also

n − 1 simple real roots y1 < · · · < yn−1 which are interlacing those of p(x). Namely

x1 < y1 < x2 < y2 < · · · < yn−1 < xn.

We may repeat the argument to see that this interlacing property of real roots remains for any two

consecutive polynomials pk(x) and pk+1(x) of the sequence SRemS(p, q). In particular, SRemS(p, q)
does not have any degree breakdown, all the εk are equal to +1, and H(q/p) is positive definite.

We have, by Proposition 5

q(CT
p ) = Hn(q/p)PCH.

Since Hn(q/p) is positive definite, the Cholesky algorithm gives a decomposition

Hn(q/p) = KKT ,

where K ∈ Rn×n is lower triangular. So we can write

p(x) = det(xId − K−1CT
p K).

We shall remark at this point that the matrix K−1CT
p K is tridiagonal and symmetric.

We get q(CT
p ) = KAdL where L = AdKTPCH . Then, we observe that L is a lower triangular matrix

(since PCHAd is upper triangular) and KAdL commute with CT
p . Thus, we have the identity:

LCT
p L

−1 = Ad(K−1CT
p K)Ad.

We denote by Td this tridiagonal matrix. Let (pk(x)) be the signed remainders sequence associated

to Td as given in Proposition 1(i). The first row of KAdL is proportional to the last row of the matrix L

which is proportional to p1(x). It remains to observe that the first row of KAdL = q(CT
p ) gives exactly

the coefficients of the polynomial q(x) in the canonical basis. Then, p1(x) = q(x).
We have shown that, if p(x) has n simple real roots and q(x) = p′(x)/n, then Hn(q/p) is positive

definitewith Cholesky decompositionHn(q/p) = KKT , and if we denote by q̃(x) themonic polynomial

whose coefficients are proportional to the last row of K−1, then Td(p, q̃) = Td(p, q). This establishes
the announced duality.

3.4. Generic case

We turn now to the generic situation. Let p(x) and q(x) bemonic polynomials of respective degrees

n and n − 1 such that SRemS(p, q)does not have any degree breakdown.Wewill see that this condition

is equivalent to saying that all the principal minors of the Hankel matrix Hn(q/p) do not vanish. We

then say that we are in the non-defective situation.

At this point, we shall remark also that the non-vanishing of all the principal minors of the Hankel

matrix Hn(q/p) is also equivalent to saying that the matrix Hn(q/p) admits an invertible LU decom-

position. Namely, there exists a lower triangular matrix Lwith entries 1 on the diagonal, and an upper
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invertible triangular matrix U such that Hn(q/p) = LU. Moreover this decomposition is unique and

since Hn(q/p) is symmetric we may write it as

Hn(q/p) = LDLT , (7)

where D is diagonal and L is a lower triangular matrix with 1 on the diagonal.

In fact, for our purpose, we will sometimes prefer the unique decomposition

Hn(q/p) = KJKT , (8)

where J is a signature matrix and K is lower triangular.

Generalizing the previous section, we get:

Theorem 7. Let p(x) and q(x) be two monic polynomials of respective degrees n and n − 1 such that all

the principal minors of the matrix Hn(q/p) are invertible. Let us denote Hn(q/p) = KJKT its symmetric

LU-decomposition, where J is a signature matrix and K a lower triangular matrix, and denote by q̃(x) the
monic polynomial whose coefficients in the canonical basis are proportional to the last row of K−1. Then,
the sequence SRemS(p, q) does not have any degree breakdown and

Td(p, q̃) = Td(p, q).

Proof. We start with the companion identity:

p(x) = det(xId − CT
p ).

Because of Proposition 4(i), we notice that the matrix Hn(q/p) verifies the intertwining relation

Hn(q/p)Cp = CT
p Hn(q/p).

Then, we write the symmetric LU-decomposition of Hn(q/p):

Hn(q/p) = KJKT

which gives the identity

p(x) = det(xId − K−1CT
p K).

We have, by Proposition 5

q(CT
p ) = Hn(q/p)PCH = KAdL

where

L = AdJKTPCH.

We observe first that L is an invertible lower triangular matrix (since PCHAd is upper triangular),

and second that KAdL commute with CT
p . Thus, we have the identity:

LCT
p L

−1 = Ad(K−1CT
p K)Ad.

Then we can deduce that SRemS(p, q̃) has no degree breakdown and by Proposition 3 we have

Td(p, q̃) = Ad(K−1CT
p K)Ad.

Moreover, the first row of KAdL is proportional to the last row of thematrix L. It remains to observe

that the first rowofKAdL = q(CT
p ) gives exactly the coefficients of the polynomial q(x) in the canonical

basis. Thus, by Proposition 3 we get

LCT
p L

−1 = Td(p, q)

Which completes the proof. �

Remark 2. Note that K−1CT
p KJ, and hence LCT

p L
−1J, is symmetric, where J = AdJAd.
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4. Tridiagonal determinantal representations

4.1. Notation

Wesay thatanunivariatepolynomialp(x) ∈ R[x]ofdegreen such thatp(0) �= 0hasadeterminantal

representation if

(DR) p(x) = αdet(J − Ax),

where α ∈ R∗, J is a signature matrix in Rn×n, and A is a symmetric matrix in Rn×n (we obviously

have α = det(J)p(0)).
Likewise, we say that p(x) has a weak determinantal representation if

(WDR) p(x) = αdet(S − Ax),

where α ∈ R∗, S is symmetric invertible and A is symmetric.

Of course the existence of (DR) is obvious for univariate polynomials, but we will focus on the

problem of effectivity. Namely, we want an algorithm (say of polynomial complexity with respect to

the coefficients and the degree of p(x)) which produces the representation. Typically, we do want to

avoid the use of the roots of p(x).
One result in that direction can be found in [10] (which is inspired from [4]). It uses arrowmatrices

as a “model", whereas in the present article we make use of tridiagonal matrices.

When all the roots of p(x) are real, the effective construction of determinantal representation for

univariate real polynomials exists even if we add the condition that J = Id. It has been discussed in

several places, although not exactly with the determinantal representation formulation. Indeed, in

place of looking for DR we may consider the equivalent problem of determining a symmetric matrix

whose characteristic polynomial is given. Indeed, if the size of the matrix A is fixed to be the degree n

of the polynomial, the condition

p(x) = det(Id − xA)

is equivalent to

p∗(x) = det(xId − A),

where p∗(x) is the reciprocal polynomial of p(x). In [4], arrow matrices are used to answer this last

problem. On the other hand, the Routh-Lanczos algorithm (which can be viewed as Proposition 1)

gives also an answer, using a tridiagonal model. Note that the problem may also be reformulated as a

structured Jacobi inverse problem (confer [3] for a survey).

In the following, we generalize the tridiagonal model to any polynomial p(x), possibly having

complex roots. Doing that, general signature matrices J appear, whose entries depend on the number

of real roots of p(x).

4.2. Over a general field

A lot of identities in Section 3 are still valid over a general field k. For instance, if p(x) and q(x)
are monic polynomials of respective degrees n and n − 1, we may still associate the Hankel matrix

H(q/p) = (si+j)0� i,j � n−1 ∈ kn×n defined by the identity

q(x)

p(x)
=

∞∑
j=0

sj

xj+1
.

Then, we have the following:

Theorem 8. Let p(x) ∈ k[x], q(x) ∈ k[x] be two monic polynomials of respective degrees n and n − 1,

and set H = Hn(q/p). Then, the matrix CT
p H is symmetric and we have the WDR:

det(H) × p(x) = det(xH − CT
p H).
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Moreover, if we consider the LU-decomposition of type (7): H = LDLT where L ∈ kn×n is lower triangular

with entries 1 on the diagonal and D ∈ kn×n a diagonal matrix, then we have

det(D) × p(x) = det(xD − Td), (9)

where Td = L−1CT
p LD is a tridiagonal and symmetric matrix.

Proof. We exactly follow the proof of Theorem 7. �

Note that the condition forH to be invertible is equivalent to the fact that the polynomials p(x) and
q(x) are coprime, since we have

rk(H(q/p)) = deg(p) − deg(gcd(p, q)).

To see this, we may refer to the first assertion of [2, Theorem 9.4] whose proof is valid over any

field.

The WDR of Theorem 8 has the advantage that the considered matrices have entries in the ring

generatedby the coefficients of thepolynomial p(x). This point is not satisfied in themethodsproposed

in [10] or in the Routh-Lanczos algorithm.

In fact, the use of Hankelmatrices satisfying the intertwining relation seems to bemore convenient

since we are able to “stop the algorithm at an earlier stage" than the Routh-Lanczos algorithm, namely

before having to compute squares roots.

Of course, at the time we want to derive a DR, then we have to add some conditions on the field

k, for instance we shall work over an ordered field where square roots of positive elements exist. And

hence, in this case, we may use LU-decomposition of type (8) by taking a square root of the matrix D.

To end the section, we may summarize that, for a given polynomial p(x), we have an obvious but

non-effective (i.e. using factorization) DR with entries in the splitting field of p(x) over k, to compare

with an effectiveWDR given by Theorem 8 where entries are in the field generated by the coefficients

of p(x).

4.3. Symmetric tridiagonal representation and real roots counting

If p(x) and r(x) are two real polynomials, we recall the number known as the Tarski Query:

TaQ(r, p) = #{x ∈ R|p(x) = 0 ∧ r(x) > 0} − #{x ∈ R|p(x) = 0 ∧ r(x) < 0}.
We also recall the definition of the Permanencesminus variations number of a given sequence of signs

ν = (ν1, . . . , νk):

PmV(ν) =
k−1∑
i=1

νiνi+1.

We summarize, from [2, Theorem 4.32, Proposition 9.25, Corollary 9.8] some useful properties of

these numbers,

Proposition 9. Let p(x) and q(x) be two monic polynomials of respective degrees n and n − 1, such that

the sequence SRemS(p, q) has no degree breakdown. Let r(x) be another polynomial such that q(x) is the
remainder of p′(x)r(x) modulo p(x). Then,

PmV(ν) = sgn(Hn(q/p)) = TaQ(r, p),

where ν is the sequence of signs of the leading coefficients in the signed remainders sequence SRemS(p, q).

We come now to our main result about real roots counting:

Theorem 10. Let Td ∈ Rn×n be a tridiagonal and symmetric matrix with non-singular first principal

diagonals. Let also p(x) ∈ R[x] be a real polynomial with no multiple root such that



R. Quarez / Linear Algebra and its Applications 433 (2010) 1082–1100 1095

p(x) = det(J)det(xJ − Td),

where J is a signature matrix whose last entry on the diagonal is +1.
Then, the number of real roots of p(x) is greater than sgn(J).

Proof. We have

p(x) = det(xIdn − Td × J)

and we set

q(x) = det
(
xIdn−1 − (Td × J)n−1

)
.

The matrix Td × J is still tridiagonal with non-singular first principal diagonals. We then consider the

sequence SRemS(p, q) and denote by ν the associated sequence of signs of leading coefficients.

Since gcd(p, p′) = 1, we set r(x) to be the unique polynomial of degree < n such that

r ≡ q

p′ mod p.

Then,

p′r ≡ q mod p

and from Proposition 9, we get:

PmV(ν) = TaQ(r, p) �#{x ∈ R|p(x) = 0}.
Let us introduce some notation at this step. Let Td = Td(α,β , γ ), ε(a) be the sign in {−1,+1} of

the non-zero real number a, and finally let

J =

⎛
⎜⎜⎜⎝

θn−1

. . .

θ1
1

⎞
⎟⎟⎟⎠ .

Then, we can write

p(x) = det
(
xIdn − P(Td × J)P−1

)
,

where

P =

⎛
⎜⎜⎜⎝

(θn−1 . . . θ1) × (ε(γn−1) . . . ε(γ1))
. . .

θ1 × ε(γ1)
1

⎞
⎟⎟⎟⎠ .

Wenote that in fact P(Td × J)P−1 = Td(p, q). Indeed, all the coefficients on the first lower principal

diagonal are positive. Moreover, all the coefficients on the first upper principal diagonal are given by

the sequence

(θn−1 × θn−2, . . . , θ2 × θ1, θ1).

We deduce from Proposition 1(iv) that the sequence of signs of leading coefficients in the signed

remainders sequence SRemS(p, q) is the following:

ν = (θn−1 × · · · × θ1, . . . , θ2 × θ1, θ1, 1, 1).

Thus

PmV(ν) = 1 +
n−1∑
k=1

θk = sgn(J)

and we are done. �
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Remark 3. Anotherway,maybe less constructive, to prove the result is to use the duality of Theorem7.

Indeed, replacing as in the previous proof the matrix Td × J with P(Td × J)P−1, we write the identity

Td × J = LCT
p L

−1.

Then, by duality, we have

LCT
p L

−1 = AdK−1CT
p KJ

′Ad,
where we have used the LU-decomposition

Hn(q/p) = KJ′KT .

Let us introduce J′ = AdJ′Ad; we get:(
LCT

p L
−1J

)
× (JJ′) = AdK−1CpKJ

′Ad.

We remark that the matrices LCT
p L

−1J and K−1CpKJ
′ are both tridiagonal and symmetric with non-

singular principal diagonals, so we necessarily have

JJ′ = ±Id.

Notice that by assumption the last coefficient of J is +1 and that the first coefficient of J′ is always +1

(since it is the leading coefficient of
q(x)
p(x)

). Thus

JJ′ = Id.

By Proposition 9, it completes an another proof for Theorem 10.

An alternative way to make use of the computation of this last remark is to notice that we get

another proof of the equality

PmV(ν) = sgn(Hn(q/p))

which appears in the sequence of identities

sgn(Hn(q/p)) = sgn(J′) = sgn(J) = PmV(ν) = TaQ(r, p).

Remark 4. It ispossible toextendTheorem10 in thecasewhereprincipaldiagonalsofTd = Td(α,β ,β)
are singular. Namely, for all k such that βk = 0, we have to assume that the corresponding kth entry

on the diagonal of J is equal to +1. Then, we get that the number of real roots of p(x), counted with

multiplicity, is greater than sgn(J).
To see this, it suffices to note that the polynomial defined by p(x) = det(J)det(xJ − Td) factorizes

through

p(x) = det(J1)det(xJ1 − Tdk) × det(J2)det(xJ2 − Tdn−k).

Moreover, the matrices Tdk and Tdn−k remain tridiagonal and symmetric and J1, J2 remain signa-

ture matrices. If we denote by
⊕

the usual direct sum of matrices, we have J = J1
⊕

J2 and Td =
Tdk

⊕
Tdn−k .

Thus, we may proceed by induction on the degree of p(x).

Before stating the converse property of Theorem 10, we establish a genericity lemma.

Lemma 11. Letp(x)beamonicpolynomial ofdegreenwithonly simple rootsandq(x) = xn−1 + b1x
n−1 +

· · · + bn−1. Then, the set of all (n − 1)-tuples (b1, . . . , bn−1) ∈ Rn−1 such that there is an integer

k ∈ {1, . . . , n} satisfying det(Hk(q/p)) = 0, is a proper subvariety of Rn−1.

Proof. We only have to show that for all k, det(Hk(q/p)), viewed as a polynomial in the variables

b1, . . . , bn−1, is not the zero polynomial.
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Let Hn(q/p) = (si+j)0� i,j � n−1 where

q(x)

p(x)
=

∞∑
j=0

sj

xj+1

and denote by {α1, . . . ,αn} the set of all (possibly complex) roots of p(x). Then,

sj =
n∑

i=1

q(αi)

p′(αi)
α
j
i .

Let us introduce the real numbers defined as

uj =
n∑

i=1

α
j
i

p′(αi)
.

We obviously have uj = 0 whenever j � n − 2 and also un−1 = 1 (look at limx→+∞ xjq(x)
p(x)

). So we

deduce:⎧⎪⎪⎨
⎪⎪⎩

s0 = 1,

s1 = b1 + un,

and more generally

(∀j ∈ {1, . . . , 2n − 2}) (sj = bj + bj−1un + · · · + b1un+j−2 + un+j−1).

Then, it becomes clear thatHk+1(q/p) �≡ 0 for any k such that k �� n−1
2

� = r, since s2k ∈ R[b1, . . . ,
b2k] has degree 1 in the variable b2k .

Next, for r < k � n,wedevelop thedeterminantHk(q/p) successively according to thefirst columns,

and we remark that its degree in the variable bn−1 is equal to 2k − n (with leading coefficient equal

to −1). This completes the proof. �

The lemma above says that the condition

(∀k ∈ {1, . . . , n}) (det(Hk(q/p)) = 0)

is generic with respect to the space of coefficients of the polynomial q(x). Because of the relations

between coefficients and roots, the condition is also generic with respect to the (possibly complex)

roots of the polynomial q(x).
Here is our converse statement about real roots counting:

Theorem 12. Let p(x) be a monic polynomial of degree n which has exactly s real roots counted with

multiplicity. We can find effectively a generic family of symmetric tridiagonal matrices Td and signature

matrices J with sgn(J) = s, such that

p(x) = det(J) × det(xJ − Td).

Proof. If p(x) has multiple roots, then we may factorize it by gcd(p, p′) and use the multiplicative

property of the determinant to argue by induction on the degree. Now, we assume that p(x) has only
simple roots.

We take for q(x) anymonic polynomials of degree n − 1which has exactly s − 1 real roots interlac-

ing thoseofp(x).Namely, ifwedenotebyx1 < · · · < xs all the real rootsofp(x)andbyy1 < · · · < ys−1

all the real roots of q(x), we ask that x1 < y1 < x1 < y2 < · · · < ys−1 < xs.

Let r(x) be the unique polynomial of degree < n such that r(x) ≡ q(x)
p′(x) mod p(x) (since p′(x) is

invertible modulo p(x)).
From p′r ≡ q mod p and p′(xi) = q(xi) for all real root xi of p(x), we get

TaQ(r, p) = s = #{x ∈ R|p(x) = 0}.
We now assume that q(x) satisfies an additional condition; namely, SRemS(p, q) does not have

any degree breakdown, or equivalently that H(q/p) shall admit a LU-decomposition Hn(q/p) = KJKT .
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According to Lemma 11, this hypothesis is generically satisfied, although it may not be always satisfied

for the natural candidate q(x) = p′(x)/n.
Then, we get from Theorem 7

p(x) = det(xJ − K−1CT
p KJ),

where Td = K−1CT
p KJ is tridiagonal and symmetric and J is a signature matrix.

By the proof of Proposition 10, we get moreover that

sgn(J) = TaQ(r, p) = sgn(Hn(q/p)).

This completes the proof since TaQ(r, p) = s. �

Remark 5

(i) In order to choose such polynomials q(x) with the interlacing roots property, we need to count

and localize the real roots of p(x). It can be done via Sturm sequences for instance.

(ii) Although the polynomial q(x) = p′(x)/n has not necessarily the interlacing property in general,

it is the case when all the roots of p(x) are real and simple. Moreover, in this case, the interlacing

roots condition isequivalent to thenodegreebreakdowncondition. Indeed,TaQ(p′q mod p, p) =
n if and only if p′(x) and q(x) have the same sign at each root of p(x).

5. Some worked examples

In order to avoid square roots, in our examples we decided to work with weak determinantal

representation as in (9). If onewants to deduce determinantal representationswith signaturematrices,

it suffices to normalize.

(1) Let p(x) = x3 + sx + t with s �= 0, and q(x) = p′(x) = 3x2 + s. Let us introduce the discrimi-

nant of p(x) as 
 = −4s3 − 27t2. Consider the decomposition of the Hankel matrix

H(q/p) =
⎛
⎝ 3 0 −2s

0 −2s −3t

−2s −3t 2s2

⎞
⎠ = LDLT ,

where

L =
⎛
⎜⎝

1 0 0

0 1 0

− 2s
3

3t
2s

1

⎞
⎟⎠

and

D =
⎛
⎜⎝
3 0 0

0 −2s 0

0 0 −

6s

⎞
⎟⎠ .

We recover the well-known fact that p(x) has three distinct real roots if and only if s < 0 and 
 > 0,

which obviously reduces to the single condition 
 > 0. Then, we have the determinantal representa-

tion


 × p(x) = det(xD − Td),

where

Td =
⎛
⎜⎝

0 −2s 0

−2s −3t −

6s

0 −

6s

t


4s2

⎞
⎟⎠ .

(2) Consider the polynomial p(x) = x5 − 5x3 + 4x. In fact, it factorizes through p(x) = x(x −
1)(x + 1)(x − 2)(x + 2)butweobviouslymakenouseof thisobservation toconstructadeterminantal
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representation ! We only use it to check the consistency of the computation. Let q(x) = p′(x)/5. We

have

H(q/p) =

⎛
⎜⎜⎜⎜⎝

5 0 10 0 34

0 10 0 34 0

10 0 34 0 130

0 34 0 130 0

34 0 130 0 514

⎞
⎟⎟⎟⎟⎠ ,

Td =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2 0 0 0√
2 0

√
7
5

0 0

0
√

7
5

0
√

36
35

0 0
√

36
35

0
√

4
7

0 0 0
√

4
7

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

p(x) = det(xId − Td).

In order to get some parametrized identities, let us introduce the following family of polynomials

qa(x) = (x − a)

(
x + 3

2

) (
x + 1

2

) (
x − 1

2

)
.

We write the LU-decomposition

H(qa/p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3
2

− a −3a
2

+ 19
4

57
8

− 19a
4

−57a
8

+ 79
4

3
2

− a −3a
2

+ 19
4

57
8

− 19a
4

−57a
8

+ 79
4

237
8

− 79a
4

−3a
2

+ 19
4

57
8

− 19a
4

−57a
8

+ 79
4

237
8

− 79a
4

−237a
8

+ 319
4

57
8

− 19a
4

−57a
8

+ 79
4

237
8

− 79a
4

−237a
8

+ 319
4

957
8

− 319a
4

−57a
8

+ 79
4

237
8

− 79a
4

−237a
8

+ 319
4

957
8

− 319a
4

−957a
8

+ 1279
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= LaDaL
T
a ,

where the associated diagonal matrix Da is equal to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

− 1
2
(a + 1)(2a − 5)(

15
16

)
(2a−1)(4a2−a−15)

(a+1)(2a−5) (
45
128

)
48a4−16a3−216a2+58a+105

(2a−1)(4a2−a−15) (
315
8

)
(a+2)(a+1)a(a−1)(a−2)

48a4−16a3−216a2+58a+105

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The condition for Ha(q/p) to be positive definite is equivalent to having only positive coefficients

on the diagonal of Da. First, it yields Da(2, 2) > 0, which means that a ∈] − 1, 5
2
[. Then, we add the

condition Da(3, 3) > 0 which means that a ∈] 1
2
, 2, 06..[. Then, we add the condition Da(4, 4) > 0

whichmeans that a ∈]0, 9.., 2, 00..[. And finally, we add the conditionDa(5, 5) > 0, whichmeans that

a ∈]1, 2[ and gives exactly the interlacing property for the polynomial qa(x).

For instance, with a = 3
2
we get p(x) = det

(
xId − Td 3

2

)
where:

Td 3
2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

5
2

0 0 0√
5
2

0
√

9
8

0 0

0
√

9
8

0
√

35
40

0 0
√

35
40

0
√

1
2

0 0 0
√

1
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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