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ABSTRACT Membrane fusion is believed to proceed via intermediate structures called stalks. Mathematical analysis of the
stalk provided the elastic energy involved in this structure and predicted the possible evolution of the overall process, but the
energies predicted by the original model were suspiciously high. This was due to an erroneous assumption, i.e., that the stalk
has a figure of revolution of a circular arc. Here we abandon this assumption and calculate the correct shape of the stalk. We
find that it can be made completely stress free and, hence, its energy, instead of being positive and high can become
negative, thus facilitating the fusion process. Based on our new calculations, the energies of hemifusion, of complete fusion,
and of the pore in a bilayer were analyzed. Implications for membrane fusion and lipid phase transitions are discussed.

INTRODUCTION

Membrane fusion plays a fundamental role in cell phys-
iology. It is even believed to be a key event in the origin
of life (Norris and Raine, 1998). For this reason it has
attracted the intense interest of numerous researchers
who have attempted to develop a model of this process
(see Reviews and References therein, Chernomordik et
al., 1995b; Jahn and Sudhof, 1999; Zimmerberg and
Chernomordik, 1999; Burger, 2000; Stegmann, 2000;
Melikyan et al., 2000). Both biological and artificial
membrane fusion involves the merger of two phospho-
lipid bilayers in an aqueous environment. In the early
1980s a qualitative picture of this process emerged sug-
gesting that fusion proceeds via local contact between
two lipid bilayers. Hui et al. (1981) termed this contact “a
point defect” and proposed that it represented an inter-
mediate stage of fusion. It was clear that membranes
could not expose their hydrophobic interiors to water
(reflected by Gingel’s famous statement: “membranes
hate edges.” And he went on: “All our ideas of membrane
transformations are based on this fact”) (Gingell and
Ginsberg, 1978). Therefore, to make a connection be-
tween two membranes, their monolayers must be strongly
bent into an hourglass shape. This structure was called a
stalk, and the whole mechanism was called the stalk
model. Its mathematical analysis was performed in 1983
(Kozlov and Markin, 1983) with the first English publi-
cation appearing in 1984 (Markin et al., 1984).

Mathematical implementation of the stalk model was
based on calculation of the elastic energy of the curved
monolayers and elucidation of the chain of events leading
either to complete fusion or to abortion of the process.
The model proved to be very attractive and was adopted

in numerous studies, both experimental and theoretical
(Leikin et al., 1987; Kozlov et al., 1989; Nanavati et al.,
1992; Siegel, 1993; Chizmadzhev et al., 1995, 1999,
2000; Siegel, 1999; Kuzmin et al., 2001). Its success was
based on its ability to explain a number of experimental
observations (Monck and Fernandez, 1994; Cherno-
mordik et al., 1995a,b, 1997; Chernomordik, 1996; Me-
likyan et al., 1997; Basanez et al., 1998; Lee and Lentz,
1998; Zimmerberg and Chernomordik, 1999; Goni and
Alonso, 2000; Razinkov and Cohen, 2000). Later on the
model was further developed to include additional fea-
tures such as hydrophobic voids (Siegel, 1993), fusion
pore dilatation in stages (Chizmadzhev et al., 1995),
relative sliding of monolayers (Chizmadzhev et al.,
1999), role of membrane tension (Nanavati et al., 1992;
Chizmadzhev et al., 2000), et cetera.

However, all these papers had to deal with one signif-
icant difficulty: because of the high curvature of the
stalk, the calculation of its elastic energy inevitably re-
sulted in very high values, up to hundreds kT. D. Siegel
wrote in 1999, “It is troubling that energies predicted for
stalk and transmonolayer contact (TMC) intermediates
are so high.” This energy is too high and raises doubts on
the feasibility of the whole model. From the very begin-
ning (1983, 1984) significant efforts were spent in find-
ing a way for the stalk to decrease its energy. The
obvious factor to consider was the spontaneous curvature
of lipid monolayers. This helped to some extent but at the
expense of a necessitating assumption of very high spon-
taneous curvature at the limit of reasonable values. This
struggle with the high bending energy of the stalk con-
tinues to this day, sometimes eliciting very ingenious
ideas and suggestive terminology (Kuzmin et al., 2001).

This stalk paradox is rather disturbing: the model
seems to be intuitively reasonable and agrees with ex-
perimental observations, but it suffers from inherent dif-
ficulty. We believe that the resolution of this paradox
should be found within the stalk model proper rather than
by enlisting additional and sometimes artificial consid-
erations. To this end we performed an analysis of the
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stalk model ab initio. We found that with the correct
mathematical treatment of the model all of the difficulties
researchers had been struggling with disappeared. In-
deed, these difficulties were simply the result of a single
unjustified assumption in the stalk model.

The source of these apparent difficulties is the shape of
the stalk. Since the original papers (Kozlov and Markin,
1983) the shape of the stalk was not calculated but rather
postulated to be the figure of revolution of a circular arc. It
was this postulate that brought about a very high bending
energy of the stalk. So, following Zimmerberg (2000), we
asked the same question: “Are the curves in all the right
places?” As we now report, with the right shape of this
intermediate structure the stalk can be made completely
stress free and its bending energy reduced to zero or even to
negative values.

Thus, the numerical results of the original paper (Kozlov
and Markin, 1983) are not valid for the properly shaped
stalk. Unfortunately, all subsequent theoretical papers de-
voted to the stalk model followed the lead without ques-
tioning the postulate of circular shape. Therefore their con-
clusions regarding the high bending energy are also wrong.
One of us (V.S.M.) is personally responsible for this unjus-
tified assumption and we feel obligated to correct this
inaccuracy in the stalk analysis.

THEORETICAL

Original stalk model

In the original model of 1983 (Kozlov and Markin, 1983)
the stalk was visualized as an hourglass-shaped local con-
nection between two membranes. It could be comprised of
one or two monolayers of opposing membranes, producing
either a monolayer or bilayer stalk. Later the monolayer
stalk was accepted as a key intermediate in the overall
fusion process known as a hemifusion stage, and the bilayer
stalk was baptized a fusion pore. The stalk could form after
direct closure upon one another of two bulging defects in
opposing membranes (layers) having initial curvature, cinit,
and a spontaneous curvature, c0.

It was assumed that the stalk and surrounding membranes
form an axisymmetrical body of revolution (Fig. 1) with the
neutral surface (dotted line) drawn somewhere in the middle
of the layer transformed into the stalk. Here a is the shortest
distance from the neutral surface to the axis of revolution, r
is the marginal radius of the stalk, b is the distance from the
axis of revolution to the point where the branches of the
stalk become horizontal. Parameters a and b could be called
the neck and the width of the stalk. In the original version
of the model b � a � r. The coordinates of the contour are
x and z, and the angle between the contour and horizontal
line is �.

According to Helfrich (1973), the density of bending
energy accumulated in the stalk is given as

w �
�

2
�cm � cp � c0�

2 (1)

in which � is bending rigidity and cm and cp are principal
curvatures along the meridian and parallel to the body of
revolution representing the stalk. The energy associated
with Gaussian curvature was neglected as it became cus-
tomary in all subsequent papers. The energy of the stalk was
defined as its elastic energy minus the initial elastic energy
of two layers without stalks:

Ws � ����
stalk

dA�cm � cp � c0�
2 � �

stalk

dA�cinit � c0�
2�
(2)

The integrals are taken over the total surface of the stalk. The
first integral represents the bending energy of the stalk mem-
brane and the second integral is equal to the bending energy of
the initial membrane. The stalk energy Ws was found to be

Ws�a, r� � 2�����2

r
� c0�2

� �2cinit � c0�
2�

� ��

2
r�r � a� � r2� � ��2

r
� c0��r � a�

�
2�r � a�2

r�a�2r � a�
arctan�2r � a

a 	 . (3)

If the fusing membranes initially were planar, cinit � 0, then

Ws�a, r� � 2����4 � rc0�4 � �� � �ac0

�
2�r � a�2

r�a�2r � a�
arctan�2r

a
� 1� (4)

In the absence on spontaneous curvature (c0 � 0), the
bending energy depends only on the ratio r/a; the func-
tion has the minimum equal to Emin � 3.791 �, which
occurs at r/a � 1.671. Final results depend on the value
of the bending rigidity. Chizmadzhev et al. (1995) as-
sumed that bilayer rigidity equals �10�19 J, giving the
minimum monolayer stalk energy of Emin � 45.5 kT. If,
as more often assumed, � 
 10 kT, the minimum energy
of the stalk is 37 kT.

If spontaneous curvature of the bent layer is not zero, then its
energy depends on the variables r and a separately. The initial
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monolayer stalk has a � 1 nm. For c0 � �0.01 nm�1 the
minimal energy of 3.68, � � 44.2 kT occurs at r � 1.66 nm.
For c0 � �0.1 nm�1 the minimal energy of 2.68 � � 32 kT
occurs at r � 1.54 nm.

Stress-free stalk

Now we shall no longer make the assumption that the stalk
is circular in shape but instead its shape will be calculated.

Therefore in Fig. 1 A parameter r should be disregarded and
the stalk is considered to be a figure of revolution of a
certain arbitrary curve. In this curve a is its shortest distance
from the axis of revolution, b is the point where the stalk
smoothly connects with the rest of the planar membrane.
For simplicity, the initial membranes are considered planar.
2H is the distance between neutral surfaces of fusing layers.
The contour is supposed to be smooth, and no sharp points
are allowed.

FIGURE 1 Steps in membrane fusion. Solid lines represent hydrophilic surfaces, thin lines represent hydrophobic, dotted lines represent neutral surfaces.
(A) Parameters of the stalk. (B) Hemifusion, initial stage. (C) Hemifusion, transmonolayers contact. (D) Complete fusion—fusion pore.
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The principal curvatures of the stalk (Deuling and Hel-
frich, 1977; Volkov et al., 1998; Markin et al., 1999) are
given by equations

cp�x� �
sin ��x�

x
; cm�x� � cos ��x�

d�

dx
(5)

To find the stress-free stalk we impose the condition that the
total curvature of the stalk is constant and equal to cstalk:

cp�x� � cm�x� � cstalk (6)

If cstalk � c0, the stalk is stress free.
This approach was used previously for the analysis of

myelin shapes (Deuling and Helfrich, 1977) and beading of
nerve fibers under lateral tension (Markin et al., 1999). The
contour of the stalk neutral surface can be presented
(Volkov et al., 1998; Markin et al., 1999) as

dz

dx
� tan ��x� �

xcp

�1 � x2cp
2 (7)

For the contour in Fig. 2, one can find from Eq. 5 that

xcp �
1

2
cstalkx �

a

x�1 �
1

2
cstalka� (8)

Then the final equation for the contour takes the form

dz

dx
� ��1

2
cstalkx �

a

x �1 �
1

2
cstalka���2

� 1	�1/2

(9)

Parameter b of the stalk can be found from the condition
dz/dx � 0; then

b � �a2 �
2a

cstalk
, or

b

a
� �1 �

2

acstalk
(10)

The last equation shows that the ratio b/a depends on a
single dimensionless parameter acstalk. The same is true for
the shape of the stalk z � z(x) given by the following
equation:

z

a
� �

1

x/a��1

2
acstalk t �

1

t �1 �
1

2
acstalk���2

� 1	�1/2

dt

(11)

As one can see from here, the shape of the stalk is indeed
determined by a single parameter acstalk because the upper
limit of this integral b/a is also a function of the same
parameter according to Eq. 10. In Fig. 2 A we presented the
contour of the stalk neutral surface with parameters acstalk �
�0.1. One can see that the contour of the stalk is not a
circular arc and that its branches at the end become hori-

zontal. The important point is that if cstalk � c0, then this
stalk is completely stress free because its total curvature at
every point is equal to the spontaneous curvature c0. Fig. 2
B gives a three-dimensional view of that stalk (of its neutral
surface).

The height of the stalk L � 2H is found from the integral
(Eq. 11) with x � b. In the absence of an analytical solution
for the stress free stalk (Eq. 11) it is useful to have a good
approximation for it. From the analysis of series expansion
of (Eq. 11)

FIGURE 2 Stress-free stalk. (A) Two-dimensional contours for three
different spontaneous curvatures shown in the graph. (B) Three-dimen-
sional rendition of the stalk with c0 � �0.1 nm�1.
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at points x � a and x � b one can find a piece-wise
approximating function for L:

L

a
�

2

0.68435 � acstalk
, if acstalk 	 �1 (12a)

and

L

a
� 0.6384 log	1 � 5.4245��acstalk�

�1.5666
,

if acstalk 
 �1 (12b)

Notice that the dimensionless normalized distance L/a de-
pends on a single parameter, acstalk, only. This function is
presented in Fig. 3 A together with a numerical solution (Eq.
11). Two lines are indistinguishable at this resolution dem-

onstrating that function (Eq. 12) closely approximates the
distance between fusing membranes. Practically, one cannot
expect that acstalk would reach a high negative value. There-
fore we need only the values between �1 and �0.001,
given by Eq. 12b. Hence the distance between membranes
(neutral surfaces) is given by

L � 2H � 0.6384 a log⎣1 � 5.4245��acstalk�
�1.5666⎦

(13)

Notice, that this relationship does not depend on membrane
stiffness �.

Equation 12 and the resulting plot in Fig. 3 A have
universal character applicable at any (negative) spontaneous
curvature. However, for practical purposes a dimensional
Eq. 13, illustrated in Fig. 3 B for a few selected values of c0,
is more convenient.

Stalk energy

Now let us determine the energy of the stalk. Because the
curvature of the stalk is constant and equal to cstalk, its
bending energy is 1⁄2�(cstalk � c0)2 A, in which A is the area
of the stalk. If cstalk � c0, bending energy is zero. We have
to subtract from here the initial energy of the membrane in
the planar state if spontaneous curvature is not zero. In the
planar state fusing layers have elastic energy equal to
1⁄2�c0

2 A. Therefore the energy of the stalk is

Ws � 1
2
�A	�cstalk � c0�

2 � c 0
2
 (14)

Notice that the energy of the stress free stalk is �1⁄2�c0
2A and

it is negative. To complete this calculation we have to find
stalk area A. If the infinitesimal length of the contour in Fig. 1
A is dl � dx/cos �, the differential of the area can be found as

dA � 2�x dl �
2�x dx

cos �
� 2�x dx�1 � �dz

dx�
2

�
2� x dx

�1 � �1

2
cstalkx �

a

x �1 �
1

2
cstalka��2 (15)

And hence

A � 4��
a

b x dx

�1 � �1

2
cstalkx �

a

x �1 �
1

2
cstalka��2 (16)

Now the total energy of the stalk can be presented as

Ws � 2���
1

b/a ⎣�acstalk � ac0�
2 � ac 0

2⎦t dt

�1 � �1

2
acstalkt �

1

t �1 �
1

2
acstalk��2

(17)

FIGURE 3 Parameters of the stress-free stalk. (A) Normalized height of
the stalk L/a as the function of �acstalk. (B) Height of the stalk L as a
function of the neck radius a for different values of spontaneous curvature
cstalk shown at the curves in nm�1.
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The dependence of the stalk energy on its radius a is
presented in Fig. 4 for different values of spontaneous
curvature c0. As one can conclude from here, the stalk has
negative energy, it tends to expand and to push away fusing
membranes. For comparison with previous results we
present in Table 1 the energy of the initial monolayer stalk
(astalk � 1 nm) both for the old model and the new one in
units of kT. One can see a huge difference between the two
models.

Hemifusion

Let us consider the initial hemifusion structure presented
in Fig. 1 B. At some point P the trans monolayer peels off
of the cis monolayer. Let this point have coordinate xp

and angle � � �p. Designate the corresponding points at
the neutral surfaces of cis and trans monolayers x1 and x2.
The surface between the two monolayers will be consid-
ered a reference surface and its curvature will be desig-
nated cb. The whole structure can be divided into three
parts: the “wings” of the hemi-fused bilayers beyond the
point x � x1, the “neck” of the stalk in the range x � x1,
and two dimples formed by trans monolayers in the range
x � x2. The monolayers of these three parts are smoothly
connected to each other. The total energy of hemifusion

Wh consists of the bending energy of the neck Wn, of the
wings Ww, of the dimples Wd, and hydrophobic energy of
two voids Wv. We shall calculate each of these compo-
nents.

First, let us find coordinate x1. If the stalk has curvature cs

and the neck radius a, then from Eqs. 5 and 8 one can find that

x1 �
sin �p � ��sin �p�

2 � 2acs � a2cs
2

cs
(19)

and then

xp � x1 � �h � ��sin �p,

and

x2 � x1 � 2�h � ��sin �p. (20)

The energy of the stalk neck Wneck can be readily found
from Eq. 17 if the integral is taken from 1 to x1/a.

Calculation of the energy of the wings Ww is more
complicated. We select the interface between two mono-
layers as a reference surface, and coordinates of mono-
layer neutral surfaces will be related to this reference
surface. As in the previous section, we assume that the
reference surface has constant total curvature. This as-
sumption will be discussed later. The principal curvatures
cm and cp of the reference surface are defined the same
way as for a monolayer stalk by Eq. 5. That means that
cm � 0 and cp � 0. Designate � the distance from the
hydrophilic surface of a monolayer to its neutral surface.
Then the principal curvatures of the cis monolayer are
given by the equations

cp
cis �

cp

cp�h � �� � 1
and cm

cis �
cm

cm�h � �� � 1
(21)

The curvatures of the trans monolayer have the opposite
sign and can be presented as

cp
trans �

cp

cp�h � �� � 1

and

cm
trans �

cm

cm�h � �� � 1
(22)

Notice that these definitions are consistent for both
monolayers. We “look” at a monolayer from the aqueous
phase: if the monolayer in a given principal plane is
convex, then this curvature is positive and vice versa.
The geometry of the wings of the hemi-fused bilayer is
determined by a set of three parameters: xp, �p, and cb.

FIGURE 4 Bending energy of the stress-free stalk with different c0

shown at the curves in nm�1 as a function of its radius a (below abscissa).
Above abscissa there are two curves with zero or small positive sponta-
neous curvature; these stalks are not stress free, however, their bending
energy is very small.

TABLE 1 Stalk energy

Curvature
(c0, nm�1)

Energy, kT units

Old Model
Stress Free

Stalk

�0.001 �37.8 �1.20
�0.01 �36.8 �1.91
�0.1 �26.8 �6.87
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One can find that the principal curvatures of the reference
surface of the hemi-fused bilayer are given by

cp �
1
2

cb �
xp

x2 �sin �p �
1
2

cbxp�
and

cm �
1
2

cb �
xp

x2 �sin �p �
1
2

cbxp� (23)

Instead of Eq. 10 the length of the wings is given by

bw � �xp
2 �

2xpsin�p

cb (24)

and the area differential is

dA �
2� x dx

�1 � �1
2

cbx �
xp

x �sin �p �
1
2

cbxp��2 (25)

The bending energy density of the bilayer wings, referred to
its reference surface, can be presented as

ww �
�

2 ��� 2�h � ��cmcp � cm � cp

�cm�h � �� � 1��cp�h � �� � 1�
� c0

cis�2

� �c0
cis�2�	1 � �cm � cp��h � �� � cmcp�h � ��2


� �� 2�h � ��cmcp � cm � cp

�cm�h � �� � 1��cp�h � �� � 1�
� c0

trans�2

� �c0
trans�2�	1 � �cm � cp��h � �� � cmcp�h � ��2
	

(26)

in which c0
cis is the spontaneous curvature of the cis

monolayer and c0
trans is the same for the trans monolayer.

The total free energy of the bilayer wings is given by the
integral over the area of the reference surface from radius xp

to bw:

Ww � �wwdA (27)

To estimate the dimple energy we assume that it has a
spherical shape. Its radius is rd � x2/sin �p, and hence the
bending energy of two dimples is

Wd � 8���1 � cos �p��1 � rcc0
trans� (28)

Total bending energy of the hemi-fused bilayers is

Whb � Wn � Ww � Wd (29)

For the sake of comparison with previous numerical
results we assume that � � h/2 � 1 nm, � � 10 kT, and

�p � �/6. Suppose that monolayers have no spontaneous
curvature. Then the stress free stalk neck does not contribute
any energy to Eq. 26. Bilayer wings contribute Ww � 2.8 kT
and dimples have Wd � 33.7 kT. Therefore in total bending
energy of Whb (36.5 kT) the main contribution comes from
the dimples and constitutes approximately 92% of the total.

The presence of spontaneous curvature in monolayers
helps to decrease the bending energy of hemifusion. For
example, if c0 of both monolayers is �0.1 nm�1 and �p �
30°, then Wn � �1.1 kT, Ww � �2.7 kT, Wd � 28.4 kT,
and the total is only Whb � 24.6 kT.

The result strongly depends on where the monolayer
peel-off occurs, i.e. what is the value of the peel-off angle.
If it happens a little farther from the axis of the stalk then the
bending energy drastically decreases. For example, if �p �
15° and there is no spontaneous curvature then Ww � 0.1
kT, Wc � 8.4 kT, and the total is only Whb � 8.5 kT.

Finally, if the peel-off point occurs at �p � 15° and
spontaneous curvature is c0 � �0.1 nm�1, then Wn � �2.5
kT, Ww � �1.6 kT, Wc � 1.4 kT, and the total becomes
negative Whb � �2.7 kT.

Therefore, the bending energy of the hemifused bilayers can
be very low and even negative if the monolayers have rather
pronounced spontaneous curvature. Fig. 5 A presents the bend-
ing energy of hemifusion as a function of peel-off angle for
two types of bilayer: with no spontaneous curvature of mono-
layers and with c0 � �0.1 nm�1. As one can see, in the
absence of spontaneous curvature the bending energy would be
zero if �p � 0°. This obviously means that the trans monolayer
would prefer to remain planar. In the presence of spontaneous
curvature c0 � �0.1 nm�1 the bending energy would reach a
minimum at �p � 5° and it would be negative at this config-
uration and equal to �8 kT.

The actual value of the peel off angle is determined by the
minimum of the total free energy of the system including
the bending energy and the energy of interstices at the stalk
axis. It will be considered in the next section.

Hydrophobic voids

Siegel was the first to pay attention to the fact that at the ends
of a monolayer stalk there should be void interstices (Markin
and Hudspeth, 1993; Siegel, 1993) because three lipid mono-
layers meeting here cannot fit together without gaps. The shape
of the interstices at the initial stage of hemifusion is presented
in Fig. 6. The voids carry two additional contributions to the
total energy of the system associated with their volume, V, and
area, A:

Wvoid � Wvoid,V � Wvoid,A (30)

Assuming that the void is nothing but vacuum, one can
estimate the first term as

Wvoid,V � PatmV. (31)

in which Patm is atmospheric pressure. However, 1 atm is
equivalent to 0.025 kT/nm3. Therefore even if the void
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volume amounts to a few dozens of nm3 (and this is all we
deal with in the stalk model), Wvoid,V barely reaches 1 kT
and hence can be safely neglected.

The hydrophobic energy of the void was initially esti-
mated by Siegel in 1993 (Siegel, 1993) and subsequently
corrected in 1999 (Siegel, 1999). The estimate was based on
the assumption that the hydrophobic interstice surface is
equivalent to the surface of long chain alkanes with vacuum,
which is known to be in the range 20 to 27 mN/m. However,
using these numbers to find the energy of interstices in the
HII phase one would come up with energy that is an order of
magnitude higher than what is known for the HII phase
(Siegel, 1993). The reason is that much of the “surface area”
of the interstice lies at the rim of the interstice, where two

lipid/vacuum interfaces would be less than 0.1 nm apart. In
this case one cannot use the surface tension of the free
surface lest the energy be strongly overestimated. There are
two solutions to this dilemma. One might try to take into
consideration the existence of the other hydrophobic surface
in close proximity and calculate the energy of two surfaces
as the function of the distance between them. However, this
path involves rather poorly known functions and in the
complex geometry of interstices these calculations could
give a very approximate result. One can of course try to
approximate the interstice geometry with a simple geomet-
rical shape, like a cylinder (Kuzmin et al., 2001), but this
approach completely neglects the interstices at the initial
stage of hemifusion (Fig. 6).

A different approach was proposed in Siegel (1999) that
was based on surface area scaling. Siegel suggested using an
“effective surface tension” and found it to be �eff � 1.9
mN/m � 0.48 kBT/nm2. This approach seems quite reason-
able and convenient in practical implementation. We shall
use it below.

Based on the previous equations for the shape of trans
and cis monolayers we calculated the area of voids Avoid and
found their hydrophobic energy Wvoid � �eff Avoid. Total
energy of the hemifusion is equal to

Wh � Whb � Wvoid (32)

and it is a function of the stalk radius as and peel-off angle
�p. Actual shape of the hemifusion structure is determined
by interplay between bending energy and hydrophobic en-
ergy. At a given as angle �p is determined by the minimum
of the total energy.

Fig. 5 B presents the total energy of hemifusion as a
function of peel-off angle for two cases: c0 � 0 and c0 �

FIGURE 5 Free energy of the hemifusion as a function of peel-off angle
�p for two types of bilayer: with no spontaneous curvature and with c0 �
�0.1 nm�1. (A) Bending energy only. (B) Total energy of hemifusion,
�eff � 1.9 mN/m � 0.48 kBT/nm2.

FIGURE 6 Shape of interstices at the initial stage of hemifusion.
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�0.1 nm�1. Both curves display a minimum. However,
positions of these two minima are quite different. The
bilayer with no spontaneous curvature has a minimum of 50
kT at �p � 26.4°, whereas in the second case there is much
lower minimum of 28.8 kT at �p � 22.2°.

When the stalk enlarges, the energy of hemifusion as well
as the peel-off angle change. Fig. 7 presents the free energy

of hemifusion as a function of stalk radius as and peel-off
angle �p for different spontaneous curvatures of monolay-
ers. Effective hydrophobic surface tension was assumed
equal to �eff � 0.48 kBT/nm2. The lines connect the points
with equal free energy of the system, and following the
tradition of using Greek names for such types of curves
(e.g., isochors and isobars), we shall call them isergons.
(The term was proposed by A. J. Hudspeth.)

As one can see here the energy of the hemifusion struc-
ture quickly increases with its radius unless spontaneous
curvature is very high as in Fig. 7 B where we took dio-
leoylphosphatidylethanolamine (DOPE) spontaneous curva-
ture c0 � �0.348 nm�1. This is somewhat puzzling because
this would virtually preclude the initial hemifusion structure
from evolving into transmembrane contact as in Fig. 1 C
and would be even less favorable for an extended trilaminar
structure.

However, there is a possibility that the actual void
hydrophobic energy can be drastically decreased. The
void energy can be very large for pure bilayers of a single
lipid component, but it will significantly decrease for
bilayers formed from lipid mixtures or containing small
amount of impurities, which may fill the voids. Siegel
(1999) noted that in biological membranes, the voids
forming around the stalk might have much lower energy
because they could be filled up with some impurities
always present in the membrane. Even minute fractions
of apolar lipid like triglycerides and dolichol could lower
the energy of TMCs by up to 50 to 80 kT. This might
practically eliminate the hydrophobic energy of inter-
stices, reducing the total energy of intermediate struc-
tures to the bending energy only.

But is there enough oil in the membrane to fill the
hemifusion interstices? The equilibrium solubility of
long chain alkanes or other long chain apolar oils in a
bilayer is typically a few volume percent. For our esti-
mate let us take the lower limit of 1% only. Then for the
initial hemifusion structure with as � 1 nm, the necessary
amount of oil would be found in two fusion bilayers
inside the circle with radius of 3.13 nm. This hardly
exceeds the bent portion of the bilayers involved in
hemifusion. Therefore, enough oil can be squeezed just
from the stalk proper to fill up the interstices. This result
holds for a moderate enlargement of the hemifusion so
that the hydrophobic void energy can be drastically de-
creased if not eliminated completely. To illustrate this we
repeated the previous calculation for effective surface
tension reduced to 1/5 of its tentative value and c0 �
�0.1 nm�1. Then the initial hemifusion structure has less
than 5 kT of energy; when the radius as increases from 1
to 2 nm, the energy grows only to 10 kT. In this case all
the evolutions leading to stalk enlargement, to transmem-
brane contact, and to complete fusion become eminently
possible.

FIGURE 7 Isergones, lines of equal free energy at the plane with coor-
dinates stalk radius as-peel-off angle �p. Effective hydrophobic surface
tension �eff � 0.48 kBT/nm2. (A) c0 � 0. (B) c0 � �0.348 nm�1.
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Deformation of tilt

Another way to eliminate the voids in the hemifusion struc-
ture is to shift lipid molecules to the void space. In principle,
lipid molecules can displace in the direction normal to the
monolayer, and by doing so they could fill up the voids of
hemifusion (Fig. 8). Of course this would happen at a cost.
Normal displacement of lipid molecules represents a differ-
ent kind of membrane deformation—deformation of tilt.
During the last decade, the deformation of tilt attracted the
attention of many researchers (Mackintosh and Lubensky,

1991; May, 2000; Hamm and Kozlov, 2000 and references
therein). Kuzmin et al. (2001) suggested that this deforma-
tion can occur during membrane fusion and hence should be
taken into consideration. Let us estimate the energy cost that
could be expected for this deformation and if it will be
compensated by the release of hydrophobic energy after
void collapse.

As a specific example let us consider the interstices in the
HII phase (Fig. 8 A) formed by DOPE (Siegel, 1993; Fuller
and Rand, 2001). Assuming that the lipidic phase has the
shape of circular cylinders Siegel called the hydrophobic
voids between them trilaterally symmetric voids. In cross
section (Fig. 8 A) these voids have the shape of curvilinear
triangles. Siegel estimated the energy required to produce a
unit length of such void configuration equal to 41.6 pN or 5
kT/nm.

Is it possible that the void space between three HII

cylinders would collapse, i.e., that the three monolayers
in Fig. 8 A deform in such a way that they would fill up
this void space? To answer this question one has to
compare the energy of the void WTV including the hy-
drophobic energy of the tails and bending energy of
initial monolayers with deformation energy of the col-
lapsed void Wcollapse. The system will acquire configura-
tions with lower energy.

Deformation of tilt can be described by parameter of
tilt that in a simple case can be visualized as an angle 

between the axis of lipid molecule and the normal to the
monolayer. Departure of this angle from 0° exposes a
portion of hydrophobic surfaces of lipid molecules and
hence increases the energy of the monolayer. To take this
into consideration one has to add to the bending energy
(Eq. 1) an additional term with tilt energy 1⁄2�

2. In line
with Eq. 1, one can also include into this expression a
certain spontaneous value of tilt 
0, changing it to
1⁄2�
(
 � 
0)2. However, here we limit ourselves to the
simplest form of the tilt energy.

Collapse of the void in Fig. 8 means that the upper
monolayer CB shifts to position AB and becomes planar.
The other monolayers lining the void are transformed in a
similar way. The orientation of lipid molecules—tilt angle

(x)—in the new, planar configuration of the monolayer
between A and B changes from �/6 to 0:


A �
�

6
and 
B � 0. (33)

Let us find the deformation energy of planar monolayers in
the collapsed configuration. At first glance it might seem
counterintuitive but the planar monolayer AB has not only
tilting but also bending energy. This statement deserves
some additional explanation although it was already pre-
sented in Hamm and Kozlov (2000) and Kuzmin et al.
(2001).

What is the nature of the bending deformation? It is
actually the change of the shape of lipid molecules.

FIGURE 8 Tilt deformation in HII phase. (A) Cross-section of the void
space between three lipid cylinders. (B) Collapse of the void space.
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Bending results in different changes of the cross section
(not simply the size) of heads and tails of lipid molecules.
The curvature of the initial monolayer CB is negative so
that lipid heads are compressed and tails are expanded.
Axes of lipid molecules have different orientation in
space, although they remain normal to the monolayer
surface: there is no tilt. Now let as perform a gedanken
experiment: transform monolayer CB into monolayer AB
in such a way that all orientations of lipid molecules are
preserved. In this transformation the lipid molecules slide
along each other (along their axis) without changing their
molecular shapes. Therefore, the bending energy deter-
mined by the shape of the molecules is preserved. Now
from comparison of molecular orientation of the mono-
layers CB and AB it is not difficult to figure out that in
the new, planar configuration AB the role of curvature c
is played by the derivative d
/dx. Transition from CB to
AC involves a certain work due to exposure of lateral
surfaces of lipid molecules to aqueous surrounding,
which is proportional to 
2. The density of deformation
energy in the collapsed monolayers can be presented as

wdef�x� �
1
2

��d


dx
� c0�2

�
1
2

�


2 (34)

Here, as before, � is the bending modulus, whereas �
 is the
tilt modulus.

The total deformation energy of the collapsed void per
unit length is

Wcollapse � 6�
A

B

wdef�x�dx, (35)

where coefficient 6 accounts for six equivalent parts of the
total perimeter of the void cross section.

Of course orientation of lipid molecules in the planar
monolayer AB will not remain the same as in the original
monolayer CB. It will relax to the new positions 
(x) to
minimize the energy of the total monolayer. According to
calculus of variations, the function 
(x) that minimizes the
integral (Eq. 35) is determined by the Euler equation

�
d2


dx2 � �

 � 0 (36)

As one can see from the dimension analysis, this equation
defines a characteristic constant of length,

� � ��

�

, (37)

that gives the range of the monolayer where tilting and
bending of lipid molecules occur. Beyond this range the
planar monolayer is free of both tilting and bending. Notice
that spontaneous curvature c0 that was present in the defor-
mation energy Eq. (34) disappeared from the Euler Eq. 36.

Boundary conditions for this differential equation are given
by Eq. 33.

Solution of the Euler Eq. 36 is


�x� �

A sinh	�l � x�/�


sinh	l/�

(38)

in which l is the distance between points A and B and
deformation energy is

Wcollapse � 6�1
2


A
2 ���
 coth

l

�
� �c0
A �

1
2

�c0
2l	 (39)

To estimate the collapse energy Wcollapse one needs to know
the value of the tilt modulus �
. Unfortunately there are no
direct experimental measurements of this material constant.
In the absence of direct measurements Hamm and Kozlov
(2000) estimated it at 40 mN/m, whereas Kuzmin et al.
(2001) came up with 33 mN/m. Although these estimates
were based on different models, the results are rather close
and can be summarized as 9 kT/nm2. That gives the char-
acteristic length � � 1.05 nm.

The other parameters can be taken from Fuller and Rand
(2001): Rh � 4 nm, RN � 2.9 nm, RW � 2.18 nm, � � 0.73
nm, and c0 � �1/RN. Then the energy of collapsed void is
4.1 kT/nm. This result is not very different from the open
void energy of 5 kT/nm found by Siegel (1999); therefore,
these two configurations are energetically virtually equiva-
lent.

Equation 39 can be used for estimation of the energy of
the trilaminar structure that could appear after further ex-
pansion of the stalk. Using the fact that the open void has
approximately the same energy as the collapsed one, we
shall use this equation for our estimation. Notice that the last
term in Eq. 39 represents the energy of the monolayer in the
initial, planar state. If we refer the energy of the trilaminar
structure to the planar state, then this amount should be
subtracted from the final energy. Besides, we assume that
the length l is large in the characteristic scale of the system,
i.e., it considerably exceeds 1 nm. Then the energy of the
unit of length of the trilaminar contact is given by

ftri � 6
1
2


A
2 ���
 � �c0
A� (40)

The physical meaning of this quantity is a linear tension,
which is why the designation f is used here.

To estimate the linear tension of the trilaminar contact,
consider bilayers without spontaneous curvature. Then ftri �
7.8 kT/nm. The presence of negative spontaneous curvature
noticeably decreases this tension; for example, if c0 � �0.1
nm�1 then ftri � 4.7 kT/nm. This linear tension can even
become zero, if c0� �(
A/2 )� �
� � �
A/2�. Numeri-
cally it gives c0 � �0.25 nm�1, which is not very far from
the spontaneous curvature of DOPE that readily forms the
HII phase.
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In the absence of spontaneous curvature there is only one
term, 1⁄2 
A

2 ���
 , left in the braces of Eq. 40. This term
represents both bending and tilting energy, which give equal
contributions to the total trilaminar energy. This can be
demonstrated in the following way. Angle 
 exponentially
decreases with coordinate: 
(x)�
A exp (�x/�) . Therefore,
the tilting energy changes as wtilt (x)�(�

A

2 /2) exp (�2x/�) .
After integration it becomes 1⁄4 �
�
A

2 � 1⁄4 ���
 . This is
exactly one-half of the total energy of thetrilaminar struc-
ture. The other one-half is contributed by the bending en-
ergy.

Complete fusion-fusion pore

The next step after formation of the hemifusion structure is
rupture of the trans monolayers and completion of the
fusion process (Fig. 1 D). At this moment a fusion pore is
formed, and the fusion process is completed. Here we
analyze the energetic cost of the fusion pore and of its
consequent enlargement. In the previous sections we have
considered the free energy associated with bilayer wings
included in the hemifusion structure. It was found that its
energy contribution was insignificant. However, this does
not mean that completely fused bilayers have negligible
energy. The reason is that the bending energy is concen-
trated at the neck of the fusion pore.

In the literature there are different approaches to the
calculation of this energy. In the simplest one (Markin et al.,
1984; Chizmadzhev et al., 1995) the bilayer is visualized as
a single layer with bending rigidity equal to the sum of the
bending rigidity of the monolayers. Originally this model
was called a bilayer stalk and it resulted in the same equa-
tions that were derived from a monolayer stalk. In the old
model the minimal energy of such a bilayer stalk with
bending rigidity 10�19 J was found to be 90 kT (Chiz-
madzhev et al., 1995). However, this is a gross underesti-
mation because two monolayers are bent quite indepen-
dently, and their elastic energy should be calculated
separately. If this were done, then this value would increase
to 150 kT.

So the old model predicts very high elastic energy for a
fusion pore due to the assumption of a circular shape for its
neutral surface. In the present approach the shape of the
neutral surface is calculated with constant total curvature.
As we have seen above, for a single monolayer this results
in the stress-free stalk. However, this result cannot be ex-
tended to a bilayer because its monolayers cannot be made
stress free simultaneously. However, their energy can be
made much lower than in the old model.

We calculate the bending energy of the bilayer using the
equations derived in the Hemifusion section. We select the
interface between two monolayers as a reference surface
(Fig. 1 D). Its principal curvatures cm and cp are defined the
same way as for a monolayer stalk by Eq. 5. The principal

curvatures of the cis and trans monolayer are defined at
their respective neutral surfaces and are presented by Eqs.
21 and 22. As we mentioned before these definitions are
consistent for both monolayers: if the monolayer in a given
principal plane is convex, then the given curvature is posi-
tive and vice versa. However, two monolayers are bent in
the opposite directions. For an example, let us consider
parallel curvatures at the equatorial plane. According to our
convention, the bilayer parallel curvature cp here is positive,
and the radius of the bilayer parallel curvature obviously
exceeds the monolayer thickness: Rp � 1/cp � h. From Eqs.
21 and 22 one finds that cp

cis � 0 and cp
trans � 0, just

confirming that two monolayers are bent in the opposite
directions and determining the sign of their curvature.

Now let us see how the curvature of both monolayers
varies along the bilayer. We shall look for the solution
where the reference surface of the bilayer has a constant
total curvature cm � cp � cb and the radius of its “waist” is
ab. Then the principle curvatures of the bilayer are

cp �
1
2

cb �
ab

x2 �1 �
1
2

abc
b�

and

cm �
1
2

cb �
ab

x2 �1 �
1
2

abc
b� (41)

These equations are similar to the stalk equations, but here
it is explicitly stressed that the radius of the bilayer waist is
ab. As one can see, the sum of these two curvatures (total
curvature, ctot � cp � cm) equals cb, but for separate
monolayers this sum is not a constant but rather varies along
the bilayer. Fig. 9 illustrates how the total curvature of trans
and cis monolayers varies with x for different values cb

equal correspondingly to �0.1, �0.01, and �0.001 nm�1.

FIGURE 9 Curvature of cis and trans monolayers in a bilayer lining out
a minimal fusion pore with radius of 0.5 nm. The bilayer has constant
geometrical curvature cb equal to �0.01 nm�1.
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A horizontal line in each panel presents the total curvature
of the bilayer reference surface.

It is important to note that close to the neck (at small x)
the total curvature of both monolayers has the same sign and
it is negative. At first glance this might seem counterintui-
tive because two monolayers are oriented in the opposite
directions. If the bilayer had the form of a sphere, then the
outer monolayer would have positive total curvature,
whereas the inner monolayer would have negative. How-
ever, around the pore two fused bilayers have a saddle-type
shape with rather subtle interplay between parallel and
meridianal curvature. As one can easily see, at the cis
monolayer the meridianal curvature plays the dominant role
and it is negative. That is why the total curvature of the cis
monolayer is negative. The situation is reversed at the trans
monolayer: here the dominant role is played by parallel
curvature and it is negative. So the total curvature of the
trans monolayer is also negative. At a farther distance the
total trans monolayer curvature changes sign, whereas the
cis monolayer curvature remains always negative.

If the bilayer curvature is high (Fig. 9), the difference
between two monolayer curvatures is rather pronounced. If
the absolute value of the bilayer curvature decreases, the
difference between two monolayers gradually disappears
and the two curves approach each other.

Other parameters of the bilayer can be found from Eqs.
24 through 27 by substituting xp � ab and sin �p � 1. The
bending energy of the bilayer is given by the integral (Eq.
27) over the total area of the reference surface from x � ab

to bb. The energy depends on the constant curvature of the
bilayer cb, on the radius of the neck ab, on the spontaneous
curvature of two monolayers c0

cis and c0
trans, and on the

position of neutral surface of each monolayer. For the sake
of comparison with previous results the neutral surface is
taken in the middle of each monolayer, i.e., � � h/2, the
monolayer thickness h is 2 nm, and the monolayer bending
rigidity � is 10 kT.

The results of calculation are presented in Fig. 10. The
curvature of the bilayer reference surface cb is assumed
negligibly small. Fig. 10 A presents the energy of a sym-
metric bilayer comprised of monolayers with equal sponta-
neous curvatures: c0

cis � c0
trans. As one can see, the bigger the

radius of the neck ab, the smaller the bending energy of the
bilayer. We presented these curves in the range of ab be-
ginning from ab � 2.5 nm because the radius of the fusion
pore hardly can be smaller than 0.5 nm (Kuzmin et al.,
2001). At this radius the bending energy reaches its highest
value. If the monolayers have zero spontaneous curvature
the bending energy amounts to 50 kT. This is a drastic
decrease from the old model estimate of almost 150 kT
(Chizmadzhev et al., 1995). However, this barrier quickly
decreases if the monolayers have even a small negative
spontaneous curvature. At the very modest spontaneous
curvature of �0.05 nm�1 the energy starts from approxi-
mately 25 kT, and already at the pore radius of 1.5 nm it

becomes negative. If spontaneous curvature is more pro-
nounced and reaches �0.1 nm�1, the bending energy is
negative from the very beginning and it decreases with the
growing radius.

It would be rather instructive to dissect the curves in Fig.
10 A splitting them into two components contributed by cis
and trans monolayers. This is done in Fig. 10 B and C for
spontaneous curvatures 0 and �0.1 nm. In the absence of
spontaneous curvature (Fig. 10 B), cis and trans monolayers
store about the same bending energy so that the total energy
of the bilayer is simply the double monolayer energy. How-
ever, if two monolayers have negative spontaneous curva-
ture (Fig. 10 C) they behave quite differently. The trans
monolayer stores positive energy, which, after a shallow
minimum, grows with neck radius. Therefore, the trans
monolayer with negative spontaneous curvature does not
like to be bent into a fusion pore. However, the cis mono-
layer has negative energy that more than compensates the
trans monolayer, so that the total energy of the bilayer is
negative and it decreases with neck radius. Even better
results can be obtained with an asymmetric bilayer.

Now let us consider how bending energy is distributed
along the bilayer. One can anticipate that it is mainly
concentrated in the neck of the fused bilayers rather than in
its “wings.” Let us select an arbitrary point with coordinate
xw and find the energy stored beyond this point, x � xw. It
means that the integral (Eq. 27) should be taken over x �
xw. The results show that the energy stored in the “wings”
quickly decreases with xw and at the distance of only 1 nm
the wings carry only 5% of the total energy. That means that
in more complicated cases of hemifusion presented in Fig.
1, B and C one should be concerned mainly with the neck of
the intermediate structure.

Position of the neutral surface

In the previous calculation we placed the neutral surfaces
of monolayers exactly in their middle. However, the
neutral surface is believed to be shifted in the direction of
polar heads so that � � h/2. This position is not very well
known and only a few direct measurements are pub-
lished. Recently Fuller and Rand (2001) performed a
detailed study of the geometrical and elastic properties of
hexagonal-forming lipid, DOPE, and the influence of
lysolipids on these properties. Position � was estimated
between 0.69 and 0.77 nm with mean value of 0.73 nm.
In the absence of direct measurements of � for bilayer
forming lipids we shall consider the distance � between
this value and the position in the middle of the mono-
layer. Fig. 11 shows how the energy of two fused bilayers
would change with different position of neutral surface.
The free energy of the fusion pore Wfp is presented as a
function of pore radius rp for � � 1.0 and 0.73 nm and a
few selected values of spontaneous curvature. The gen-
eral tendency is the increase of Wfp with decreasing �. If
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the monolayers have no spontaneous curvature, the initial
energy of the fusion pore changes from 50 to 87 kT.
However, if the monolayers have some spontaneous cur-
vature, the increase of spontaneous energy is not very
significant. For example, if c0 � �0.1 nm�1 then the
energy changes from �1 to �24 kT. These are quite
modest energies and, in addition, they quickly decrease
with increasing pore radius.

From hemifusion to complete fusion

Having calculated the energy of hemifusion structures and
completely fused bilayers with the fusion pore we are now

in a position to determine the possible path of transition
between them. Fig. 12 presents the energy landscape of
these two states with coordinates as, peel-off angle �p, and
free energy W. Spontaneous curvature was assigned a very
modest value of �0.05 nm�1 and surface tension in the
interstices �eff � 0.096 mN/m. The line denotes the path of
fastest descent. One can see that if the hemifusion starts at
the minimum stalk radius as � 1 nm, then the minimum
hemifusion energy of 12.9 kT corresponds to a peel-off
angle of 14.5°. Then this line climbs to the pass at the level
W � 46.5 kT and �p � 26.6°. At this level the hemifusion
energy and complete fusion energy become equal, and one
can expect transition to complete fusion. After this the

FIGURE 10 Bending energy of bilayers and individual monolayers as the function of the neck radius ab. Bilayers have constant geometrical curvature
close to zero and the distance � from the hydrophilic surface of the bilayer to the neutral surface is taken equal to h/2 � 1 nm. (A) Three symmetric bilayers
with monolayers having spontaneous curvature equal to 0.0, �0.05, and �0.1 nm�1. (B) Symmetric bilayer comprised of monolayers with no spontaneous
curvature. (C) Symmetric bilayer with monolayers having c0 � �0.1 nm.
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transition path steeply drops so that the fusion pore enlarges
and fusion is complete.

DISCUSSION

We presented here a corrected version of the membrane
fusion mechanism that we call the stress-free stalk model.
Since its introduction and consequent mathematical analysis
(Hui et al., 1981; Kozlov and Markin, 1983; Markin et al.,
1984) the original stalk model was accepted as a universal
type of lipidic intermediate in biological and model mem-
brane fusion. The stalk emerges after initial membrane
perturbation as a result of merging of proximal or cis

monolayers and it provides an hour-glass shaped connection
between the membranes. When one looks at the drawing of
the stalk (Fig. 1), it becomes immediately evident that the
monolayer in the stalk is strongly bent. However, inertia of
two-dimensional visualization often makes people assume
that the bending has a negative sign. In a recent issue of
Biophysical Journal one can read the following statement:
“The stalk structure is a highly negatively curved connec-
tion between opposing monolayers that leads to hemifu-

FIGURE 11 Dependence of the energy of the fusion pore on pore radius
rp for a few selected values of spontaneous curvature indicated in the
picture. (A) � � 1.0 nm; (B) � � 0.73 nm.

FIGURE 12 Energy landscape of transition from hemifusion to complete
fusion and the path of fusion; the line shows the path of steepest descent or
the path of fusion; c0 � �0.05 nm�1, �eff � 0.096 mN/m. (A) View from
the side of hemifusion. (B) View from the side of complete fusion.
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sion” (Fuller and Rand, 2001). While it is true that mem-
brane is strongly curved in a stalk, it is not correct to
conclude that the curvature is highly negative. The mono-
layer in the stalk is saddle-shaped (Fig. 2 B) such that two
opposite curvatures can completely compensate each other.
So the total curvature of the stalk can be very small, al-
though negative. If the cis monolayer has a certain negative
spontaneous curvature, then the stalk can adjust its shape to
accommodate this curvature and the resulting structure can
become completely stress free, thus not accumulating any
elastic energy (apart from Gaussian curvature). If the initial,
reference state of this monolayer was planar, then the frus-
tration energy is released and the energy of the stalk, de-
fined as the difference between final and initial state, be-
comes negative, in contrast to the common belief that the
stalk should carry rather high positive bending energy.

We calculated the shape of the stress-free stalk and de-
termined its geometrical and energetic characteristics. This
is the main result of the mechanical analysis performed in
this paper. It is important to note that there are no adjustable
or postulated parameters in the stress-free stalk model: all
characteristics were calculated and found from basic phys-
ical principles. The energy of the stalk was found to be
much lower than in the original model (Kozlov and Markin,
1983) where the stalk was postulated to have a circular
shape. Unfortunately, this erroneous original assumption of
the circular shape was adopted in numerous subsequent
papers devoted to the stalk model. Needless to say, these
results should also be reconsidered. Credit must be given to
D. Siegel who, although using the assumption of the circular
shape of the stalk, felt that something was troubling about it.
He wrote: “the geometric model used for some surfaces of
stalk and TMCs (circular toroids) may be a gross simplifi-
cation. This implies that the corresponding surfaces in real
intermediates would deform into different shapes with
lower free energy” (Siegel, 1999). We believe that the
stress-free stalk model solves this problem and removes the
unjustified simplification. Obviously, this model should be
used in future attempts to define the path of evolution of the
total process of membrane fusion.

We applied the stress-free stalk model to an analysis of
hemifusion and consequent transition to complete fusion.
We found that the energy barriers, which in previous ap-
proaches looked insurmountable, now became quite mod-
erate and could be reasonably overcome.

One of the energetic obstacles to membrane fusion is
represented by the void interstices that form at the neck of
the stalk (Fig. 1 B and Fig. 6). The problem of voids is rather
controversial and it is not completely resolved at the present
time. D. Siegel, who pointed out the existence of this feature
in the mechanism of fusion, proposed a possible solution
(Siegel, 1999): impurities that are always present in the
membranes can fill these interstices and drastically reduce
their hydrophobic energy.

In this context we note the paper by Basanetz et al. (1998)
aimed at determining if hydrocarbons or other nonpolar
lipids could facilitate phospholipase C-promoted fusion of
large unilamellar vesicles. These authors found that low
proportions (up to 5 mol%) of single-chain lipids promoted
fusion and that small amounts of hexadecane or squalene
significantly enhance fusion rates in their system. These
observations were interpreted to result from decreased in-
terstitial energy of the stalk connecting the two apposed
bilayers.

Based on Siegel’s proposal we considered reduced hy-
drophobic energy of interstices and analyzed the possible
evolution of a stalk from hemifusion to complete fusion.
The transformation of intermediate fusion structures can be
characterized by three parameters: the radius of the stalk,
the peel-off angle at the interstices, and the energy of the
system. In this three-dimensional space we have calculated
the energy landscape corresponding to these intermediates
(Fig. 12). The evolution of the system proceeds along the
line of steepest descent in this hilly landscape, goes over the
pass on the energy “ridge,” and then steeply drops to the
final state of complete fusion. This qualitative picture
should be rather universal, whereas the numerical charac-
teristics of this process should depend on specific properties
of fusing membranes. To get a feeling for possible numbers
we considered here one particular example with very mod-
est spontaneous curvature of �0.05 nm�1 and �eff � 0.096
mN m�1 presented in Fig. 12. The initial membranes are
assumed to be in a planar state, which is taken as a refer-
ence. Formation of the stalk and emergence of the initial
hemifusion structure (Fig. 1 B) is accompanied by an in-
crease of free energy to approximately 13 kT (Fig. 12). To
complete the fusion the system should climb up the slope to
the point at the energy ridge with the “altitude” of 46 kT,
corresponding to a stalk radius of 3.13 nm. Recall that this
radius is the distance from the axis of revolution to the
neutral surface of the stalk monolayer (Fig. 1 A). If the
transition to the fusion pore occurred here then the radius of
the fusion pore lumen would be 0.13 nm and then it would
expand.

If parameters of the fusing bilayers were different, then
the characteristics of the fusion path would change. The
barriers are rather sensitive to these changes and could
increase (or decrease) considerably. However, the radius of
the stalk corresponding to the transition of hemifusion to the
fusion pore would change very little so that we could safely
say that the radius of the initial fusion pore would be in the
range 0.1 to 0.5 nm in accordance with general expectations.

It is interesting to compare these numbers with experi-
mental data for barriers in membrane fusion. For example,
in the fusion of secretory granules with mouse mast cell
plasma membrane, Oberhauser et al. (1992) reported the
activation energy of fusion pore formation of 23 kcal/mol �
38.9 kT. For the pH-induced fusion between vesicular sto-
matitis virus and erythrocytes ghosts (Clague et al., 1990)
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the activation energy of lipid mixing was found to be 42
kcal/mol � 71 kT.

Lee and Lentz (1998) studied the onset of polyethylene
glycol-mediated vesicular fusion by monitoring lipid mix-
ing and the transfer of protons between two vesicles. They
measured the activation energy Eact of the individual steps
of fusion and found three barriers in this process that were
interpreted as the stalk formation barrier, the hemifusion,
and fusion pore formation. The stalk formation had an
activation energy Eact

stalk � 37 kcal/mol � 62.5 kT, hemi-
fusion had E act

hemi � 27 kcal/mol � 45.6 kT, and fusion
pore formation had E act

pore � 22 kcal/mol � 37.2 kT.
It is known that there are significant difficulties in inter-

preting activation energy data. However, all these numbers
are close enough and they indicate that the theoretical
estimates provided above probably caught essential features
of the fusion process. Besides this, there is another point
that should be made here. From the striking similarity of
activation energy in different systems, Lee and Lentz con-
cluded that the basic molecular processes occurring in se-
cretory and viral fusion involve a set of lipid molecule
rearrangements that are also involved in model membrane
fusion.

Another point to discuss is the proper selection of the
neutral surface in the fusion monolayers. In the early models
it was localized to the middle of the monolayer. How is this
issue addressed in the stress-free stalk model? For the stalk
per se this question is immaterial: we have calculated the
shape of the neutral surface itself, therefore the result is
correct wherever in the monolayer it is located. It is also not
important for hemifusion for the following reason: the
hemifusion structure (Fig. 1 B) consists of the stalk, the
dimples, and the bilayer wings. The dimples, as well as the
stalk, were described by their neutral surfaces covering a
spherical sector with a certain body angle. Only the body
angle determines the bending energy of a spherical segment
formed by a monolayer. Hence, it also does not matter
where this surface is located.

The rest of the hemifusion structure is formed by the
bilayer. The bilayer bending energy depends on the position
of the neutral surface. However, the wings in the hemifused
state carry a very small portion of the energy of the hemi-
fusion structure. Therefore, the error in its estimate does not
noticeably change the total energy. This question can be
relatively important for the calculation of the fusion pore
energy as was demonstrated in the corresponding section.
When the neutral surface is shifted closer to the lipid heads
the energy of the fusion pore increases. In the analysis of
transition from hemifusion to the fusion pore it will lead to
some increase of the barrier and increase of the initial pore
size. As we mentioned above the size of the pore can vary
between 0.1 and 0.5 nm. The increase of the barrier by a few
dozens percent is quite possible and, indeed, might even
better correspond to experimental observations.

Let us return to the question of the hydrophobic inter-
stices. As was suggested by D. Siegel, they can be filled
up by the impurities present in the membrane. However
there is another way to achieve the same goal: to deform
the monolayer in the normal direction. In this case a
sharp point—a beak—would appear at the contour. In
previous models such deformations were ignored and
only smooth curves were allowed. The shift of lipid
molecules in the normal direction represents the defor-
mation of tilt that in the last decade has attracted atten-
tion of researchers. There might be a possibility that by
allowing such deformation the filling of the gaps could be
achieved at a lesser energy cost than preserving the
hydrophobic voids. We calculated the energy of the hy-
pothetical tilt deformation at the HII phase of DOPE and
found that it is about equal to the energy previously
estimated for the hydrophobic voids. Therefore in this
case the tilt deformation does not provide any energy
gain. This does not mean that tilt deformation could not
occur in the HII phase. On the contrary, the equality of
these two energies indicates that both conformations are
possible and that they should exist simultaneously in the
HII phase. This means that in the hemifusion structure the
tilt deformation would not provide significant decrease of
energy, and filling the interstices with impurities is the
much more beneficial solution of the problem. In this
context it is probably best to avoid using the term “im-
purities” for some minor components that are always
present in biological, and even in model membranes, and
can play such an important role in membrane physiology.

Based on the fact that hydrophobic void and interstices
with tilt deformation have similar energies we calculated
the linear tension of the trilaminar contact or the perim-
eter on the trilaminar structure. This has a rather high
value of 7.8 kT nm�1 that seems to prohibit formation of
any extensive trilaminar diaphragm. In a recent review
Stegmann (2000) underlined that the hemifusion dia-
phragm was estimated to be no wider than 1 nm. The
same reasoning caused Frolov et al. (2000) to avoid
describing the actual geometrical structure of the hemi-
fusion diaphragm and instead guardedly phrase its defi-
nition as follows: “Operational definition of the term
‘hemifusion’ is the state of two interacting bilayers where
the mixing of lipidic components occurs without the
mixing of aqueous contents.” It is true that the existence
of linear tension at the perimeter of the trilaminar dia-
phragm forces it to collapse. However, it only means that
small diaphragms cannot exist. The larger trilaminar di-
aphragm can be rescued by membrane tension. If the
fusing bilayers have membrane tension �b and the tril-
aminar diaphragm has a circular shape of radius rtri then
the equilibrium between them can be described by a
two-dimensional analog of the Laplace equation (Volkov
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et al., 1998) and the critical radius of the diaphragm can
be found as

rtri �
ftri

2�b
(42)

The trilaminar structure can exist if its radius exceeds this
value. The bilayer tension is usually of the order of � � 2
mN m�1 � 0.48 kT nm�2. The linear tension of the tri-
laminar contact was estimated above as ftri � 7.8 kT m�1

for c0 � 0, and 4.7 kT m�1 for c0 � �0.1 nm�1. The critical
radius of the trilaminar structure for these two cases is 8.1
and 4.9 nm, correspondingly. Therefore small trilaminar
structures should either close up or overcome the barrier at
the critical radius and then reach a certain equilibrium size.
There is no physical reason why an extended trilaminar
structure could not exist.

The new stress-free stalk model has an important bearing
on the analysis of hydrophilic pores in a single lipid bilayer
(Chernomordik et al., 1987; Neumann and Kakorin, 2000;
Melikov et al., 2001). The pore edge is similar to the stalk
with the inverted monolayer and hence with opposite sign of
the curvature. However there is one important difference:
the thickness of the bilayer, which is equivalent to the height
of the stalk, is constant. Taking this into consideration we
calculated the energy of the pore as a function of its radius
for a few selected spontaneous curvatures of the monolayers
(Fig. 13). The new model predicts much lower pore energy.
With increasing spontaneous curvature the pore energy de-
creases. The curve for zero spontaneous curvature starts
slightly above zero energy and increases with pore radius.
Interestingly, at c0 � 0.1 nm�1 the initial pore energy is
negative but with increasing radius it becomes positive.
However, if spontaneous curvature is increased to 0.3 nm�1

the curve remains negative throughout the long range of
radii up to 2.5 nm. It also displays a minimum at rp � 0.5
nm although a shallow one. So the new model gives much

smaller pore energies than the previous one with a circular
shape of the edge cross-section and predicts that at certain
chemical compositions a pore can be stabilized. This might
explain the existence of so-called nonconducting prepores
and metastable single pores in lipid bilayers reported in
Melikov et al. (2001).

The model of the stress free stalk essentially uses the
concept of spontaneous curvature, and it predicts how the
variation of this parameter would influence different stages
of the process. This question was at the center of attention
of numerous experimental studies of membrane fusion (see
Review in Chernomordik et al., 1995b and references there-
in). Their results confirm the general prediction of the
model that increasing the negative curvature of both mono-
layers helps fusion. Just for one example, Basanez et al.
(1998) demonstrated that symmetrically distributed arachi-
donic acid, which increases the negative curvature, en-
hances lipid and content mixing, and the opposite was found
with symmetrically distributed lysophosphatidylcholine or
palmitoylcarnitine, which facilitate a positive monolayer
curvature.

The new model of membrane fusion should have impor-
tant bearings on a number of other issues. Among them is
the interpretation of lamellar-to-hexagonal or cubic thermo-
tropic phase transition (Siegel, 1999) because it changes the
energetic relationship between different intermediates of
this process. Again the notion of spontaneous curvature
plays an important role here. In the paper cited above
(Basanez et al., 1998), it was shown that all lipids that
facilitate fusion decrease the transition temperature,
whereas fusion inhibitors increase the transition tempera-
ture. Moreover, fusion (content mixing) rates showed a
maximum at the lamellar-to-isotropic transition tempera-
ture. These observations suggest that similar lipid structures
are involved both in the inverted cubic phases and in mem-
brane fusion.

The model also underscores the significance of proteins,
which influence membrane curvature in biological fusion
events. For example, two enzymes, endophilin (Schmidt et
al., 1999) and CtBP/BARS (Weigert et al., 1999), can
promote negative curvature by virtue of their abilities to
convert lysophosphatidic acid, a cone-shaped lipid, into
phosphatidic acid, an inverted cone. These proteins were
found to be essential for vesiculation at the plasma mem-
brane and the Golgi apparatus, respectively. We are cur-
rently analyzing the interplay between dynamin, a force
generating enzyme that interacts with phosphoinositides
(Barylko et al., 1998; Achiriloaie et al., 1999) and physi-
cally induces membrane bending (Hinshaw, 2000) and en-
dophilin, with which it binds directly (Binns, Markin, and
Albanesi, manuscript in preparation). In addition, we are
exploring the role of other enzymes that are likely to influ-
ence membrane curvature, particularly a phospholipases A2

enriched in secretory vesicle membranes (Hildebrandt and
Albanesi, 1991).

FIGURE 13 Bending energy of the pore edge, rp � a � �, � � 0.73 nm.
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The model of the stress-free stalk presented here, al-
though much more advanced than the original one, still
includes a number of simplifications and can be improved in
some points. For example, we have rigorously calculated
the shape of a monolayer stalk and found its absolute
minimum when its total curvature is constant over the total
area of the stalk and equal to spontaneous curvature.
Clearly, the energy of the stalk cannot be made lower. When
analyzing the shape of a bilayer after complete fusion (fu-
sion pore) we used the same idea of constant total curvature
of the reference surface of the bilayer. This permitted a
drastic reduction in the bending energy of the bilayer, al-
though the existence of the energy minimum was not strictly
proven. More detailed analysis showed (unpublished re-
sults) that the optimum shape of a bent bilayer should be
found by minimizing local energy density as a function of
two principal curvatures and the energy can be somewhat
decreased. However the results practically coincide with the
assumption of constant curvature, at least for the bilayer
without spontaneous curvature. Some modest corrections
can be expected for monolayers with high spontaneous
curvature and for strongly asymmetric bilayers. We shall
deal with this in a separate publication (manuscript in prep-
aration).

Gaussian curvature and corresponding bending energy
was customarily neglected in majority of papers dealing
with membrane transformations. There are good reasons for
that especially because its elastic modulus is virtually un-
known. However, in the intermediates with low bending
energy the role of Gaussian component might become im-
portant, and it might need to be taken into account. Another
point of concern is Helfrich’s original assumption (Helfrich,
1973) that bending energy is described by a quadratic ap-
proximation. The huge success of the Helfrich model in
different fields partially justifies the wide use of this ap-
proximation. However, at very small radii of curvature this
approximation becomes questionable and in the future it
might be revisited. For this one would need a new Hamil-
tonian that has not yet been developed.

Another field for improvement is the relationship be-
tween height, L, and width, b, of the stalk; in the present
analysis they were allowed to acquire any value leading to
the minimum of the stalk energy. We have not assumed any
limitation or relationship between them. In practice there
might be some limitations. For example in the presence of
a “scaffold” around the fusion area (Nanavati et al., 1992;
Monck and Fernandez, 1996) the degree of freedom of any
one of these parameters can be limited and progress of
fusion can be slowed down or even completely aborted.
This would result in the well-known phenomenon of exo-
cytosis interruptus or kiss-and-run mechanism in exocytosis
(Schneider, 2001).

One more point of concern is that different contributions
to the hemifusion energy were calculated separately without
global minimization. That means that the total energy, al-

though drastically reduced in comparison with the original
model, might be decreased even more if different compo-
nents were permitted to compensate for each other. How-
ever we do not expect this decrease to be very significant,
although it remains to be demonstrated.

All of these examples show that there are many issues in
membrane fusion that still need to be addressed. The theory
of this phenomenon has remained a hot topic for more than
a decade and is still far from completion. All the fusion
intermediates that were considered by different authors es-
sentially represent a static view of the complex multistage
process. A very important understanding of transitions be-
tween these stages is still missing. There is a need of a new
and different approach to this phenomenon. An important
insight into this transitive process may come from the
molecular dynamics modeling of membrane fusion that was
recently undertaken (Ohta-Iino et al., 2001) but is still in its
initial stages.

In conclusion we would like to thank L. V. Chernomordik, Yu. A. Chiz-
madzhev, A. J. Hudspeth, P. I. Kuzmin, and R. P. Rand for useful
discussion.
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