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P-Rex1, a novel Rac activator, has been identified in
the first biochemical purification of a guanine
nucleotide exchange factor for GTPases of the Rho
family. P-Rex1 is synergistically activated by PIP3
and Gββγγ and may act as a coincidence detector for
these signaling molecules.

Small GTPases of the Rho family regulate a vast spec-
trum of functions in eukaryotic cells, from cyto-skele-
tal rearrangements to vesicle transport to transcriptional
regulation. Rho GTPases act as molecular switches,
cycling between an ‘inactive’ GDP-bound form and an
‘active’ GTP-bound form. Activation is accomplished
by guanine-nucleotide exchange factors (GEFs) which
catalyze GDP dissociation, thereby facilitating GTP
loading. Members of the Rac subfamily of Rho GTPases
play an important role in transcriptional activation, the
production of reactive oxygen species, and actin poly-
merization during lamellipodial formation [1].

A recent study [2] has identified a novel Rac activa-
tor, P-Rex1, which may act as a coincidence detector
for signals transduced by phosphoinositide lipids and
trimeric G proteins. The road to the discovery of P-
Rex1 began with a biochemical assay for the produc-
tion of reactive oxygen species in neutrophil lysates.
Reactive oxygen species are produced downstream of
G-protein-coupled receptors in neutrophils and other
innate immune cells, and represents an essential
component of the pathogen killing process [3]. Both
phosphatidylinositol 3-kinase (PI 3-kinase) and Rac
have been implicated in reactive oxygen species
production, and activated Rac is sufficient to drive
production of reactive oxygen species. Welch et al. [2]
found that the PI 3-kinase lipid product PIP3 can also
stimulate reactive oxygen species formation in
neutrophil lysates, and this stimulation is blocked by
proteins that sequester GEFs for Rac.

These data suggested that PIP3 activates exchange
factors for Rac in neutrophil lysates. Using a direct
assay for PIP3 activation of Rac, Welch et al. [2] purified
a novel exchange factor for Rac, which they named P-
Rex1, for PIP3-dependent Rac exchanger [2]. P-Rex1
was the major PIP3-dependent Rac GEF in neutrophil
lysates, representing about 65% of the total Rac GEF
activity. As Gββγγ also suffices to stimulate reactive
oxygen species production in neutrophil lysates,
Welch et al. [2] tested whether Gββγγ can activate P-
Rex1. Surprisingly, they found that Gββγγ directly acti-
vates P-Rex1, and synergizes with PIP3 for P-Rex1
activation in vitro and in vivo. Antisense-mediated

knock-down of P-Rex1 levels in a neutrophil-like cell
line decreased agonist-induced formation of reactive
oxygen species by 40–45%, suggesting that P-Rex1 is
necessary for full reactive oxygen species production
in vivo [2].

The identification of P-Rex1 is particularly signif-
icant in several respects. This is the first biochem-
ical purification of an exchange factor for a Rho
GTPase based on its activity. Most other mammalian
Rho GEFs have been identified either as oncogene 
products or by homology to known GEFs identified 
by genetic screens in a model species. The best
known Rho GEF activators have been protein kinases.
PI 3-kinase has been reported to regulate several of
these GEFs, but it primarily appears to do so indi-
rectly, by affecting GEF phosphorylation by protein
kinases. Where PIP3 has been reported to directly
regulate GEFs in vitro, the observed degree of GEF
activation was significantly lower than for P-Rex1: for
example, PIP3 activated Vav1 [4] and Pix [5] less than
2.5-fold, compared to 20-fold activation of P-Rex1 by
PIP3 [2]. Finally, P-Rex1 is the first example of an
exchange factor for Rho GTPases that is directly stim-
ulated by Gββγγ. Other Rho GTPase exchange factor are
known to act downstream of Gββγγ, but the yeast GEF
Cdc24 requires adaptor proteins to bind to and be
activated by Gββγγ  [6], and the mammalian GEF Ras-
GRF is regulated indirectly by Gββγγ through tyrosine
phosphorylation [7].

How does P-Rex1 fit into the known picture of Rac
activation in neutrophils? In neutrophils and other
haematopoietic cells, Gββγγ release and PIP3 production
are linked by the lipid kinase PI 3-kinase-γγ and its
adapter protein p101 (Figure 1A) [8]. Therefore, both
coactivators of P-Rex1 are naturally produced upon
activation of a G-protein-coupled receptor. In con-
trast, activation of some tyrosine kinase receptors
which fail to generate Gββγγ can lead to significant
production of PIP3 but no detectable Rac activation.
In some [9,10] but not all [11] experiments, Rac acti-
vation in neutrophils is dependent on PI 3-kinase, pos-
sibly reflecting the relative importance of Gββγγ versus
PIP3 at different time points for Rac activation.

The fact that Gββγγ and PIP3 synergize in P-Rex1
activation suggests that they bind separate domains
of P-Rex1, though neither domain has yet been iden-
tified. The pleckstrin homology (PH) domain would
seem the most obvious candidate for interaction with
PIP3, although P-Rex1’s PH domain is not very similar
to those of known PIP3-binding proteins, such as Akt,
Grp1 and Btk. For interaction with Gββγγ, the DEP domain
is a good possibility as it is found in ‘regulator of G
protein signalling’ (RGS) proteins, which interact with
the Gαα subunit of heterotrimeric G proteins and other
signaling proteins that act at the plasma membrane
(Figure 1B). Identifying the protein domains used by P-
Rex1 to interact with Gββγγ and PIP3 will be instrumen-
tal for identifying additional GEFs and other proteins

Dispatch

Current Biology, Vol. 12, R429–R431, June 25, 2002, ©2002 Elsevier Science Ltd. All rights reserved. PII S0960-9822(02)00917-X

Department of Cell Biology, Harvard Medical School, 240
Longwood Ave/ C-1, 502, Boston, Massachusetts 02115,
USA. E-mail: orion_weiner@hms.harvard.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82147327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


that relay signals downstream of these important sig-
naling molecules.

Numerous effectors for PIP3 have been character-
ized, and specific protein domains involved in PIP3
binding have been identified [12]. Several of these
proteins, such as the serine-threonine kinase AKT,
appear to translocate from the cytosol to sites of PIP3
production. In contrast, P-Rex1 exhibits significant
basal association with the plasma membrane and is
not significantly recruited upon PIP3 production [2].
Similarly, significant PI 3-kinase-γγ is associated with
the membrane even in the absence of stimulation [13].
This basal association of PI 3-kinase-γγ and P-Rex1
with the plasma membrane may be necessary for the
extremely rapid activation of Rac, which can peak in
10 seconds in neutrophils. Because these molecules
may be allosterically activated, and not regulated
solely by localization, this will present a challenge for
assaying the spatial distribution of activated P-Rex1
and p101/110γγ.

Although the initial characterization of P-Rex1
focused on its role in reactive oxygen species forma-
tion, P-Rex1 is very likely to coordinate other Rac
activities downstream of Gββγγ and PIP3 in neutrophils,
such as actin polymerization. When presented with a
gradient of chemoattractant, neutrophils respond with

highly oriented polarity and motility toward the source
of chemoattractant. Actin polymerization and PI 3-
kinase lipid products exhibit strong asymmetries
aligned with the chemotactic gradient [14], and both
PI 3-kinase and Rac are necessary for proper neu-
trophil chemotaxis [15]. P-Rex1 is an excellent candi-
date for linking gradients of PIP3 production during
chemotaxis with Rac-mediated cytoskeletal rearrange-
ments. The synergistic activation of P-Rex1 by Gββγγ
and PIP3 might also help sharpen the asymmetry of
Rac activation during chemotaxis.

Do P-Rex1-like exchange factors function solely in
the immune system and brain of mammals, or might
they act more generally? Although P-Rex1 is primarily
expressed in the immune system and the brain, there is
a close homolog to P-Rex1 on chromosome 8 that may
be more broadly expressed. There are good homo-
logues of P-Rex1 in pig and mouse, but no exchange
factors with obviously similar domain structure in
Caenorhabditis elegans or Drosophila, suggesting
either that P-Rex1-like molecules are not necessarily
universal links between Gββγγ, PIP3 and Rac activation or
that the relevant architecture of P-Rex1 may lie beyond
its currently identified domains. It is also important to
note that at least one additional peak of PIP3-stimulated
exchange factor activity for Rac was observed in neu-
trophil lysates [2], so it is likely that more PIP3-regulated
GEFs for Rac will be discovered before long.

What about other signaling cascades where PIP3
has been implicated in Rac activation? A great deal 
of evidence suggests that PI 3-kinase activation is
required to turn on Rac in response, not only to 
G-protein-coupled receptors, but also to tyrosine
kinase receptors such as the platelet-derived fibro-
blast growth factor (PDGF) receptor in fibroblasts 
and other cells [16]. Remarkably, recent evidence 
suggests that, to activate Rac, the PDGF receptor
requires transactivation of a G-protein-coupled recep-
tor. In the absence of EDG-1 — a G-protein-coupled
receptor for sphingosine phosphate — stimulation 
of the PDGF receptor fails to activate Rac. Stimulation
with PDGF results in activation of sphingosine kinase,
production of sphingosine phosphate and activation
of EDG-1. Interference with this receptor cross-talk —
by inhibition of sphingosine kinase or G-protein 
signaling, or the absence of EDG-1 — prevents the
usual increase in motility and Rac activation in
response to PDGF [17].

Why is there a requirement for the transactivation of
G-protein-coupled receptors if the PDGF receptor can
generate PIP3 and recruit GEFs for Rac on its own?
One intriguing possibility is that the G-protein-coupled
receptor provides Gββγγ which synergizes with PIP3 gen-
erated by the PDGF receptor for full synergistic activa-
tion of P-Rex1 or a similar exchange factor. Indeed, a
variety of signaling events for cell polarity appear to
rely on heterotrimeric G-protein activation, including
cell polarization in response to external cues in mam-
malian cells, budding yeast and Dictyostelium [14], and
asymmetric cell division in Drosophila [18] and C.
elegans [19], suggesting that some property of het-
erotrimeric G-protein signaling may naturally lend itself
to polarity establishment.
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Figure 1.

(A). Signal transduction cascade for P-Rex1 activation in neu-
trophils. Activation of a G-coupled receptor (green) by
chemoattractant (CA) stimulates the activation of heterotrimeric
G-proteins (orange) and dissociation of Gαα from Gββγγ. Gββγγ
directly stimulates PI 3-kinase-γγ (PI3Kγγ), leading to the produc-
tion of PIP3. Both Gββγγ and PIP3 synergize in activating P-Rex1
which catalyzes nucleotide exchange on Rac. Activated Rac
then stimulates superoxide activation necessary for pathogen
killing and actin polymerization necessary for lamellipodial for-
mation and chemotaxis. (B) Domain structure of P-Rex1.
Almost all exchange factors contain a Dbl-homology (DH)
domain followed by a pleckstrin homology (PH) domain. P-
Rex1 also contains tandem DEP homology domains, tandem
PDZ domains, and an apparently enzymatically inactive inosi-
tol polyphosphate 4-phosphatase domain.
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Why construct an exchange factor to be sensitive to
coincident generation of Gββγγ and PIP3? Perhaps this
permits Rac activation to be variably coupled to these
signaling cascades. This may allow independent reg-
ulation of G-protein-coupled receptor pathways such
as sensory transduction, or PIP3-regulated events
such as proliferation and survival, to occur in instances
where Rac activation and cell motility are not desired.
In contrast, Rac activation and cell migration can be
stimulated in cells such as neutrophils, where Gββγγ
release is directly coupled to PI 3-kinase activation, or
fibroblasts, where cross-talk between the PDGF
receptor and G-protein-coupled receptors provides
the proper signals for P-Rex1 activation.
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