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Abstract

In this paper we construct three infinite series and two extra triples (Es and Eg) of complex
matrices B, C, and A = B + C of special spectral types associated to Simpson’s classification in
Amer. Math. Soc. Proc. 1 (1992) 157 and Magyar et al. classification in Adv. Math. 141 (1999)
97. This enables us to construct Fuchsian systems of differential equations which generalize
the hypergeometric equation of Gauss—Riemann. In a sense, they are the closest relatives of
the famous equation, because their triples of spectral flags have finitely many orbits for the
diagonal action of the general linear group in the space of solutions. In all the cases except for
Eg, we also explicitly construct scalar products such that A, B, and C are self-adjoint with
respect to them. In the context of Fuchsian systems, these scalar products become monodromy
invariant complex symmetric bilinear forms in the spaces of solutions.

When the eigenvalues of A, B, and C are real, the matrices and the scalar products become
real as well. We find inequalities on the eigenvalues of A, B, and C which make the scalar
products positive-definite.

As proved by Klyachko, spectra of three hermitian (or real symmetric) matrices B, C, and
A =B+ C form a polyhedral convex cone in the space of triple spectra. He also gave a
recursive algorithm to generate inequalities describing the cone. The inequalities we obtain
describe non-recursively some faces of the Klyachko cone.
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1. Introduction

Let V' be a vector space over complex numbers such that dim V' =n where
l<n< oo. Let B, C be linear operators in ¥ and let A = B + C. We call the pair B, C
irreducible if the operators do not preserve simultaneously any proper subspace of V.

Let O4 be the adjoint orbit of A in End ¥ under the GL(V) action. We call the
triple A, B, C rigid, if any other triple B, C', A’ = B’ 4+ C’ such that A’ O, B'€ Og,
and C' e Oc¢ is conjugate to the triple A, B, C.

For a linear operator AeEnd V', we call the multiset of its eigenvalues the
spectrum of A. This means that each eigenvalue 4; is taken with its multiplicity m;.
Any ordering 4;, 4, ...,/ of distinct eigenvalues of A allows us to represent the
spectrum of A by a vector s(A)= (AL, 0 Ao, ..o, g Ax)eC". For a

mp times my times my. times
diagonalizable operator A, we call the partition (m;,ma, ...,my) of n the spectral
type of A. With slight abuse of terminology, we also call the spectral type of A any
composition obtained by some ordering of 4;,...,4. We say that a vector
(X1y ooy Xy Py ooy Yy 215 ...,zn)e(([:")3 satisfies the trace condition if > 7 | x; =
S (i + ). Then (s(A),s(B),s(C)) belongs to the hyperplane in (C")* defined
by the trace condition. We call this hyperplane the space of triple spectra. Let o =
(mi,my, ...,m,), = (ni,n,...,ng), and y = (ky,k», ..., k,) (compositions of n) be
the spectral types of A, B, and C. Then (s(A),s(B),s(C)) lies in the part
S(a, B,7) = C*" defined as follows. A vector (x,y,z)eC* is in S(a, f,7) if x; = x5 =
= Xy E X+l = 0 = Xy 4m, 7 -+ and the same for y and z.
Consider the following table of triples of spectral types.

hypergeometric family | (1, m — 1), (1™), (1™) m =2
even family (m,m), (1,m — 1,m), (12™) m=2
(1.1)
odd family (m+1,m),(1,m,m),(12"*1) | m >2
extra case (4,2),(2,2,2), (19

Here and later (17) is a shorthand for (1,1, ...,1).
———

n times

Theorem 1.1 (Simpson, Kostov). Let («, 3,7) be a triple of spectral types such that at
least one of them is (1"). The following conditions are equivalent:
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1. for a generic point (x,y,z)eS(a, B,7) there exists a rigid irreducible triple (A =
B + C, B, C) of diagonalizable operators such that (s(A),s(B),s(C)) = (x,,z);
2. (o, B,v) is one of the triples in (1.1).

Remark 1.1. This theorem is an additive version of Theorem 4 of [29]. This version
easily follows from Simpson’s results. A more elementary proof of Theorem 4 of [29]
and a proof of Theorem 1.1 were given by Kostov [17].

The first main result of this paper is that for each triple («, f5,y) of spectral types
from (1.1) and a generic vector from S(«,f5,y) we explicitly construct the
corresponding triple (A, B, C).

Recently, there appeared algorithms to produce all rigid irreducible r-tuples of
matrices M, ..., M, such that M| + --- + M, = 0, see [4,5]. We use a different (less
general, but more powerful for our particular purposes) tool: Magyar et al. [26]
constructed all indecomposable triple partial flag varieties with finitely many orbits
for the diagonal action of the general linear group. Their list (4.41) is strikingly
similar to list (1.1) of Simpson. It has just one more family: the Eg-family. A triple of
spectral flags (for the definition, see Section 4) of the matrices A, B, and C
constructed from Simpson’s list (1.1) gives a representative of the open orbit of the
corresponding triple flag variety from (4.41).

Our A, B, and C have the following common features. B is block upper-triangular,
C is block lower-triangular. The block sizes of B and C are given by the compositions
p and y, respectively. Each entry of A, B, and C is a ratio of products of linear forms
in the eigenvalues of A, B, and C. The coordinates of all eigenvectors of A, B, and C
are also ratios of products of linear forms in the eigenvalues. The linear forms are
remarkably simple: all the coefficients are equal to either 1 or —1. As a corollary of
our construction, we obtain the following.

Theorem 1.2. For every composition (o, 8, y) from Simpson’s list (1.1), there exist open
subsets S" (o, B,y) =S (o, B,y) =S(a, B,7) with the following properties.

1. Each of S'(«, B,7) and S"(x, f,y) is obtained from S(a, f,y) by removing finitely
many hyperplanes.

2. If (s(A),s(B),s(C))eS'(«, B,7), then there exists a non-zero symmetric bilinear
form on V such that A, B, and C are self-adjoint with respect to it.

3.0 (s(A),s(B),s(C))eS"(a,B,y), then there exists a non-degenerate
symmetric bilinear form on V such that A, B, and C are self-adjoint with
respect to it.

This theorem is proved case by case in Theorems 2.2, 2.5, 2.8, 2.11 for the bilinear
forms given by formulas (2.4), (2.14), (2.22), (2.25) correspondingly.

Remark 1.2. The main virtue of this theorem is not the proof of existence of the
objects, but an explicit construction of all of them.
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In Simpson’s list (1.1), the last composition y is always (1”). Thus, the
matrix C has all eigenvalues distinct. Let v; be the eigenvector of C corresponding
to the eigenvalue ¢;. If C is self-adjoint with respect to a scalar product < *, % »
on V, then (v;,v;> =/[i6;. If we manage to find /; such that the matrix B
becomes self-adjoint with respect to {*, x> as well, then A is also self-adjoint
with respect to {(*,* ) as A =B+ C. We find the /; and it turns out that they
are also ratios of products of linear forms in the ecigenvalues of A, B, and C.
And again all the coefficients of the forms are equal to either 1 or —1. The set of
linear forms that appear in the /; includes the set of linear forms that appear
in the matrix elements of A, B, and C and in the coordinates of their
eigenvectors. The hyperplanes one has to remove from S(«,f,y) to obtain
S"(a, B,7) of Theorem 1.2 are exactly the zero levels of the linear forms that appear
in the /;. The explicit formulas we find for the /; give explicit description of these
hyperplanes.

Probably the most important applications of our explicit construction is to
Fuchsian systems (see Section 6 for the definition). Let z, z;, z3 be distinct points of
CP!. Consider the following system of differential equations

d B C A
A I .

dz Z—2Zy z—23 Z-—12]

1), (1.2)

where A =B+ C, zeCP!\{z,25,23} and f takes values in V. The matrices
A, B, and C are called the residue matrices of (1.2). Their eigenvalues are
called local expomnents. Real parts of the local exponents are the rates of
growth of solutions of (1.2) expanded analytically towards the corresponding
singularities (and restricted to sectors centered at the singularities). Thus, at
each singularity the space of solutions stratifies into a flag. Local basis changes
near each singularity turn this flag into a flag variety. The triple of flag
varieties of the Gauss—Riemann equation has finitely many orbits for the
action of the general linear group in the space of solutions. The Fuchsian
systems constructed by means of our matrices exhaust the list of Fuchsian
systems (with more than two singularities) having this property. In this sense, they
are the simplest Fuchsian systems possible and we expect their solutions to be
interesting functions.

It was known to Klein that if the hypergeometric equation of Gauss—Riemann had
real local exponents, then there existed a monodromy invariant hermitian form in
the space of solutions. If the local exponents were generic, then the form was non-
degenerate and unique up to a real constant multiple. We prove the same for all the
Fuchsian systems constructed from (1.1). Indeed, when all the eigenvalues of A, B,
and C are real, the form { %, * > becomes real as well. So do the matrices A, B, and C
themselves. Thus, A, B, and C become matrices of real operators acting on the real
space V' and self-adjoint with respect to the real symmetric bilinear form < #, * > .
Let us extend the form < #, % > to the hermitian form (=, %) on V. This form gives
rise to the monodromy invariant hermitian form in the space of solutions of (1.2).
Once again, the forms are constructed explicitly. For the hypergeometric family, this
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result is not new. The Fuchsian systems from the hypergeometric family are
equivalent to the generalized hypergeometric equations studied by Beukers and
Heckman [2]. Among other things, they construct the hermitian form. Also the
generalized hypergeometric equations were studied in what became later known as
the Okubo normal form by Okubo [27]. For the generalized hypergeometric equations
in the Okubo normal form, the monodromy invariant hermitian form was
constructed by Haraoka [12].

As proved by Klyachko [14], if a hermitian form is positive definite, then the
spectra of hermitian matrices B, C and A = B + C form a polyhedral convex cone in
the space of triple spectra. His proof contains a recursive algorithm to compute the
inequalities describing the cone. We call this cone the Klyachko cone and we call
the inequalities the Klyachko inequalities. Beukers and Heckman [2] give explicitly
the inequalities on the local exponents of the generalized hypergeometric equation
which make the monodromy invariant hermitian form in the space of solutions
positive definite. Thus, they describe non-recursively a non-trivial face of the
Klyachko cone. We do the same for all the Fuchsian systems constructed from (1.1).
Hence the second important application of our results is an explicit description of
some interesting faces of the Klyachko cone. Beukers and Heckman [2] use their
criterion of positivity of the hermitian form to see when solutions of the generalized
hypergeometric equations are algebraic functions. It is also needed to know the
signature of the form for applications to number theory, see [2,5]. Our construction
provides tools to answer similar questions about the solutions of our Fuchsian
systems.

Let Z,u, and v be highest weights of GL(V). Let V;, V,, and V, be the
corresponding rational irreducible representations of GL(V). Let V,®V, =
> c}:ﬂ V, be the decomposition of the tensor product of V), and V, into the
sum of irreducible representations. It follows from the results of Klyachko [14]
combined with a refinement by Knutson and Tao [15] that the lattice points
of the Klyachko cone are precisely the triples of weights A, u, v with non-zero
Littlewood-Richardson coefficient ¢j . Thus, our techniques allow us to explicitly
describe some triples of highest weights with non-zero Littlewood—Richardson
coefficients. In fact, for all the cases we consider, the Littlewood—Richardson
coefficients are equal to 1.

The paper is organized as follows. In Section 2, we formulate main results of the
paper. Namely, we list the triples (A, B, C), the scalar products, and the Klyachko
inequalities for all the partitions from Simpson’s list (1.1). In Section 3, theorems of
Section 2 are proved and elaborated.

Although the actual construction of the matrices relied heavily on the
explicit description of representatives of the open orbits [26], it turned
out that once the answers were known, it was much simpler to prove
them by inspection. We start using the results of [26] directly only in
Section 4. In the section, we construct the matrices A, B, and C which give rise to
the Eg-family of Magyar, Weyman, and Zelevinsky. We also prove the following
theorem.
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Theorem 1.3. Let (a,f,y) be a triple of spectral types from Theorem 1.1. If
(s(A), s(B),s(C)) is a point of S"(a, B,7) then the triple (A, B, C) is irreducible.

The proof of the Theorem for the hypergeometric family is on page 22, for all
other families—on page 40.

Remark 1.3. If we take a different ordering of the eigenvalues of A, B, and C, then
the scalar products {v;,v;> change. So does the set S’, but the set S” does not.

Remark 1.4. The genericity condition of Theorem 1.1 is somewhat a mysterious
one. A theorem of Katz (see [13]) excludes the coexistence of irreducible
and reducible triples in rigid cases. If one deals with a reducible triple, then
except for the “big” trace condition one also has a “small” trace condition
coming from the reduced submatrices. These are the trace conditions resulting
from the diagonal blocks of a block upper-triangular triple of matrices. Thus,
people call generic spectra that stay away from all the “small trace condition”
hyperplanes possible (see Kostov’s papers [17-25]). In our cases however,
Theorem 1.3 gives an explicit meaning to the genericity condition: “‘generic’” means
“not in 8",

Let A, B, and C be self-adjoint with respect to a non-zero symmetric bilinear form
on V. Let (o, B, 7) be a triple of spectral types from Theorem 1.1. Then the following
corollary of Theorem 1.3 strengthens the third statement of Theorem 1.2.

Corollary 1.1. If (s(A),s(B),s(C)) is a point of S"(x, B, y), then the form is unique up
to a constant multiple.

Proof. If (s(A), s(B),s(C)) is a point of S”"(«, ,7), then it follows from Theorem 1.3
that the triple (A,B,C) is irreducible. If a triple (A,B,C) is irreducible, then
uniqueness of the form follows from Schur’s lemma. [

In Section 5, we introduce the Berenstein—Zelevinsky triangles which provide a
geometric version of the celebrated Littlewood—Richardson rule. For the Eg family,
we do not have formulas for the hermitian form as nice as we have for other families.
However, the Berenstein—Zelevinsky triangles enable us to compute the Klyachko
inequalities for the Eg-family as well.

Section 6 contains no new results. In the section, we provide (very) basic facts
about Fuchsian systems and raise questions we plan to answer in subsequent
publications. In particular, we quote some results from [11,12,31], which are very
similar to (but different from) ours.

Most of the proofs of the paper boil down to proofs of certain rational identities.
These identities are collected in Section 7 (the appendix).
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2. Main results
2.1. Hypergeometric family

Let us pick a vector (ai,as,...,as, by, ....by,c1,...,cp) from S((1,m—1),
——
m—1 times
(1), (1™)). Recall that this means a; #ax, all b; are distinct, all ¢; are distinct, and
the trace condition holds: a; + (m—1)a; =Y ", (b; + ¢;). Define the matrix
elements of B and C as follows:

0 if i<j b,'—|-Cm+1_,'—Cl2 if i<j,
B,’j = b,’ if l:]7 C,] = Cm+l1—i if i :j, (23)
bi+cm+1,,-—a2 if i>j 0 if i>].

Here is an example with m = 5.

Example 2.1.

by bi+es—ay bi+ces—ay bi+es—ar by+es—ar
0 b, by+ci—ay by+cs—a br+cs—

B=|0 0 b; by+ci—ay by+ci—ar|,
0 0 0 by by+cr—ar
0 0 0 0 bs |
i Cs 0 0 0 0]
by +cs—ay C4 0 0 0

C=|bs+ea—a b3+c—om C3 0 0
by+cry—ay by+cy—ary by+c—a (&) 0
| bs+ci—a bs+ci—ay bs+ci—ax bs+c—ay c|

It is clear that s(B) = {by, ..., b,y } and s(C) = {cy, ..., ¢,y }. Since all the b; and all the
¢; are distinct, B and C are diagonalizable.

Theorem 2.1. If B and C are given by (2.3), then A = B + C is diagonalizable and
S(A) = {a17a2,az, ...,Clz}.
—

m—1 times

Fori=1,...,m, let v, = (v!,...,vi"!, 1,0, ...,0) be the eigenvector of B with the
eigenvalue b;.
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Lemma 2.1. For 1<j<i<m, we have

; i—j—1 .
vj _ bj + Cmyl—j — A2 b+ Cmtl—j—k — A2
' bi — b; bi — bjk

k=1
Here and in the sequel, all empty products are understood to be equal to 1.
Here is an example with m = 5.
Example 2.2.
vi = (1,0,0,0,0),

b +cs—a
= — =1
V2 ( b2 _bl ) 707070>7

V3:((171+65Clz)(b3+c4012) bz+C4ﬂ2100>
(bs — b1)(bs — by) Coby—by 7))

. ((bl +es—a)(bs+cz—ar)(bs+cs—ar) (br+ca—ar)(ba+c3 —ar)
! (ba = b1)(bs — b2)(bs — b3) T (ba=bo)(ba—bs) 7

bs+c3—a2’170)7
b4—63

Vo — <(b1 +cs—ax)(bs + ¢ — az)(bs +c3—ar)(bs + c4 — ar)
(bs — b1)(bs — b2)(bs — b3)(bs — b4) ’
(by+ca —az)(bs+c, — Clz)(bs +e3—a) (bs+ 3 —ax)(bs + 2 — a)
(bs — ba)(bs — b3)(bs — bs) ’ (bs —b3)(bs —bs)
by+cr—ap 1)
bs — by '’

We define a scalar product on V' by setting

m b m b _
<V,‘,Vj> = 51/ kz lfrl( ) Hkm’iTzl 1( e az)' (24)
i1 (bi = by) (bi + ek — a2)

Here is an example of the form with m = 5.
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Example 2.3.

(b1 = b)) (b1 — b3) (b1 — ba) (b1 — bs)
(bi+c1 —ar)(bi 4+ 2 — ar) (b + ¢35 — a2) (b1 + ¢4 — a2) (b1 + ¢5 — aa)’

<V17V1> =

(by — b3)(by — ba)(bs — bs)(by + ¢5s — a2)

(v, V2 ) :(bz —b))(bat 1 —ar)(br + 2 —ar)(bs+ ¢3 — @) (ba + s — a2)’
vy, v3) = (b3 — ba) (b3 — bs) (b3 + ¢4 — az) (b3 + ¢5s — @)
3, V3 (b3 - bl)(b3 — bz)(b3 +c — az)(b3 + oy — az)(b3 +e3— az)’
Vi, va> = (by — bs)(by + ¢35 — @) (bgy + ¢4 — @) (bg + ¢5 — @)
4,4 (b4 _bl)(b4 —bz)(b4 _bS)(b4+C1 _az)(b4 + 0 _a2)7
(vs,vs) = (bs+ ¢y — ax)(bs + c3 — az)(bs + ¢4 — az) (bs + ¢5s — az)'

(b5 — b])(b5 — bz)(b5 — b3)(b5 — b4)(b5 +c — Clz)

Let S'((1,m—1),(1"™),(1"™)) be obtained from S((1,m—1),(1™),(1™)) by
removing the hyperplanes which are zero levels of the linear forms in the denomi-
nators of {v;v;»>. Let S"((1I,m—1),(1™),(1™)) be obtained from S'((1,m — 1),
(1", (1™)) by removing the hyperplanes which are zero levels of the linear forms in
the numerators of {v;,v;». It is clear that if (s(A),s(B),s(C)) lies in S’'((1,m — 1),
(1), (1)), then form (2.4) is well-defined. It is clear that if (s(A), s(B),s(C)) lies in
S"((1,m —1),(1™), (1)), then the form (2.4) is non-degenerate.

Theorem 2.2. The operators A, B, and C are self-adjoint with respect to the scalar
product (2.4).

Now suppose that the eigenvalues of the matrices A, B, and C are real
numbers. Let by >by>--->b, and c¢;>c;>--->c,. We call a real symmetric
bilinear (or hermitian) form sign-definite if it is either positive-definite or negative-
definite.

Theorem 2.3. Let the form ( *, x ) be defined by (2.4). Then it is sign-definite precisely
in the following two situations:
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bm + 1 > ay > by te b1 +em_1 > az > bi+cm

bp—1+c2 > az > bp_1+cs bo+cm_2 > as > by+cm-1

: : : : : : (2.5)
bot+cm_1 > a3 > byt bp_1+c1 > ay > bp_1+co

b1 +cm > ag ay > bptc

If the form ¢, %) is positive-definite for ¢ = +1, then ¢ =sign(a; — a). If the
inequalities of the first column hold, then a;>ay. If the inequalities of the second
column hold, then a;<ay.

2.2. Even family

Let us pick a vector (aj---,a),aa,...,a2,b1,b2, ..., b2, b3, ..., b3, ¢y, ..., Copy) from
———— N — —— ———
m times m times m—1 times m times

S((m,m), (1,m — 1,m), (1>™)). Recall that this means a; #ax, all b; are distinct, all ¢;
are distinct, and the trace condition holds: ma; + ma, = by + (m — 1)by + mb; +
212211 ¢;. Let us set up the following notation:

pék:c,'-i-bj—ak, q,-j-zci+cj+b2+b3—a1—a2. (2.6)

We now define the matrices B and C by setting

1 m-1 m
L by B+ Bim+j
m-1 0 b2 Idm_l Bl+i,m+j
B= ,
m 0 0 b3 Id,,

where

m
Hk:j+1 Gk 2m—j

Bl,1+j = (_1)m+17j 2m—1—j (1 <jsm — 1)7 (2'7)

k=m+1 (Ck - sz*j)
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| | P
_ k: i Ym+1—j, .
Biy = (=1)"7 il = (1<j<m), (2.8)
1= (e = emir )
Bl+i,m+j
Hi k=1 Qk,2m—iHIIcn W£+j qm+1—j.k
_ ( l)m 1p3l k#m+1—j k#2m—i
= | — b
" Jlecmbyll-t,-]—j (Cmei - Ck) HZ’:{ (Ck - cm+1,j)
(I<ism-1,1<j<m), (2.9)
1 m-1 m
1l eam 0 0
Com—1 0
m-1| Citi1 - 0
P g
C= Cm+1 ’
Cm
0
m Om-H’,l Cm+z‘,1+j
0
C1
where
i
Ciyig = z,n_ln"Z‘ Lie2m (1<i<m—1), (2.10)
k=2m+1—i (Com—i — ¢k
Hk 1 Qm+1 ik .
Cpiil = —p> m+ 1<i<m 2.11
m+i, m+1 IHk i (Cm+1 z_ck) ( I )7 ( )
Cm+i,l+j

m
Hk m+1 qm+1— zkH k=j+1  qk2m—j

_ (_1)m+l—j 32 k#2m—j k#m«H i
= L 1
T s (emsri — ) T (e = camy)
(1<i<m, 1<j<m —1). (2.12)

Here is an example with m = 3.
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Example 2.4.

- 31 31
__ 925935 P3 934935 __ Dby g2s 31
bl cq—cs q34 (c1—c3)(ca—c3) c1—c2 pi
b pgl g15 934 Pg q15 31
0 2 0 (c1—cs)(c2—c3) c1—c2 pi
0 0 b p3' q14 924 g5 _ pilquages Py g2a
B = 2 | (ei—cs)(cz—cs)(ca—cs) (ci—c2)(ca—cs) ca—cs
0 0 0 b3 0 0
0 0 0 0 b3 0
| O 0 0 0 0 bs |
[ Ce 0 0 0 0 01
—q15 Cs 0 0 0 O
_ 914024
Caccs 0 Cq 0 0 O
C ==
32 pa q25 32
—D3 Ca—Cs D3 C3 0 0
32
Pz d24 __ DP3 4924493s Pz 934
ca—c3 (c2—c3)(ca—cs) cz—c3 0 e 0
PP quaqis . P32 q14 a25 @35 P32 q15 gs4 0 0 e
L (c1—c2)(c1—c3) (c1—c2)(c1—cs)(ca—cs)  (c1—c2)(c1—cs) 1]

It is clear that B and C are diagonalizable and that their spectra are
S(B):{blvaab27~--ab277b3,b3a~~~7b3ab3},S(C):{Cla“'vCZm}'

m—1 times m times

Theorem 2.4. If B and C are as above, then A =B+ C is diagonalizable and
s(A) ={ay, ...,a1, ar, ..., a2}
N —— N——

m times m times

For i=1,...,2m, let v; = (0,...,0, 1,02~ v?) be the eigenvector of the
matrix C with the eigenvalue c;.
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Lemma 2.2. 1. For 1 <i<m, we have vﬁ =0 forall2m+1—i<j.
2. For 1<i<m — 1, we have vf,m =0when m+1—i<j<m and

m—1+j m
Hk:m+l Am+1-jk Hk:erlfi Qlc,m+i
m+j k#m+i k#m+1—j

i 32
Ui = (_l)lperlfj

(Cm+1*j — Cmti) H;cn:erzfj (Cerlfj — k) Z:rl:l (ck — Cmi)

for 1<j<m.
3. For 1<j<m — 1 we have

J
I _ [Tt grom-j
Uom = 2m
k=2m+1—j (com—j — k)

and for 1 <j<m we have

32
Um+j _ (71 m+1 pm+17j
2m

Cmt1—j — Com

14
Hm k=1 . qkc2m H;?:mijl dm+1—-jk

LALLM - . (2.13)

k=m+1 (Ck - sz) Hk:m+27j (cﬂhLl—j - Ck)

Here is an example with m = 3 (ey, ..., €y, is the standard basis of V).

Example 2.5

Vi =€, V2 ==€5, V3 =8¢y,

»y Py g PRaq1sqaa )

Al = 0)0) 1) ) )
4 ( C3 — C4 (C2 - 03)(02 - C4) (Cl — 62)(61 — C3)(Cl - C4)

Vs = (0 1.0 P%zths P§2424Q35
o ’(6’3 - 05)(04 - 6‘5)’ (Cz - 03)(6’2 - Cs)(C4 - Cs)’
P?2Q14Q2SQ35 )
(1 —e2)(er —e3)(er —es)(ea—cs))’
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Ve = ( qi1s5 q14424 P;zquIzé
"es —c6' (cq — ¢5)(cq — c6) (c3 — c6)(ca — c6)(c5 — ¢g)

P%2Q24Q16Q36
(c2 —¢3)(c2 — ¢c6)(ca — c6)(cs — o)’

P q1ad15926936 )
(e1 —ca)(er — e3)(er — ¢s)(ea — ¢c6)(es — ¢5))
We define a scalar product on V by setting

2m
2m Hk:zmﬂﬂ' qirm

hi1 (€= Cx) k#i
Vi, vy =05 == e
k=1 (Ci —cx) k=1 {ik
ki
31
pi e
- if i<m
x{ pP o (2.14)

p?lpfz if i>m.

Here is an example with m = 3.
Example 2.6.

31
V4 qd16
v, vy =(c1 —e)(cr — ¢3)(er — ea)(e1 — es)(c1 — ) X =5 X ———,
( ) ) ) ) ) P?z 412913914915

(2 —a)(e—a)(e—c)(a—c) p' s

<V2,V2> - > X ’
G—a Dy q12423924
- _ _ 31
vy =@z elaazes)les —eo) by qudisdss
(3 =c)(es — ) D3 q13923
<V4 V4>: (C4—C5>(C4—6‘6) % 31 32X%
7 (c4—c1)(cs —ca)(cqg —e3) ~ T4 74 qiagas
Cs— ¢
(vs,¥5) = = « Rl p 92593594556

(es —c1)(es — ea)(es — ¢3)(es — ca) q15
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! 31,32
X X 2643644 .
o — Cl)(C6 — 02)(06 — C3)(C6 — C4)(Cé — CS) p6 p6 4169269364464 56

{¥6,¥6) =(

The sets S'((m,m), (1,m —1,m), (1)) and S"((m,m),(1,m —1,m), (1*™)) are
constructed from (2.14) similarly to the hypergeometric case (see page 7) and have
the same properties.

Theorem 2.5. The operators A, B, and C are self-adjoint with respect to the scalar
product (2.14).

Now suppose that the eigenvalues of the matrices A, B, and C are real numbers.
Let aj>ar and ¢ci>cy> -+ > copn.

Theorem 2.6. The form { x,x) defined by (2.14) is sign-definite precisely in the

following six situations:

b1>b3>b2

p?é—l >0> p?r%2
p%m—l >0> pgm

q1,2m—2 > 0> q1,2m—1

g2,2m—3 > 0> q22m—2
q32m—4 > 0> @3 om—3

dm—1,m > 0> dm—1,m+1

b1 > bQ > b3

32 0> p‘;’;
Dy > 0> priy
q1,2m—-1> 0> q1.2m
g2,2m—2 > 0> q22m—1

qm—l,m+1 > 0 > qm—l,m+2
0> dm,m+1

b2 > bl > b3
0> pi!
P32 >0>p2,,
q1,2m > 0> q2,2m
g2,2m—1 > 0> g3 2m—1

qm—l,m+2 > 0 > Qm,m+2
dm,m+1 > 0

b2>b3>b1

P,
Pm+t1 >0> P42

g2,2m > 0> g32m
432m-1> 0> qa2m—1
Ga2m—2 > 0> g5 2m—2

qm,m+2 > 0> dm+1,m+2

b3 > bz > b1

Pzé >0>pi,,

Pom >0

q1,2m > 0> 42,2m
@2,2m—-1>0>g32m—1

Im—1,m+2 > 0> dm,m+2
qm,m+1 >0

b3 > by > bs
pf’,}>0>pf’,}+1
Pim >0

g1,2m—1> 0> q12m
q22m-2> 0> q2om—1

Qm—l,m+1 >0 > Qm—l,m+2
0> Qm,m+1

If the form e { =, * ) is positive-definite for e= + 1, then e=sign((by — by)(b; — b3)).
In each case, the inequalities between by, by, and by are implied by other
inequalities.
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2.3. Odd family

Let us pick a vector (ay,...,ai,as, ...,a2,b1,by,....0y, b3, ... . b3, C1, ey Comyt)
e N e — e —
m+1 times m times m times m times
from S((m+ 1,m), (1,m,m), (1>"+1)). Recall that this means a;#ay, all b; are

distinct, all ¢; are distinct, and the trace condition holds: (m + 1)a; + ma; =

by + mby + mb; + Z?g{“ Ci.

We now define the matrices B and C by setting

1 m m
I 5 Bi 14 Bi,m+1+4j
m| 0 by I'd,, Bitimt1+5
B= s

where

m
ITiz)i1 Gramii—

By = (=1)" Pty (1<j<m),  (2.15)
]Hi:ij (ck - C2m+17j)
j Hzm i dm+1-jk
By = (=1)"7 pil, o 2 (1i<m), (2.16)

|
"I (ek = Cmiry)

_ m—j 31
Biiimii+ = (=D"" pi1

i 2m
T =1 geom—i 11 k=m+1+4j Im+1-jk
k#m+1—j k#2m+1—i

3 —
k22m+27i(62m+1—’. - Ck) HZI:{ (ck - cm-&-l—j)

(1<i<m,1<j<m), (2.17)
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1 m m
1 Com+1 0 0
Com,
0
m| Ciyin . 0
0
C — Cm+1
Cm ’
0
m |Crg14i1 Crm 14,145
0
C1
where
i
Ciii) = ——5- [t Grameio (1<i<m), (2.18)
i 2—i(Come1-i — Ck)
H;cnjl 1 9m+1—-ik
Cui1vig = =mt : 1<i<m 2.19
e H;fn:m+2—i (Cmi1-i — cx) (I<is<m), ( )
mJlgl:nH—l dm+1—-ik Hmk:j-H Gk 2m+1—j
=/ 21 k#2m+1—j ke#£m+1—i
Conirving = ()" prii = — I l
Hk=m+2—i (Cm1-i — k) Hk:m-H (cx — sz+1—j)
(I<ism,1<j<m). (2.20)

Here is an example with m = 3.
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Example 2.7.

b pg" g6 436 _pilass 21 Py g3s as6 _pdlas p3l
1| Tea—ce)(cs—cs) ca—cs P4 (c1—c3)(ca—ca) c1—co 1
31 31
P3 916935 _ P> qie 31
0 b 0 0 (c1—c3)(c2—cs) c1—c2 P
0 0 by 0 Pa’ 415 425 936 __plaisa Pitass
(c1—c3)(c2—c3)(cs—ce) (c1—c2)(cs—ce) C5—Co
B= 0 0 0 b P3' 914 424 435 g36 _ P3' 914434 926 P}’ 424434
2 | Ter—ca)(cz—ca)(ca—cs)(ca—ce) (c1—c2)(ea—cs)(ca—ce)  (ca—cs)(ca—ce)
0 0 0 0 bs 0 0
0 0 0 0 0 bs 0
L O 0 0 0 0 0 bs ]
r cr 0 0 0 0 0 017
—q16 Ce 0 0 0 0 0
_q15925
s —Co 0 Cs 0 0 0 0
__@14q24q34
Cc= (ca—cs)(ca—ca) 0 0 [ 0 0 O
21 21
_ P& 934 926 __P5 934 21
934 (ca—ce)(cs—co) ca—cs Py s 00
924925 Pél g24 925 g36 _ Pgl 924 935 Pil 425 0 o 0
c2—cC3 (ca—c3)(ca—ce)(cs—ce) (c2—c3)(ca—cs) c2—c3 2
914915416 pé' 914 915 926 936 _ pgl 914 916 935 le 915 916 0 0 c
L (ci—c2)(ca—cs) | (c1—c2)(e1—cs)(ca—ce)(cs—co) (c1—c2)(c1—cs)(ca—cs)  (c1—cz)(c1—ca) e

It is clear that B and C are diagonalizable and that their spectra are s(B) =
{b17b2;b23 "-ab27 b37b3a "'7b3}a S<C) = {c17C23 ---752m+1}-

m times m times

Theorem 2.7. Let B and C be as above and let A = B + C. Then A is diagonalizable
and s(A) ={ay, ...,a1 a2, ...,a2}.
—_—— ——

m+1 times m times

Fori=1,....2m+ 1, let v, = (0, ..., 0, 1,v?’"+3_i, ...71;,2’””) be the eigenvector of
the matrix C with the eigenvalue ¢;.

Lemma 2.3. 1. For 1 <i<m, we have v, = 0 for all 2m + 2 — i <j.
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2. For 1<i<m, we have v),,;

=0 when2m+2 —i<j<m+1 and

m-+j m
i 21 Hk:m-H Am+1-jk Hk:m+2—i Qhem+i
m+1+j (7 ) Dini k#m+i k#m+1—j
m-+i

Cmit—j = Cmti [T paney (emet—r — &) Tlpomtt (Ck = cmei)

for 1<j<m.

3. For 1<i<m, we have

i
1+i Hk:l Qi 2m+1-i
Uomt1 = 2m+1
k=2m+2—i (Com1-1 — k)
and for 1 <j<m, we have
21
m+14j (_l)m Pom1
2m+1

Cmt1—j — Com+1

Hm k=1 qk2m+1 HZZZHI qm+1-jk
k#m+1—j
2m m . (221)
k=m+1 (Ck - sz‘H) Hk:m+27j (Cerlfj - Ck)

Here is an example with m = 3.

Example 2.8.
Vi =¢€7, Vy=¢€s V3=E€s,
21 21 21
V4 = (070707 17 iz ’ Pa 925 ) Pa 415916 )a
C3 — C4 (Cz - C3)(C2 - 64) (C] - Cz)(C] - C3)(Cl - 64)
Vs = (0 0.1.0 P§16134 P§1424Q35
T (e —es)(ea—¢5) (2 = e3)(er — es)(ea —¢5)’
P%lqlwle%s
(c1 —e2)(er = e3)(er — es)(ca — cs)
21 21
Ve = (07 1,0,0, Pe 426434 7 Pe 4249254936 7
(¢35 —c6)(ca —c6)(cs —c6)” (2 —c3)(ca — ¢6)(ca — c6)(cs5 — c6)

P q14915926 936 )
(e1 — 2)(er —e3)(er — c6)(ca — co)(es — ¢6) )’
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v, = (1 916 915925 q14924934
"c6 — 7" (c5 — c6)(cs — 1) (cq — ¢5)(c4 — c6)(ca — €7)

P%1417Q27Q34
(e3 = c7)(ea — er)(es = e7)(es — ¢1)

P%161176137424Q25
(2 = e3)(c2 — ¢7)(ca — e7)(es — ¢7)(c — ¢7)

3 4nan914915916 >
(c1 —e2)(er —e3)(er —e7)(ea — e7)(es — ¢e7)(c6 — 7))

We define a scalar product on V' by setting

2m+1

2m+1 k=2m+2—i ik
_ jm14i(Ci — ) k+#i
<V,‘ V‘> —(3,“ - -
[ i i1/, ) 2m+1—i
j—1(ci — ) Tt qik
k#i
31
P it i<m,
X D; (2.22)
pitp?t if i>m.

Here is an example with m = 3.
Example 2.9.
<viyviy =(c1 —a)(er —e3)(er — cq)(er — es)(er — ¢q)(c1 — ¢7)

g
P%l 912%3%4%59167

_ (=) —a)(ca—c)(ca—c)la—c) p) 426427
(v, v2) = - Py d26n
27 a D> 412923924925
(va,vs) = (s —ca)(es —es)(es —co)(es —e7)  p3' gssqs6q
) (s —er)(es — ) P qiqnga’
€4 — 65)64 — Co)\ch — € 4544694
(Ve V) :( 5)( )( 7)Xpilpil XQSQ Q77
(ca —er)(ea —e2)(ea — ) 414924934
cs —cg)(es — ¢
Cvavsy = (65 = ¢o)(es — 1) it Dstisdsods

(es —cr1)(es —ea)(es — e3)(es — ca) 715925
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{V6,¥6) = R
(c6 — c1)(c6 — c2)(c6 — €3)(c6 — ca)(c6 — ¢5)
426936946956967
X P pg X T
qi6
1
vy, V1) =

(e7 = c1)(e7 = e2)(e7 — ¢3)(e7 — ca)(e7 — ¢s)(e7 — ¢o)

X P%IP%] X q17927937947957967 -

The sets S'((m+ 1,m), (1,m,m), (1>"*1)) and S"((m + 1,m), (1,m,m), (1>"+1))
are constructed from (2.22) similarly to the hypergeometric case (see page 7) and
have the same properties.

Theorem 2.8. The operators A, B, and C are self-adjoint with respect to the scalar
product (2.22).

Now suppose that the eigenvalues of the matrices A, B, and C are real numbers.
Let b>b3 and ¢;>c¢;> - > Copyy -

Theorem 2.9. Under the condition by > b3, the form { =, = ) defined by (2.22) is sign-
definite precisely in the following three situations:

b1>b2>b3 b2>b1>b3 b2>b3>b1
0> pi! 0> p}! ' >0>pf!
21 21 21 21 21 21
Dry >0>p0 04 Dir1 > 0> i0 Toy1 >0>70 10
q1,2m > 0> q12m41 q1,2m+1 > 0> @2 2m41 g2,2m+1 > 0> q3.2m41

q2,2m-1> 0> q22m g2,2m > 0> g32m q3,2m > 0> qaom
g3,2m—2 > 0> g3 om—1 . .

. dm—1,m+3 >0> dm,m+3 dm,m+3 >0> dm+1,m+3
dm,m+1 >0> dm,m+2 dm,m+2 >0> dm+1,m+2 dm+1,m+2 >0

If the form ¢ { =, * ) is positive-definite for = + 1, then ¢=sign((by —b,) (b1 — b3)).
In each case, the inequalities between by and b, or by are implied by other
inequalities.
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2.4. Extra case

Let us ple a vector (alvahahalva27a27blvbhb27b2:b37b37c17c27c37c4vc57c6) from
S((4,2),(2,2,2),(1%)). Recall that this means a; #ay, all b; are distinct, all ¢; are
distinct, and the trace condition holds: 4a; + 2a, = 2by + 2b, + 2b5 + Zf’;l ¢;. Let us

set up the following notation:

L&
pij=bi+¢—a, QUk:26i+2Cj+2ck7§; N

We now define the matrices B and C by setting

__ P16 Q245 P16 9245
by 0 cs—ca P16 c1—cz Db1s
0 b D15 9235 G246 __ P15 9236 ___ D15 49236 9246 __ D15 Q9235
1 ca—ca)(cs—c6 c5—Cé (c1—c2)(es—ce c5—C6
0 0 by 0 Dot p2s
9y
____D23 g245 Q246 D23 g235
0 0 0 b (c1—c2)(cz—ca) c3—cCa
0 0 0 0 bs 0
0 0 0 0 0 b3
Cs 0 0 0 0 O
0 cs 0 0 0 O
P24 9236
R —— —D24 Ca 0 0 0
____ D23 G235 9246 __Db23 Qg245
(cs—ca)(cs—ca) c3—ca 0 3 0 0
__D329g235 _ P32 9235 _
C5—Cé P32 c3—C4 D32 2 0
D31 9236 9246 D31 g245 P31 9245 9246 __DP31 9236 0 c
(c1—c2)(cs—co) c1—c2 (c1—c2)(ca—ca) c1—cz 1

(2.23)

(2.24)

It is clear that B and C are diagonalizable and that their spectra are s(B) =
{b1,b1,b2,b2,b3, b3}, s(C) = {c1,¢2,¢3,¢4,¢5, 6}
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Theorem 2.10. For B and C as above, let A =B+ C. Then A is diagonalizable and
S(A) = {alvalaalaalaa25a2}~

Lemma 2.4. The following are the eigenvectors of the matrix C (v; corresponds to the
eigenvalue c;):

Vi = (0707070707 1)7

V2 :(07070707 170)7

P32 P314236
A4 = O)O) O) 1) ) )
: ( = (e —a)(a— Cz))

DP324235 P319245¢246
V = 07 07 17 07 b b
) < (2 —ca)(es —ca) (c1 —ca)(er —ca)(ez — C4)>

Vs = (0 1 P24 P2349245 P25P324234
"eg—cs (e3—eq)(es —¢s) (e —es)(e3 —es)(ca —c5)
D25P3142459256 )
(c1 —e2)(er —es)(e3 —es)(ea—¢cs))’

Ve = (1 0 P2449236 P2392354246
"7 (ca —c6)(cs — c6) (€3 — ca)(e3 — o) (€5 — ¢6)
_ P26P3242344235
(c2 —¢s)(c3 — ¢6)(ca — c6)(cs — c6)’
B P26P31923642469256 )
(e1 — ea)(er — eq)(e3 — cg)(ca — cs)(cs — ¢6) )

Let us define a scalar product on V' by setting {v;,v;> = 0 for i#; and setting

(c1 —e2)(er — e3)(er — es)(e1 — es)(c1 — ¢o)

v, vy = — 7
P1ip21p31
(va,vy > = (2 —c3)(c2 — ca)(ea —¢s)(ca — ¢6) y 4134913541364 145
(c2 = c1)prapnp3 q1464156
3 —cq)les —¢s)(es — ¢
{v3,¥3) :( 3~ ca)(es = es)(es — co)pa c Q124412501264 145

(3 —c1)(e3 — c2)piapas 41464156
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(ca — ¢5)(cqy — co)p3a 91234125912641359136

Vg, Ve ) =

$Ye) (ca —c1)(ea — c2)(ca — €3)prapaa q156

Cvsivs = (¢s — ¢6)paspss o 1239124912691349136

’ (s —c1)(es — e2)(es — ¢3)(es — ca)pis q146
P26P36
{ve, V6 ) =
676 (c6 —c1)(c6 — c2)(c6 — 3)(c6 — c4)(c6 — ¢5)pi6
X q12391249125913491359145- (2~25)

The sets $'((4,2),(2,2,2),(1%)) and S”"((4,2),(2,2,2),(1°)) are constructed from
(2.25) similarly to the hypergeometric case (see page 7) and have the same properties.

Theorem 2.11. The operators A, B, and C are self-adjoint with respect to the scalar
product (2.25).

Now suppose that the eigenvalues of the matrices A, B, and C are real numbers.
Let by >by>bz and ¢c;>c¢p > -+ > .

Theorem 2.12. The form { x, %) defined by (2.25) is sign-definite precisely in the
following two situations:

bi+cy>a1 >b1 +cs5
bo+co>a1 >bs+c3
a1 >bs+

c1+cg+c5>co+c3+cs
Cc1+cC3+cCg>Cr+cat+Cs

bs+co >a; > bz +c3
bo+cs >a1 > b+ cs
b1 +ce > ar

ci1+cg+ces>co+c3+cp
C1+cC3+¢C>C+cCs+C5

Co+c3+cs>c1+cq+cs cot+cgt+ces>c+catcs

If the form ¢, %) is positive-definite for ¢ = +1, then ¢ =sign(a; — a»). If the
inequalities of the first column hold, then ay>a,. If the inequalities of the second
column hold, then a;<ay.

3. Proofs and more results

In this section we prove theorems from Section 2. In the process, some new results
are obtained.
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The following simple observation is helpful in this section. If we replace a triple
(A =B+ C,B,C) by the triple

A =kA + 01d,
B =iB + ¢Id,
C=kC+ (0 — $)Id,

k,0,¢eC and k+#0, (3.26)

then we still have A = B + C. This transformation changes neither irreducibility nor
rigidity of the triple. If, say, v is an eigenvector of B with the eigenvalue b, then v is an

eigenvector of B with the eigenvalue kb + ¢. If A, B, and C were self-adjoint with

respect to a symmetric bilinear form , then A, B, and C are self-adjoint with respect
to the form as well.

3.1. Hypergeometric family

An affine transformation (3.26) with k = 1, 0 = —a,, and ¢ = —a, /2 normalizes A
to A such that the eigenvalue of A of multiplicity m — 1 is 0. So, without loss of
generality, we can assume that @, = 0. Now let us prove Theorem 2.1.

Proof of Theorem 2.1. Consider the matrix A (with a, = 0). Here is an example with
m=>3.

bi+c¢s by+cs by+cs by+ces by+cs

by+cy br+cy byt+cy bytcs bty

A= |bs+c3 bs+cz bs+cz by+c3 by+cs

ba+cy bys+cy ba+cy byt by

bs+c bs+c bs+c bs+cp bs+c
Now A has rank 1, and its image is the linear span of the vector i = (b + ¢, b2 +
Cmty -y b + ¢1). Ai=a1i#0. Thus, A is diagonalizable, and s(A) = {>"7, (b; +c),

0,0,...,0}. Thus, before the normalizing affine transformation we had
s(A) ={a, a2, ...,;a}. O
——

m—1 times
In our normalized version,

0 if i<j 0 if i>j,
Bij = b, if l:J, Clj = Cm+1-i if l:], (327)
bi+ cpr1-i ifi>j b,'—|-Cm+1_j if i<j.
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We are ready to prove Lemma 2.1, that is to show that for every i = 1, ..., m the
vector v; = (v!, ..., vi71)1,0,...,0) with
. bA+C 1—i i1 b'+C ik
V) =L LR (=1, ...,0—1 3.28
i bi _ bj 11:[1 bi _ bj+k l (] ) 51 ) ( )

is an eigenvector of B with the eigenvalue b;.

Proof of Lemma 2.1. Remembering definition (3.27) of B, we need to show the
following equality for all j<i: (b; — b))t} = (b; + cme1;) Sk _j11 Uf, or equivalently

' bi + Cpp1—j—k
k m+1—j—
vi = _ (3.29)
2. 1175
This identity becomes obvious once we rewrite (3.28) as
i— i—j—1
_ ﬁ bi + cms1 Oi T Cmtl—j—k o+ bi + Cm+17j7k, (330)
k=1 l j+k k=1 bi - ijrk

and use telescoping. [

Now we are ready to prove Theorem 2.2, that is to show that the operators A, B,
and C are self-adjoint with respect to the scalar product (2.4).

Proof of Theorem 2.2. The operator B is self-adjoint with respect to the scalar
product by construction. To show that A is self-adjoint, we have to show that
{Av;,v; > = <v;,Av; >. As we have seen, A has a one-dimensional image spent by the

vector i= (b1 + cmy b2+ Cm—t, ..., by +¢1). Namely, for any vector k=
(ki,kay .o km), Ak = (307, ki)i. In particular, Av; = (37, v))i. In view of (3.29),
we have
i1
b; _
Av; = bit i1k | (3.31)
o Db

It will be convenient to introduce the following notation:

i—1 m—i
b; _ b; —ie
si=[] DitCmilok (bt emar ) [ DGtk (3.32)
i b b i b= bisk

Then Av; =s;i and (2.4) can be rewritten as <{v;,v;> =s;/x;. Now the desired

equality (Av;,v;)> = 5:x;{V;,V; > = 85ix;8;/X; = 8;85; = {V;, Av;) becomes a conse-
quence of the following lemma. O

Lemma 3.1. > 7| x;v; =i



O. Gleizer | Advances in Mathematics 178 (2003) 311-374 337

Proof. We have v; = (v}, ...,v/"1,1,0...,0). Thus, to prove the lemma we have to
prove that the identity Z]"; xjv} = b; + ¢py1—; holds for 1 <i<m. This is equivalent
to x;=b;+ cpy1-i — ZT:_I’ XiskU! & This identity after minor simplification
becomes

b—|—Ck)
Z Hk i(bj — by) =

k#j
Let us set n=m—i+1; x;=0b;, x2=bir1,...c.Xn=bp; y1=-c1, y2=
—C2y ooy Vu_1 = —Cp—;. This change of variables transforms the last identity into

identity (7.60) which we prove in the appendix. [l

Now we prove Theorem 1.3 for the hypergeometric family. That is, we show that if
the vector (s(A),s(B),s(C)) lies in S”((1,m — 1), (1), (1™)), then the triple (A, B, C)
is irreducible.

Proof of Theorem 1.3. Suppose that the triple preserves a non-trivial subspace of V.
Then this subspace is spanned by some of the eigenvectors v; of B. But Ay; =
Sy sixvi. IE (s(A),s(B),s(C)) lies in S”((1,m —1),(1™),(1™)), then all the
coefficients s;x; are non-zero, so A does not preserve any such proper subspace.
Thus, the triple (A, B, C) is irreducible. [

Let us prove Theorem 2.3, that is determine the inequalities on the real spectra
of A, B, and C which make form (2.4) sign-definite. Recall that we are working
with the normalized version a, =0. Then the trace identity gives us a; => ;" | (bi+c;).
Also, it is an assumption of Theorem 2.3 that b;>b,>--->b, and
C1>Cr> 0 > Oy

Proof of Theorem 2.3. It immediately follows from Theorem 2.2 that

sign({vi,v;») = (1) sign (/ﬁ (bi + C/))-

i1

Construct an m x m matrix T where T;; =b;+¢;. Notice that T;;>T;;
and T;;>Tiy; for all i and j. Then sign({v,,v;>) = (—1)"" x (=1)#U Tu=0},
Thus, to keep the sign constant, #{j: T;;<0} must differ from #{;j: Ty, <0}
by an odd number for all m rows of 7. This gives us only two possibilities:
either  Tj;-i>0>Tipmp1—i, or  Tipp1-i>0>T;,0;. Here is a picture
which illustrates the two situations for m = 5. The line separates 7;;>0 from
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D

The sum of T;; along the non-main diagonal of T equals a;. Thus,
T,‘,m_,'>0> T,‘7,,,+1_,‘ forces a; <0 and T,'7m+1_,‘>0> T,‘,m_;_z_,‘ forces a1 >0. [

Remark 3.1. Let the eigenvalues of A, B, and C be real numbers, and let form (2.4)
be positive-definite. Then in the basis & = v;/v/{v;,v; ), the form becomes standard
(<&,& > =0;). Let A, B, and C, be the matrices A, B, and C in the basis
€,6,...,€, Then fori,j=1,2,....m

Ay = E,

C,'j :/I,] — B,]

3.2. Even family

In order to make proofs simpler, let us normalize A, B, and C so that they become
traceless and a; = 1, @ = —1. The affine transformation (3.26) with k = 2/(a; — a),
0 =—(a1 +a)/2, and ¢ = — (b + (m — 1)by + mb3)/(2m) does the job.

Let us prove Theorem 2.4. In our normalized version, we have to prove that A is
diagonalizable and that s(A) = {1 J1,—1, ..., —1}

E/—/

m times m times

Proof of Theorem 2.4. First, let us prove that A*> = Id. For that, we have to prove the
following eleven identities.

1. The identity Z,zfl A1 A = 1 with the help of identity (7.60) can be reduced to
the identity

(by + b3+ ¢ + Cmsi)

((m=1)by +mbs +¢1 + 2+ - + cam 1)
':1 (Cm+i - Cm+j)

Z ”
J#i

m by +bs+c¢+c
" (bs + 2 j | ' i+ Cmij)
— [T (ci—¢)

J#i
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For 1<i<m — 1, let us set x; = ¢y + by. For 1<i<<m, let us set y; = ¢; + bs.
Then the last identity becomes

m—1 m—1 m (x+y) m m-— 1 (X _|_y)

=1 i j B j i

X+ yi| = ]7—4— —. (3.33)

(Z : Z ) ;Hjmzll o T
J#i J#l

Introducing x,, = x,,».1 = 0, we can rewrite the last term in (3.33) as

m-— 1

E:y = %+%Lfm i+ )
=) 1 IT% i =)
m J#i

Now we can prove identity (3.33) with the help of identity (7.62) from the
appendix.
. For 1<i<m —1, the identity 2,2271 A1jA;14+: =0 after some simplification
becomes

2m—1
m 5 Hk 1271+1 4k m 2m—1
Z ((bs +¢)" — 1)—"1]# — Z ¢ +b3) + Z (¢j +b2).
j=1 k=1 C] - ck j=1 Jj=m+1
k#j —i
J#2m—i
For 1<j<m, set x; = b3+ ¢;. For 1<j<m—1 and j#m — i, set y; = —(by +

cm+j)- The identity

2m—1
m H/gn:m+l ik
Z k#2m—i =0
= H?:l (¢j — k)

k#j

is equivalent to identity (7.59) from the appendix. Now the identity to prove
becomes

m H k= m+l qjk m 2m—1
2 k#2 S
S (s +¢) P = NogHb)+ Y (GHb). (334
— (g —ca) &
Jj=1 j=1 j=m+1
k#j J#2m—i

Introducing y,,—; = y,» = 0, we reduce the last identity to identity (7.61) from the
appendix.

. For 1<j<m, the identity 527", Ay A1 ms; = 0 reduces to identity (7.61) from the
appendix.

. For 1<i<m — 1, the identity Z?Z’l Aj+i1A11 = 0 reduces to identity (7.61) from
the appendix.

. Let 1<i,j<m — 1, i#j. The identity 37" A1,;4,1,; = 0 reduces to identity
(7.60) from the appendix.
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6.

10.

11.
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For 1<i<m — 1, the identity fo] Ai4igAr1+i =1 after some simplification
becomes

Hk 1 9k, Hk m+l qjk
Z 31p32 k#j k#i
2m—1

J H: ( ) m—

fmmr1 (ci —cx)

#J k#i
m
=1—(hh+c)+ Zmli[{‘:‘ Qei
k=m+1 (Ci - Ck)
k#i

Recall that in the normalized version p' =¢;+b3 — 1 and p}? = ¢; + by + 1.
For 1<i<m, let us set x; = b3 + ¢;. For 1<i<m — 1, let us set y; = —by — Cpyi-
The above identity splits into two homogeneous identities: one of degree 0 and
the other of 2 (in x; and y;). The first is equivalent to identity (7.63) from the
appendix. The second is equivalent to identity (7.64) from the appendix.

. For 1<i<m — 1 and 1<;j<m, the identity 3}, Ai4i1A1my; = 0 reduces to the

trivial identity Lw=itls 1 — ),
q2m—im+1—j

. For 1<i<m, the identity Z,zfl AmyjiA1) = 0 reduces to the identity

m
m—1 H k=1 qk,mej

2 : k#m+1-i
m—1 = _bl - b3 — Cm+1—i — Com-
= T=me (comy — <)
k#2m—j

The latter follows from identity (7.61) of the appendix and from the fact that the
normalized B and C are traceless.

Let 1<i<m and 1<j<m — 1. The identity 3", Ay 4114 = 0 reduces to the
trivial identity 22=mt=l | — (),

G2m—jm+1-i
Let 1<i#j<m. The identity 7" ApsjiAimei = 0 reduces to identity (7.60)
from the appendix.
Let 1<i<m. To prove that Z?:ml AprijAimyi =1, we set x; =bs+c¢, xp =
b3 + oy X = b3 +Cmy Y1 = b2 + Cmt1, 2 = b2 + Cmt2; o3 Ym—1 = bZ + Com-1.
This reduces the identity in question to identity (7.65) of the appendix.

Now we are ready to prove that if (s(A), s(B), s(C)) is a point of S”((m,m), (1,m —
1,m), (1°™)), then s(A) = {1 ,1,—1,...,—1}. We know that A> = Id. Thus, A is
\__\,.__/

m times m times

diagonalizable and the eigenvalues of A are 1 and —1. For 1<i<m, let us set

- (A + Id)en1+i7

a = (A — Id)e,.. (3.35)

1
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Then (A —1Id)a} = (A—1Id)(A+1d)e,:; =0 and (A+Id)a; =(A+1Id)(A—
Id)e, ; =0. If we take a look at the matrix A, we see that the condition
(s(A),s(B),s(C))eS"((m,m),(1,m —1,m), (1)) guarantees that the vectors
{a},, , are linearly independent as well as the vectors {a; },_, . (If this
condition is violated, then a; and a; are not necessarily linearly independent. For
example, if pj' =0, then a; =0.) O

Let us prove Lemma 2.2, that is compute the coordinates z/l of the eigenvectors v;
of the matrix C.

Proof of Lemma 2.2. The only non-trivial part of the lemma is formula (2.13). A
direct computation gives

1 m—1

m+i m+l /+1C/+1 |
Uy = — m+1 1 "’ 3
Cm+1—i — Com Com—j — Com

where Cjy1 is given by (2.10), C,4;1 is given by (2.11), and C,4;j4+1 is given by
(2.13), see page 9. Comparing the formula for v+ " given by (2.13) to the right-hand
side of the last formula, we obtain an identity which reduces to identity (7.60) from

the appendix. [

The following lemma expresses the vectors e; of the standard basis in terms of the
eigenvectors v; of the matrix C.

2m—i
Hm i q 12 Hk 1 ik
m—1 em-+i m
Lemma 3.2. 1. € = Vyuy — Zl 1 zmkl—vm+z - Z, 1 T12m ., . Vh
Hk SRR CT D) HA 1 (eimex)
2m—j
- Hk:m+l qjk Hk:1+1 Gk.2m—i
m m+l—i P —i k#j .
2. ery :V2mfi+2j:1 (=1) cvf(jrz ; mkizm : ot A Jor i=
/ "HH/(:H/ (G=¢) Hk:m+l (ci—cam-i)
1,2, ...,m—1.
3. €psi =V fori=12 ... m.

Proof. For 1<i<m, let

) m p132 HI%ZTZ qik
=Y — K (3.36)

i=1 1lik=1+4i (ci —cx)

be the i coordinate of e in the basis v;. Formula (3.36) is the only non-trivial part of
the lemma. To prove it we have to show that

2m—1
2m+1—i 2m+1—i  2m+1—k .
e+ ot — E vy v =0, wherei=12,...,m. (3.37)
k=m+1
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Let us use the formulas for vﬂ given in Lemma 2.2 and the following change of
variables: for a fixed 1<i<m, set xo=c¢;+b3, X1 =cCpi1+b3, X2 ==Cniz+

by, ...;Xm =Com+b3, yi=-by—ci, ya=-by—c3,...,yi1=-br—ci1, yi=
—by — Cit1y ooy Ym—1 = —b2 — ¢,. This reduces (3.37) to identity (7.59) from the
appendix. [

To prove Theorem 2.5, we have to compute eigenvectors of the matrix B (see page
8 for its description). Let us recall that B is diagonalizable. Let us call w; the
eigenvector of B corresponding to the eigenvalue by, w», ..., w,, the eigenvectors of B
corresponding to the eigenvalue b,, and w,.,...,Wy, the eigenvectors of B
corresponding to the eigenvalue b;.

Lemma 3.3. 1. We have wi = e;.

. B .
2. For 1<i<m — 1, we have wy,; = _b11¥IZ; e + ey

. ; 1 Bjipes
3. For 1<i<m, we have W,.; = X" e; — ijzl b €1 + €y, where

mti _ (_l)mjrliipfnl_..]_i(bl + by + Cpg1-i + c2m> 1262;73., Am+1—ik (3 38)
(by — b3) (b2 — b3) oy (Ck — Cma1-i)
Here is an example with m = 3.
Example 3.1.
W = (17070707070)5
425435
Wy = 7170707070 ’
? ((6‘4 —¢s)(by —b2) )
q34
== 0,1,0,0,0
W3 <b1_b277777>7
Wi = < (b1 + by + ¢3 + ¢6)p3 434435 Py qaqis
(b1 = b3)(by — b3)(e1 — e3)(ca — ¢3)" (ba —b3)(e1 — e3)(ca — ¢3)
B p§1414424¢135 1.0 0)
(by = b3)(e1 —e3)(ca —e3)(ea—cs) 7))
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. ( (b1 + b2 + ¢2 + c6)p3 s
(b = b3) (b2 = b3)(c1 — 2’
P3'qis D3 q1agas 0.1 0)
(by = b3)(c1 — 2) (by —b3)(e1 —e2)(ca—cs) 7 )]

" < (bi +by+c1+co)pl' pY Pi' g 0.0 1>.
(br =b3)(ba —b3) 7 by—by (by—b3)(ca—cs)

Proof of Lemma 3.3. All the formulas in Lemma 3.3 are immediate except for (3.38).
A direct computation gives

m— m .
(b VO Z m—j Loty qeom— Bisjmsi
11— 2m—1—j by — b
Jj=1 k=m+1 (Ck - CZ”I—.f) 2 3

2m—1

+ (_l)mfi ;3”1_‘—]_1_ l:n[/:’iZnH—i Im+1—ik _ O7
k=1 (ck - Cm+l—i)

where Biy; 4 is given by (2.9). To prove (3.38), we have to show that the formula

we derive for X from the equation above equals the formula for x™* from (3.38).

This boils down to a proof of identity (7.60) from the appendix. [J

Lemma 3.4. The following is the matrix of the scalar product (2.14) in the standard
basis ey, ..., €.

1. Cer,e1)> = (b1 — by)(b1 — b3),

m
s Dm—ik .
2. (e ey = (b b3)l_Mfor i=1,2,....m—1,
k=m+1 m—i

2m
H qm+1-ik .
k= —
3. e epyi) = PmH ,H,,Lforlfl,z,...,m
H (Cmp1-i—ck
4.

<el+iael+j>

m m

[liziyi dom—ik Hk:1+j Qom—jk
2m—1—i , 2m—1—j
k=m+1 (c2m7i - (’k) k=m+1 (sz - Ck)

2
lenerl qrk Hk m+1 (Cr - Ck)

< k§2m ; k§2m ;
X 1—(b2—b3)ZC~ o i
—1 ' Hk 1 grk TTi=1 (e — k)
k#r k#r

forij=12 ... m—1,i#j,
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m
Hk:1+‘ Qom—ik
<el+i7el+i> i P -
k=m+1 (sz*i - Ck)

m
k=1+i 92m—ik

Hi":l;rli (com—i — Cx)

2m 2m

k=2m+1—i (Cmei - Ck) Hk:m-H qom—ik
, k#2m—i

— (b — b3)com—i -

k=1 (c2m—i - C/() H;(:I Qom—ik

X

m
—14+i D2m—ik
_(b2 - b3) Zinjifll‘Jrl —
k=m+1 (C2m—i - Ck)

2m 2m
m [Tt gri Tamn (e — ck)
> 2 : Cr k#2m—i k#2m—i

—1 (Cr - C2m—i)q2m—i,r H};::l Qr,k H’;::l (Cr - Ck)
k#r k#r

31 m
pm+1_./ Hk:1+i Qi 2m—i
. CTT2m—1—-i
qm+1-j,2m—i Hk:m+1 (C2m7i — Ck)

2m
2m ) Hk:erl (Cm+1—j - Ck)
k=m+j Am+1=jk " paom_;

H;”;{ (Cme1—j — Cx) 1" Gm1-jk
k#m+1—j

<e1+ia em+j> =

ori=12,..m—1landj=12 ....m
J
/.

2m 2m
pfnl+l—i k=m+2—i (C”H‘l—[ B Ck) Hk:eri Am+1-ik
CCmijr@m+ti) = 0jj =3 m—i m—1+i
m+1—i Hk:] (Cm+lfi - Ck) k=1 dm+1—ik
k#m+1—i

forij=12 .. m.

Proof.

1. We obtain by direct computation

2m
2m Hk: 1 ik

31,32 k#i
Cenery =Y p'pl = H——
i=1 i1 (¢ — k)
k#i
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For 1<i<2m let us set x; = ¢; + (b + b3)/2. Identities (7.66), (7.67), and (7.68)

from the appendix finish the proof.
2. A direct computation gives

2m
H k=1+i Y2m—ik

_ 31 32 k#2m—i
<el7el+i> = —Pom—-iPom—i Sam—1-i
o (cam—i — k)
2m m
m 31..32 Hk:m+l qrk Hk:1+i Gk 2m—i
_ pr pr k#2m—i

LT 2m—1—i :

=1 Cr = Com—i Hk:I (Cr - Ck) k=m+1 (C2m7i - Ck)
k#r

After cancelling out common multiples, we have to prove that

2m 2m
m 31..32 Hk:m-H qrk Hk:m-H qom—ik
P Py k#2m—i — _pl lP32 k#2m—i
m - 2m—il 2m—i m
= ¢ — Com—i [ Ti=1 (¢ — k) [Tes (cami — i)
k#r

— (by — b3).

Let us set x, = ¢, + (ba + b3)/2, ¥y = cmir + (b2 + b3) /2. Now identities (7.63),
(7.69), and (7.70) from the appendix finish the proof.

3. This formula is proved by direct computation.

4. A direct computation gives

m m
Hk:1+,‘ Qom—ik Hk:Hj Qom—j k

<e1+i7e1+j> ~ em—1-i y X 2m—1-j /| ,
jem1 (Cam—i = cx) TTZ,00 (cam—j — cx)
2 2
H km:m+l qrk H /énzm+l (C,‘ - Ck)
m llz#—%mfi llyé%mﬂ'
31,32 k#2m—j #2m—j
x> n'p
—1 e H?(nzl qrk H’I?:] (Cr _Ck)
k#r k#r

Letusset x; = ¢1 + (by +b3)/2,x2 = ca 4 (ba + b3) /2, ..., Xpu = cm + (b2 + D3) /2;
V1= Cop1 + (b2 +D3)/2,  y2=cmp2+ (b2 +D3)/2, ..., ym = Copm + (b2 + b3) /2.
Identities (7.59) and (7.60) from the appendix finish the proof.
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5. A direct computation gives

m m
_ k=1+i 92m—ik Hk:l+i Q2m—ik
<el+i7e1+i> - 2m—1—i dm—1—i
k=m+1 (c2m—i - Ck) fe=m+1 (c2m—i - Ck)
2m 2m
m 31..32 Hk:mH qrk Hk:m+l (Cr - Ck)
y Z by Py k#2m—i k#2m—i
m m
—1 (Cr - C2m—i)q2m—i‘r Hk:l qrk Hk:l (Cr — Ck)
k#r k#r
2m
2m ) Hk:m+l Qom—ik
4+ pl R a1 —i (Com—i = Ck) " zom—i
Pom—iPom—i m (C _c ) i
k=1 2m—i k Hk:] Qom—ik

Let us set x,=c¢,+ (b +53)/2, yr=cCmsr+ (b2+b3)/2 for r=12,....m.
Identities (7.60) and (7.63) from the appendix finish the proof.

6. Proved by direct computation.

7. Proved by direct computation. [

Now it is time to prove Theorem 2.5, that is prove that the matrices A, B, and C
are self-adjoint with respect to the scalar product (2.14). C is self-adjoint with respect
to the scalar product by construction. The space V splits into the direct sum V =
Vi, @ Vi, @ Vp, of the spectral subspaces of B. If the subspaces Vy,, V,, and V5, are
mutually orthogonal with respect to the scalar product (2.14), then B is self-adjoint
with respect to it as well. Then A is also self-adjoint, as A = B+ C. Proof of the
following lemma finishes the proof of Theorem 2.5.

Lemma 3.5. The subspaces Vy,, Vy,, and V), are mutually orthogonal with respect to
the scalar product (2.14).

Proof. We use the formulas of Lemma 3.3 to express the eigenvectors w; of the
matrix B in terms of the standard basis {e;, ey, ..., €, }. Then we use the formulas of
Lemma 3.4 to expand <{e;, e; ).

1.

1 HZ 1+i 9k, 2m—i
=1+i M=
WL Wiy =( e, ey — e

_ 2m—1—i
by — by ke=m+1 (C2mfi - Ck)
m
1 Hk:1+i qic.2m—i
_ 2m—1—i | ,
by — by Hk:m-H (C2mfi - Ck)

= (bl _ b;) Hk:l+i Qi 2m—i

2m—1—i

(e, e

=<ep,e14;) —

femi1 (Com—i — Ck)
(i —bo)(bi —b3)  TTiiyi qkom—i 0
by — by e (Comei — )
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2. The identity <wi,w,;> =0 (i=1,2,...,m) reduces to identity (7.61) from the
appendix.
3. Lemma 3.3 gives us

m
_ 1 Hk:1+[ Gk 2m—i
Witi = €14 — b — b dm—1—i
1 2 dk=m+1 (CZinfi - Ck)

We know that e; =w; and that {wi,wy4;»> =0. Thus, (Wi, W,y) =
{e14i, Wntj» . The identity <eji;, W,4; > = 0 after expansion and some simplifica-
tion becomes the following identity:

m
m—1 H k=1 qom—rk

m
k;ém+l—j Z

r=1 Hk m+1 (CZIH*I’_ —1 qom— IS Cs CZm—i)
k#2m—r
HZI:n:erl qsk Hzliﬂ:erl (C‘v - Ck)
% k#2m—r k#2m—r
H;?:l qs.k HIIZI:I (cs - ck)
k#s k#s

2m

k=m+1 42m—ik
-1 c2m—i((32m—i - c2m) k#2m—i

Qom—im+1—j HZLI (C2m7i — Ck)

2m X
[Tesme (emei—j — cx)
Am+1-j2m ~ k#2m—i

m
qm+1—j2m—i H k=1 qm+1—jk
k#m+1—j

Fori=1,2,...,m,letusset x; = ¢; + (b2 + b3)/2 and y; = ¢;yi + (b2 + b3)/2. Let
us write ¢ = Xy — Yom—i + Yom—i — (b2 + b3)/2 and cypm—i = yom—i — (b2 + b3)/2.
Now identities (7.59), (7.63), and (7.71) of the appendix finish the proof. [

Let us prove Theorem 2.6, that is determine the inequalities on the real
spectra of A, B, and C which make form (2.14) sign-definite. It is an assumption
of Theorem 2.6 that c¢;>c¢;>-->c¢y,. The assumption a;>a; of the
theorem is satisfied automatically, because in our normalized version a; = 1 and
a) = —1.

Proof of Theorem 2.6. It is immediately clear from Theorem 2.5 that

2m
sign({vi,vi)) = (_I)H sign(pflpﬁz) sign H qij
=1
j#i
Let O be a 2m x 2m array such that Q;; = ¢;; for i#j and Q;; are not defined. Then
0Qi;>Q;j+1 and Q;;> Qi1 for all i and j such that neither of the array elements
involved belongs to the main diagonal. Let P be a 2m x 2 matrix such that P;; = p;2
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and Pjy=p}'. The fact a;>ay implies p}*>p;'. Then sign({v;,v;))=
(= 1)1 Qu <O #U: Pu<0} 1 order to keep sign({vi,v;>) constant, the number
of negative elements in the i row of the arrays Q and P must differ from the number
of negative elements in the i + | row by an odd number. This and the fact that
0i; = 0Q;; leaves room for the following six configurations. The first is given by the
inequalities:

Pl >0>p3 g0 2>0>q1 0

@Dom-3>0>q2m2
2 2
p%m—l >0>p%m q3.2m—4 >O>q3,2m73

qdm—1,m >0 >qm—1,m+1-

We have ¢;,-;<0 for i=1,2,...,m— 1. Let us sum up these inequalities with
p32,<0 and pll<0. Recalling that C is traceless, we obtain (m — 1)by + (m+
1)b3<0. Recalling that B is traceless, we obtain b; >b;. We have p;{] >0 and
P32, >0. Thus, —p3! | — p32 | <0. We also have ¢,—12m—1 <Gm-1m41 <0 for m>2
and gu—12m—1 = Gm-1,m+1 <0 for m =2 because ¢;<c¢; for i>j. Thus, we have
—pl = P32 |+ Gm-12m-1<0. This gives us b3 > bs. So, we have b > b3 >b,. Here is

a picture illustrating the case of m = 3. The line separates positive elements from
negative.

The second configuration is given by the following inequalities.

3
pi'>0>p3! @20m>0>q30m
q32m-1>0>q42m-1
2 2
an+1 >0 >an+2 q42m—2>0>qs52m-2

qm‘,m+2 > O > dm+1 m+2.

We have p3'<0 and p}?,<0. Thus, we have —p3' —p¥2,>0. We also have
Gmi2> Gmmr2 >0 for m>2 and @omi2 = Gmmia >0 for m = 2. Thus, qamiz — p3' —
p32.,>0. This implies b, >b3. We have g;omi2—;>0 for i = 2,3, ..., m. Summing up
these inequalities with pj' >0 and p}? >0, we obtain (m — 1)b, + (m + 1)b3>0.
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Thus, b3>b;. So, we have b, >b3>b;. Here is the picture illustrating the case of
m=3.

The third configuration is given by the following inequalities:

3
0>pi! q12m-1>0>q1 2

@2om-2>0>¢2 21

32

32
Pm > 0>pm+1

qul,erl > O > mel.,m+2

0> qmm+1-

The inequalities p}?, ;<0 and pi' <0 imply the inequality 2b3 + ¢; + ¢y41 <0. The
inequality ¢ 2,—1 >0 implies the inequality ¢y 41 >0 because cp41 > com—1 for m>2
and ¢, = cym_1 for m=2. Now, the inequalities b, + b3 + ¢1 + ¢1 >0 and
—2b3 — ¢1 — ¢y >0 imply the inequality by — b3 >0. So, by > b3. Let us sum up the
inequalities ¢;2,,11-; <0 fori = 1,2, ...,m. The sum of all the ¢; is equal to zero. Thus
we obtain mb, + mb3; <0 which is equivalent to b, — b; <0. This gives us b > b, > b;.
Here is the picture illustrating the case of m = 3.

The fourth configuration is given by the following inequalities.

31 31
P >0>p 0y q1om>0>q20m

G2om-1>0>¢q32m—1
32 :
Pom >0
dm—1 m+2 > 0 > qm,m+2

qmm+1> 0.
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We have gy 0m <@mmi2 <0 for m>2 and gmom = gmm+2<0 for m =2. We also
have —p32 <0 and —p;! <0. Summing up these inequalities, we obtain b3 >b,. We
also have g;y41-;>0 for i =1,2,...,m. Summing up these inequalities, we obtain
b, >b,. This gives us b3 > b, >b;. Here is the picture illustrating the case of m = 3.

The fifth configuration is given by the following inequalities:

0> pj! q12m>0>q22m
G22m-1>0>q32m-1
P >0>p30,
Gm—1m+2>0> G mio

qm,m+1 >0.

We have g; 5,12 <0fori = 2,3, ...,m. Summing up these inequalities with p?l <0
and p}2, | <0, we obtain (m — 1)by + (m + 1)b3<0. The last is equivalent to by > bs.
We also have gjzp,11-;>0 for i=1,2,...,m. Summing up these inequalities, we
obtain mb, + mb3 >0 which is equivalent to b, > b;. This gives us b, >b; >bs3. Here is
the picture illustrating the case of m = 3.

The last configuration possible is given by the following inequalities.

P >0>pl gy a1 >0>q1 0

q22m—2> 0> q2.2m—1

Pim>0 '

Gm—1m+1>0> 1 m42
0> dmm+1-
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We have ¢;2,11-i<0 for i = 1,2, ...,m. Summing up these inequalities, we obtain
mby + mb3 <0 which is equivalent to b;>b,. We also have g¢;2,_;>0 for i—
1,2,...,m — 1. Summing up these inequalities with p32 >0 and p}! >0, we obtain
(m—1)by + (m + 1)b3>0 which is equivalent to b3 >b,. This gives us b3 > b >b;.
Here is the picture illustrating the case of m = 3.

So, in these six cases the form (s, * ) is sign-definite. Lemma 3.4 gives {e;,e; ) =
(by — by)(by — b3). Thus, sign(< *, = ») = sign((by — by)(by — b3)). O

3.3. 0dd family

For the hypergeometric, odd, and even family, let us call the objects {V;A =
B+ C,B,C; (*, >} where (A,B,C) is a rigid irreducible triple of matrices of the
corresponding spectral types and < =, = » is the non-degenerate scalar product such
that A, B, and C are self-adjoint with respect to it, m-hypergeometric module, m-even
module, and m-odd module. Let us denote these objects as HGM,,,, EM,,,;, and OM,,.
The reason for calling these objects modules comes from the theory of quiver
representations and will not be explained in this paper.

It is possible to prove Theorems 2.7, 2.8, Lemma 2.3, etc. in the same fashion as
for the even family. But we choose a different approach. We show that by means of
violating the “‘generic eigenvalues” condition it is possible to construct OM,,_; as a
submodule of EM,,,. Then all the formulas follow from the corresponding formulas
for the even family.

Let V' be the same 2m-dimensional linear space as in the previous subsection and
let ey, ..., ey, be the standard basis of V. Let A, B, and C be the matrices from the
previous subsection, too. Fix an integer i such that 1 <i<m. Let '} be the subspace

of V spanned by the vectors ej, e, ..., €xu_i, €mt1—is €2mid—is ..., €. It follows from
the formulas of Lemma 2.2 that Ve is spanned by v, V2, ..., Vi1, Vi, Vitl, ...y Vom

(hence the notation). Then the following lemma follows at once from the formulas
for A, B, and C of Section 2.2.

Lemma 3.6. If p?> = 0, then V; is invariant with respect to A, B, and C.
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Thus, it makes sense to consider the restrictions of A, B, and C to Vl‘ and call them
A’ B:, and C:. We will also call {#, )% the form (*, ) restricted to V. Note

that p}* = 0 forces g; = p;' and ¢; — ¢; = —p;”.

Theorem 3.1. If (s(A),s(B),s(C)) is a generic point of the intersection of
S((m,m), (1,m — 1,m), (1>™)) with the hyperplane given by the equation p* =0 for

a fixed 1<i<m, then {Vif; A?,B?, C5 (o, % >f} is OM,,_;.

Here is an example of the matrices B; and Cg obtained from the matrices B and C

of Example 2.4 by setting p3* = 0 and restricting them to V3.

Example 3.2.
- 21 31
_ P5 435 _ P3 Q9344935 31
by | —T—e 34 P (er—co) Pt
0 b 0 Pg%l g15 434 31
2 T P8 (c1—c3) p1
B% - 0 0 b P pi'quagss p3! p3!
2 p32(ci—cs)(ca—cs)  ca—cs
0 0 0 b3 0
L O 0 0 0 bs
i Ce 0 0 0 0]
—q15 cs 0 0 0
p21 q14
C% — ——‘—04_05 0 C4 0 O
32,21
32 P3P
-3 e p33 | cz 0O
21
__ 9144915 ____DPs 914435 415 934 0 c
L ci—cs (c1—c3)(ca—cs) ci—cs 1]

We first prove Theorem 3.1 and then we derive all the proofs for the odd family
from what we already know about the even family. Let us prove Theorem 3.1.
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Proof of Theorem 3.1. It is clear that B: is diagonalizable and that
S(B;) = {b17b27 "‘7b25b37 "'7b3}'
—— ——
m—1 times m—1 times
It is clear that C; is  diagonalizable and that s(C}) =

{c1,¢2y oy Cim1,Ciy Cig 1y -y Com +- In view of Lemma 3.6 and Theorem 2.4, it is clear
that 4% is diagonalizable as well. In the notations of Section 3.2, A has eigenvectors

aj+ corresponding to the eigenvalue a; (normalized to 1). Vectors a;” are eigenvectors

of A corresponding to the eigenvalue @, (normalized to —1). Once we set p3> = 0, all
the ecigenvectors of A belong to V; except for a, ., ; and the proof follows

immediately. [

To finish the rest of the proofs for the odd family, we just have to say that all the
formulas for OM,, in this paper were obtained from the formulas for EM,,,; by
setting p3%, =0 and renumbering the remaining ci,¢a, ..., Cmy Cpri2s ---, Comya aS
C1,C2y oovy Comt1-

Remark 3.2. In exactly the same fashion, we can construct OM,, | as a factor
module of EM,, by setting p;' = 0 for 1<i<m; we can construct EM,, as a factor
module of OM,, by setting either p3! = 0 for 1<i<m or p?!' =0 for m + 1<i<2m.
Also similarly, one can show that setting b; + ¢;,.1-; — a» = 0 for 1<i<m creates
HGM,,_; as a submodule of HGM,,,.

3.4. Extra case of Simpson

Consider the following vectors.

Wi :(17070707070)5

w2 :(Oa 170707070)5

P164245 P1592359246
W = ) ) 17 07 07 0 )
’ ((bl —by)(ez—ca)” (b1 —b2)(c3 — ca)(es — co) )

Die P159236
W4 = 3 70717070 )
* (blbz (b — by)(es — ¢o) )
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ws = ( P169245(q126 — P31) P1592369246 (q125 —P31)
(b1 = b3)(by — b3)(c1 — ¢2)" (b1 — b3)(by — b3)(c1 — ¢2)(¢5 — ¢6)
P24q236 DP2392459246 1 0>
(by = b3)(c1 — 2) (ba = b3)(c1 — ) (s —ca) 7))

We = ( P16 (q126 —p32) p15Q235(Q125 —p32) P24
(b] — b3)(b2 — 1)3)7 (bl — b3)(b2 — b3)(C5 — 06), b2 - b37

D239235
(B> = by)(cs = 64),0, 1). (3.39)

Theorem 2.10 and Lemma 2.4 are proved by direct computation as well as the
following two lemmas.

Lemma 3.7. Let B be as in (2.24). Then w; and w, are eigenvectors of B with the
eigenvalue by, ws and w4 are eigenvectors of B with the eigenvalue by, and ws and wg are
eigenvectors of B with the eigenvalue bs.

Lemma 3.8. Let  x, = ) be defined by (2.25). Let V), be the subspace of V spanned by
wi and wy. Let Vy, be the subspace of V spanned by ws and wys. Let Vy,, be the subspace
of V spanned by ws and ws. Then Vi, Vi,, and Vi, are mutually orthogonal with
respect to %, % ).

Theorem 2.11 follows from Lemmas 2.4 and 3.8. Finally, Theorem 2.12 can be
proved similarly to Theorems 2.3 and 2.6.

4. Indecomposable triple flag varieties with finitely many orbits

Let ie{1,2,3}. For a triple of flags 0 = VjcVicVic--cV, <V, =V,
we call the dimension vector in the jump coordinates the vector
((dim(V1/Vg),dim(V}/ V), ..., dim(V] /V) ), (dim(VE/VE), dim(V3/VE), ...,
dim(VZ /VE_), (dim(V}/V3),dim(V3/VY), ..., dim(V} /V} _}))). We say that this

triple of flags is in a standard form, if V is given a basis z;, ..., z, with the following
property: for the flag § = VicVicVic--c Vi _ <Vl =V, the subspace V' of
dimension a’[2 is spanned by the first d,z basis vectors zj,zo, ...; for the flag ¢ =

VocVicVic -c Vi _ cVi =V, the subspace V} of dimension d? is spanned by
the last d; basis vectors z,, z, 1, ... .

Magyar et al. [26] classify all indecomposable triple partial flag varieties with
finitely many orbits of the diagonal action of the general linear group. They work
over an algebraically closed field. C is enough for our purposes. Among other results,
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they give the dimension vectors in the jump coordinates as well as explicit
representatives of the open orbit in the standard form. For every element of their list,
the first flag turns to be just a subspace V| = V. It also turns out that this subspace is
spanned by vectors a; such that all their coordinates in the standard basis z, ..., z,
are equal to either 0 or 1. Their list is given on page 37.

Remark 4.1. Our definition of a standard form for a triple of flags is weaker than
that of Magyar, Weyman, and Zelevinsky (includes more triple flags).

Recall that we proved Theorem 1.3 only for the hypergeometric family so far.
Now we use the results of Magyar, Weyman and Zelevinsky to prove the
counterparts of this result for all other families of Simpson. Let us begin with the
even family. Recall that we work with the normalized matrices A, B, and C. This
means that they are traceless and the eigenvalues of A are 1 and —1. Let Z be the
following matrix:

1 m—1 m
| 0 0
m—1| 0 VARRREY, 0
Z= i
m 0 0 Zm+i,m+j
where
0 if i<y,
if i=j,
Zivitzy = )
ZEk:l+j qic.2m—i if i>j,
ke (Com=i—Ck) o (440)
0 if i<y,
1 if i=j,
Zm+z‘,m+j Hm,m-
m+lkjm+j Am+1-ik if i>j.
(Cm+l—i*’v’k>

k=m+2—i

Note that Z is lower-triangular with all the diagonal elements equal to 1.
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For 1<i<2m, let z; = Ze,;. The matrix Z is non-degenerate, so z; is a basis of V.
Consider the following flags: Vi< Vi<V and VicVic--cV; <V where Vi is

2m—
spanned by z;, V3 is spanned by z,,7,,...,%,, and V; is spanned by

Zoms Lom—1, -+, Zomi1—i- They are the second and the third flags of the even family
with the dimension vector ((m,m), (1,m — 1,m), (1*™)) in (4.41).

hypergeometric family

(m—1,1),(1™), (1™) ay =121 +2p+1 (1<k<m—1)
(1,m—1),(1m),(1m) ay=2z1+22++Zm

even family

(m,m), (1,m — 1,m), (1°>™) ap = 21 + Zit1 + Zomr1-k (L < k< m—1),
ay = 21 + Zm41
(m’m)7(11m7m_1)7(12m) a; =1z + 22,
ap =21 + Zpy1 + Zomia—k (2< k< m)
(m,m),(m —1,m,1), (12m) a = Zg + Zom—k + Zom (1 S k< m—1),
A = Zm + Zom
(m,m),(m —1,1,m), (12m) Ay = Zg + Zm + Zomy1—k (L <k <m-—1),
Ay = Zyp, + Zm+1
(m,m), (m,m —1,1),(1>™) a; =z + Zom,
B 5 5 < <
T
ap = Zg + Zomt1—k + Zom (2< k< m)
(mv m)v(mvlvmf 1)!(12m) a) = 21 + Zm+1,

ap = 2k + Zmi1 + Zomyo—k (2< k< m)

odd family

(m,m+1),(1,m,m),(12"*) | ay =21 +z2+k+ 1+ Zomso—k (L < k< m)
(m+ 17m)7(17m)m)7(12m+1) a; =z + 2a, Am41 = 21 +(zm+27 ) (4.41)
ag =21 + Zkt1 + Zomiz—k < k< m

(m,m+1),(m,1,m), (1> | ay = 2 + Zm41 + Zomrz-k (1< k< m)
(m+1,m),(m,1,m),(12™*1) | a; = 21 + Zm+1, Amt1 = Zmt1 + Zmi2,

A = 2k + Zmy1 + Zomys—k (2 < k< m)
(mvm + 1)7 (m7 m, 1)) (12m+1) ag = Zg + Zomi1-k T Z2mt1 (1 <k< m)
(m+1,m),(m,m, 1), 12™*) | a1 = 21 + Zom+1, Am41 = Zm+1 + Zam+1,
ap =2y + Zomi2—k + Zomt1 (2 < k< m)

FEg family
(2,4),(2,2,2),(1,1,1,1,1,1) ay =21 +22+23+ 2, a2 =21 +24+2s
(47 2), (2,2, 2)7 (17 1,1,1,1, 1) a) =z + Zs, az = Zp + Z3,

ag =7Zo + 25 + Ze, A4 = 74 + 25

Eg family

(3,3),(2,2,2),(2,1,1,1,1) a; =27+ 2+ 23, ap = %1 + Zg, a3 = Zo + Z4 + 75
(373)7(27272)7(1727 111:1) ay =z + 22 + 2Z4 + Z,
ap =z + 23, a3 = %1 + 25
) (2 2 2) (1 1,2,1 1) a) = z1 + Z5 + Z¢, 2 = Zy + Z3 + Zg, A3 = Z4 + Z5
(3,3),(2,2,2),(1,1,1,2,1) a; =z, + 2% + 24 + Z6, a2 = 71 + 23, A3 = 271 + Z5
) (2 2 2) (1 1,1,1 2) a) = Z1 + Z4 + Z¢, g = Zy + Z4 + Z5, A3 = Zy + Z3

Here is an example of the matrix Z with m = 3.
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Example 4.1.

M1 0 0 0 0 07
0 1 0 0 0 0
0 cf%% 1 0 0 0

7 =

0 0 0 1 0 0
0 0 0 P 1 0

LO] 0 0| oo ace L.

Definition 4.1. Let A be a diagonalizable complex linear operator with the spectrum
(A1, 22, ..., Ak). Let V), be the eigenspace of A corresponding to the eigenvalue ;. We
will call the flag V,;, <V, @ V),<--- <V the spectral flag of A corresponding to the
ordering (41,42, ..., Ax) of its spectrum.

If (my,my, ...,my) are the multiplicities of the spectrum of A from the above
definition, then the dimension vector in the jump coordinates of its spectral flag is
also (my,my, ..., my).

If we take another look at the eigenvectors of B (Lemma 3.3) and at the
eigenvectors of C (Lemma 2.2), we see that the spectral flags of these matrices are
exactly the second and the third flags of the Magyar, Weyman, and Zelevinsky triple
((m,m), (1,m — 1,m), (1>™)).

Lemma 4.1. The subspace V| spanned by the vectors ay,...,a, (from the
((m,m), (1,m — 1,m), (1°™)) entry in (4.41)) is the spectral subspace of the matrix A
corresponding to the eigenvalue —1.

Proof. In order to prove (A + Id)a; = 0 for 1 <i<m, we have to prove the following
identities.

1. The first identity says that the first component of (A + Id)a; is zero.

m—1 m

bi+cm+ 1+ Z Zij1+i By + Z Znsjrm1—i Bimyj = 0. (4.42)

Jj=i m+1—i
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2. The second identity says that the components 2 through m of (A + Id)a; are zero.

Cigjg + (comj+ b2+ 1) Z 114 + Z Ztkpmei—i Bigjmie = 0. (4.43)
k=m+1—i

3. The third identity says that the components m + 1 through 2m of (A + Id)a; are
zero.

m—1
Cm+]'71 + (Cm+1_j + b3 + I)Zm+j2m+1—i + Z Zl+k,1+i Cm+j,l+k =0. (444)
k=i

Recall that the matrix elements of the matrices B and C are given by formulas
(2.7)~2.12) on pages 8-9. Then the first identity becomes

m—1 Hm
Z k=1+i 9k2m—j
bl + com + 1 + m—i
=i k=m+1 (Cmej — k)
k#2m—j
m 2m—1
n Z P k=ami—i milojk (4.45)
m+1—j i - Y .
Jj=m+1—i H k=1 (Cm+l—j - Ck)
k#m+1—j

In our normalized version, p,3nl+]_j = Cmy1—j + b3 — 1. Thus, (4.45) splits into two
identities of homogeneous degrees 0 and 1. The part of degree 0 is

m 2m—1 )
k=2m1—i Am+1-jk -1
; = 1.
j=ml—i H k=1 (Cm+17j - Ck)
k#m+1—j

This identity is equivalent to (7.60) from the appendix. The part of degree 1 is

m—1 m
R Z [Te1si qrom—

1 2m 2m—i

j=i k=m-+1 (C2m—j - Ck)
k#2m—j
m 2m—1
+ Z (b3+cm+]—j) Hk_2:n+l i Am+1—jk —0.
—— H k=1 (Cm-‘rl—_f - Ck)

k#m+1—j

This one is proved similarly to identity (3.34) on page 24 with the help of identity
(7.61) from the appendix applied separately to each of the sums.
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To prove the second identity (4.43), let us recall that

0 if j<i,
1 if j=1,
Zivji+i = ;
H;»’:Pri qkc2m—j if ]>l

T
HkZZiiH-l—j (c2m—j - Ck)

Thus, the second identity (4.43) splits into three different identities. In case j<i, we
have

m
Cigjn + E Zinskami1—i Biyjmire = 0.

k=m+1—i

This identity, after cancelling out common multiples, splits into a sum of two
identities: one of degree —1 and the other of degree 0. The first reduces to identity
(7.59) and the second reduces to identity (7.60) from the appendix.

In case i = j, we have

Cipji+ (comj+ b+ 1)+ Z Znsicomi1—i Bisjmpr = 0.
k=m+1—i

This identity splits into two parts of degree 0 and 1. The part of degree 0 reduces to
identity (7.63) from the appendix. The part of degree 1 is a sum of two identities: one
is equivalent to (7.60) and the other is equivalent to (7.63) from the appendix. The
case j>1i, after cancelling out common multiples, becomes equivalent to the case
j=1

To prove the third identity (4.44), recall that

0 if i+j<m+1,
Zm+j,2m+17i = m—14j
Lo itk e i+j>m+ 1.

=
Hk:uprz,j(em F1—j—Ck)

Thus, the third identity splits into three different identities. In case i + j<m + 1, after
cancelling out common multiples, (4.44) becomes equivalent to identity (7.60) from
the appendix. In cases i+j=m+1 and i+ ;>m + 1, identity (7.65) from the
appendix does the job.

Finally, it is clear from (4.41) and (4.40) that for 1<i<m, the vectors a; are
linearly independent. [

Now let us get back to the proof of Theorem 1.3.

Proof of Theorem 1.3. For a triple of partitions S”(a, ,7) from Simpson’s list (1.1),
we want to prove that if (s(A),s(B),s(C)) is a point of S”(a, ,7), then the triple
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(A, B, C) is irreducible. We have proved it already for the hypergeometric family in
Section 3.1. To prove it for the even family, let us recall that if
(s(A),s(B),s(C))eS"(«, f,7), then the scalar product (2.14) is well-defined and
non-degenerate. Assume that the triple of matrices (A, B, C) is reducible. Then they
all preserve a non-trivial subspace V. This subspace is spanned by some eigenvectors
of C. Let V" be the subspace of ¥ spanned by the complementary eigenvectors of C.
But all eigenvectors of C are orthogonal to each other with respect to (2.14). Thus,
the space V splits into the orthogonal direct sum ¥V’ @ V”. Thus, the matrices A and
B preserve the subspace V" as well. So, no matter how we introduce linear orders on
the spectra of A, B, and C, the corresponding triple of flags will decompose.
However, if (s(A),s(B),s(C)) is a point of S”((m,m), (1,m — 1,m), (1>")), then as
follows from Lemma 4.1 and the preceding discussion, the spectral flags of the
matrices A, B, and C give the Magyar, Weyman, and Zelevinsky representative of
the open orbit of the corresponding triple flag variety. According to Magyar,
Weyman, and Zelevinsky, this triple of flags is indecomposable. Thus, the
assumption that the triple (A,B,C) is reducible cannot be true. This proves
Theorem 1.3 in the even case.

The Z-matrix for the odd family triple ((m+ 1,m),(1,m,m),(1>"*1)) can be
obtained from the Z-matrix for the even family triple ((m + 1,m + 1), (1,m,m+ 1),
(12"+2)) by restricting the latter to V75, as in the proof of Theorem 3.1 on page 34.
The rest of the argument is the same. Finally, let us give the Z-matrix for the extra
case of Simpson (or, more precisely, for the triple of compositions
((4,2),(2,2,2),(1%)) of the Eg-family from (4.41)).

1 0] 0 O 0 07

Muas 0 0 0 0

Cs—Cg

Z = : (4.46)
0 0|2 1| 0 0

c3—Cq

o
o
o
o

1 0
0 0| 0 0fz

L c1—cCa |

The only family of Magyar, Weyman, and Zelevinsky which does not appear in
the list of Simpson, is the Eg-family. We now construct the matrices A =B + C,B, C
such that their spectral flags form the Magyar, Weyman, and Zelevinsky
representative for the open orbit of the triple flag variety of dimension
((3,3),(2,2,2),(1,1,1,1,2)). This time the standard basis e; and the z-basis of
Magyar, Weyman, and Zelevinsky z; coincide (z; = e;).

Let (al,al,al, az,az,az,bl,bl,bz,bz,b3,b3,€1,€2,€3,€4,C5,C5)ES((3,3), (2,2,2),
(1,1,1,1,2)).
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I a1 + a2 —a1 —az+ T
by O 0 —by — b3 by + b3+ —as+ b3+
—C1 —C5 c1+¢s
—a1 — 2a9+ —a1 — as+ a1 + 2as
0 bi|ai—by—c5 by +by+bs+ ba + b3+ —by — by — b3
c1+c3+cs Cy + ¢4 —C1 — C3 — C5
a1 + 2as
Let B = 0 0 b 0 —a1+ by +ey —b1 — by — b3 s
—C1 —C3 — Cp
2a1 + ag
0 0 0 by —by — 2bs —ag + b3 +c1
—C1 —C3 —C5
0 0 0 0 b3 0
| 0 0 0 0 0 bs ]
(4.47)
cs 0 0 0 0 0 T
0 Cs 0 0 0 0
—a1 — 2a9+
b1+b2+b3+ al—b2—04 Cy 0 0 0
c1+c3+cs
ai + ag —a; — az+ ai +ag
—by — b3 b1 + bot+ —b1 — by Cc3 0 0
—C1 —C3 cg+cs —C4 —Cp
—a1 — 2a2+ —a; —az+ a; + az —a1 — 202+
by + ba + b3+ by + ba+ —by — bo by + by + b3+ co 0
c1+c3+cs [ —C4 — C5 c1+c3+cs
ay + az —a1 — a2+
—as +by +c5 0 0 —by — b3 b1 + b3+ Cc1
—C1 — C5 c1+cs

s
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It is clear that B and C are diagonalizable and that s(B) = {b1, b, b, b2, b3, b3},
s(C) = {c1,¢2,¢3,¢4,¢5,¢5}. The following is proved by direct computation.

Theorem 4.1. For B and C as in (4.47) and (4.48), let A=B+ C. Then A is
diagonalizable and s(A) = {ay,a1,a1, a2, a2, a>}.

The existence of a scalar product on V" such that A, B, and C are self-adjoint with
respect to it can be proved using methods of the theory of quiver representations. It
follows from Schur’s lemma that if (s(A),s(B),s(C)) is a generic point in
S((3,3),(2,2,2),(1,1,1,1,2)), then the form is unique up to a constant multiple. It
would be interesting to find a basis in which the form is “nice” (for instance, having
matrix entries as ratios of products of linear forms in the eigenvalues of A, B, and C).

5. Connections with the Littlewood—Richardson rule

An irreducible rational representation of GL(n,C) is uniquely determined by its
highest weight /. = (A1, 22, ..., ) Where J; are integers such that ;> 4,>--- > 1,. We
can decompose tensor products of irreducible representations into sums of irreducibles:

Vi®Vi=>_ ¢,V (5.49)

The number 3 of copies of V, in V,® V), is called the Littlewood—Richardson
coefficient. There exists a famous combinatorial algorithm to compute the Littlewood—
Richardson coefficient called the Littlewood-Richardson rule (see [9] for more
information). It follows from the results of Klyachko [14] combined with a refinement
by Knutson and Tao [15], that the lattice points of the Klyachko cone are exactly the
triples of highest weights with non-zero Littlewood—Richardson coefficients (see also [§]
for a nice survey). The question whether all the lattice points of the Klyachko cone were
such triples was raised in [32] under the name of the saturation conjecture. The
conjecture was proved by Knutson et al. in [15]. Some of the Klyachko inequalities
describing the Klyachko cone are redundant. Knutson et al. in [16] give the set of
necessary inequalities for the Klyachko cone. Derksen and Weyman [6] give a proof of
the saturation conjecture different from that of Knutson and Tao. They use methods of
the theory of quiver representations, developing further ideas of Schofield [28].
Moreover, Derksen and Weyman [7] give description of a/l the faces of the Klyachko
cone of arbitrary dimension. However, all these results involve recursive computations.

The inequalities of Theorems 2.3, 2.6, 2.9, and 2.12 give non-recursive description
of some faces of the Klyachko cone. Thus, integral solutions to these inequalities
give non-recursive description of some triples of highest weights with ¢, #0.

Let us show a different way to derive these inequalities and also show that the
corresponding ¢;, = 1. For that, we use the Berenstein—Zelevinsky triangle. It was
invented in [1] as a geometric version of the Littlewood—Richardson rule. A variation
of the BZ-triangle was used in [15] under the name of a honeycomb tinkertoy. A
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different variation of the triangle was used in [10] under the name of a web-function
to examine relations of the Littlewood—Richardson coefficients with a Quantum-—
Yang—Baxter-Type equation.

Consider the following graph.

This is the Berenstein—Zelevinsky triangle for sl.. In order to define it formally, it is
convenient to use the barycentric coordinates in R?. Namely, we represent a point in
R? by a triple (o, §,7) such that o 4 f +y = 0. The r Berenstein-Zelevinsky triangle
BZ, is the set of points in R? with barycentric coordinates (o, 8,7), such that

1. 0<fi< —a<r+1,
2. the numbers 2¢, 23, and 2y are integers,
3. at least one «, f§, or y is not integer.

Every integer point (a,b,c), a+b+c=0, with 0<b< —a<r+1 has six
neighbors in BZ, that form vertices of the following hexagon:

A:(a,b—%,c+%) B:(a—%,b,c+%)
F=(a+3,b—13%,¢ C=(a—3,b+1,0
E:(a+%7bvc_%) D:(a’b"_%ac_%)

Definition 5.1. A function f: BZ,—{0,1,2,...} is called a BZ-filling if for any
hexagon as above we have f(4) + f(B) = /(D) + f(E), f(B) + f(C) = f(E) + f(F),
and f(C) + f(D) = f(F) +f(A) (the last condition follows from the first two). We
call this the hexagon condition.
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Let A=Y, L, p=> i, mo; and v=> " mw; where the w; are the
Sfundamental weights of sl(r+ 1,C). Let us assign /;, m;, and n; to the boundary
segments of the BZ, as shown in the picture on page 43. Note that /; = 4; — 2,11,
m; = W — Hiy1s i = Vi = Vil

Definition 5.2. A filling /' of BZ, satisfies boundary conditions if for any boundary
segment with vertices 4, B, and a non-negative integer value v assigned to the
segment, f(4) + f(B) = v.

Theorem 5.1 (Berenstein, Zelevinsky). Let A=Y | Liw;, n= >, mjw;, and v=
iy mw; be dominant weights of sl(r+1,C). Then ¢;, = #{of fillings of BZ,
satisfying the boundary conditions}.

Let us use the BZ-triangle for a different proof of Theorem 2.3, and also to show
that the corresponding Littlewood—Richardson coefficient is equal to one.

Proof of Theorem 2.3. Let us assume that a;<a,. Consider BZ, for the
hypergeometric case (r=m —1). For that, we have to switch from gl(n,C) to

sl(n,C). Let us set A=A—-Ltr(A)ld, B=B—-Ltr(B)ld, and C=C—

—7tr(C)Id. Then s(A) ={d,d, ...,d,—rd}. Let us call the eigenvalues of B and C

b; and ¢;. We have ZJ'LI by = Z]r:ll ¢ = 0. Recall that /; = b — I)~i+1; m; = ¢ — iy
n=n=--=n_=0and n, = (r+ l)a.
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If a hexagon has two zeros on a side, then the non-negativity of BZ-fillings and the
hexagon condition force two zeros on the opposite side. In the hypergeometric case,
this mechanism reduces the BZ-triangle to a strip. Let us put a variable x in an
unfilled vertex of the strip. Then the filling is expressed in terms of x, and the
boundary conditions. Also the /,-boundary condition gives a linear equation on x.

=2 —ly 4+ 2m, + My — 21, + 32

—ly +my —np + 22

0 L 0 Ik 0 bz 0 L2 0 L
LN\
ny Iy
T e, My_1 e m3 ma mi
My — Ny + = E;:i(v — i+ Z;_.l(j — 1)y — (r— n, +rz
Lh—me+n.—xz *Z;;ithfZ;:LmJ*nrer
—hLh4+m-+me_1—n-+z

lhi+la—my —mpe_1+np—x

The /-boundary condition gives us the equation — Z/’;ll (r+1-jL+
er‘:l jmj —rn. + (r + 1)x = I,. Thus,

S (1=l =370 jmy+rn,
r+1

X =

and the filling is defined uniquely. Let us list the Klyachko inequalities. First, x =
by + ¢, + ra>0. However, this inequality is not a generating one. If we have another
look at the strip above, we see that x has a neighboring 0-vertex. So, x is the sum of
the numbers at the opposite edge (—52 —Cy14d, and By +by+ 6 + 6 + (n—
2)d). All the numbers in the middle part of the strip except for the utmost right one
(—=b, — & +d) do not produce generating inequalities for the same reason. The
numbers on the lower part of the strip together with the last middle number produce
the following generating inequalities:

by +Cpoy > > b+ ¢y
by + G > > byt Gy
a (5.50)
b1+ > > by + &
> b+

Switching back to gl(n, C) proves the theorem in this case. The case a; >ay is
obtained from the case a; <a, in the following way. Let us multiply A, B, and C by
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—1. Then let us renumber b; and ¢; so that by >by>--->b,, and c1>cr> -+ >cpy
again. [

One can similarly prove Theorems 2.6, 2.9, 2.12 and also show that the
corresponding Littlewood—Richardson coefficients are equal to one.

In the Eg case of the Magyar, Weyman, and Zelevinsky list (4.41), we do not have
an explicit criterion for positivity of the corresponding Hermitian form. However,
the BZ-triangle enables us to compute the inequalities on the eigenvalues of A, B,
and C which make the form sign-definite. In the notations of (4.47), (4.48), let a; > a;
and by >b,>b;. Then the form is sign-definite precisely in the following
situations.

—a1—a2+by+bs+ci+es > 0 > —ar—ax+b+bsteatces
—a; —a2+by+byteztes > 0 > —ap—ag+b+bytecstes
ap—az—c1+ex—c3tey > 0 > a1—az—c1—c2teztcen

0 > —az+bytes
—a1—a2+bi+bs+cates > 0 > —ay—as+bi+bs+eztes
—ag + by +c5 > 0 > —ax+bates
—a1+az+ci—co+ez—cg > 0

0 > —ap—ag+ba+bs+eci+es

0 > —at+btey
—ar—azt+bat+bgteites > 0 > —a;j—ax+batbyzteatoes
—a;—ag+b+byt+cztes > 0 > —aj—ag+b+bytesites
a1 —ag—c1+ea—c3tea > 0 (551)
—a; +b +cs > 0

0 > —as+bz+ecs
—a;—a2+by+bs+ecates > 0 > —ap—ax+b+bstestes
—ay+ba+cy > 0 > —ar+btes
—ay—az+b+brteites > 0
—aa+b3+ec > 0

0 > ag—a2—cr+ca—cz+ac
—a1—a2+bi+bz+estes > 0 > —ag—ag+bi+bsteates
—a1—ag+bo+bz+eites > 0 > —ag—ag+batbsteates
—a1+ax+ci+ca—c3—cs > 0 > —ar+agtci—catez—cy
—a1+bates > 0 >

The first set of inequalities forces c¢;>c¢;>c¢3>c¢4>cs realizing the dimension
vector (3,3),(2,2,2),(1,1,1,1,2). The second set of inequalities forces
€1 >¢p>c3> 5> ¢y realizing the dimension vector (3,3),(2,2,2),(1,1,1,2,1). The
third set of inequalities forces ¢ >c; > c¢s>c3>c4 realizing the dimension vector
(3,3),(2,2,2),(1,1,2,1,1). The forth set of inequalities forces ¢; >cs>cy>c3>cq
realizing the dimension vector (3, 3), (2,2,2),(1,2,1,1,1). The last set of inequalities
forces ¢s > c¢) > ¢y > ¢3> ¢4 realizing the dimension vector (3,3),(2,2,2),(2,1,1,1,1).
Thus, all the members of the Eg-family from (4.41) can be constructed this way with
the help of the corresponding eigenvectors of A, B, and C.
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6. Fuchsian systems, Fuchsian equations, Okubo normal forms, and the list of
Haraoka—Yokoyama

Let us consider a system of linear differential equations on a C"-valued function f
on CP'.

df = of, (6.52)

where  is a (n x n) matrix-valued 1-differential form on CP!. Let the form be
holomorphic everywhere on CP! except for a finite set of points Z = {z, 25, ...,z }.
Let us consider a solution of (6.52) restricted to a sectorial neighborhood centered at
any z;€ 2. If any such solution has polynomial growth when it approaches z; within
any such sector, then system (6.52) is called linear regular. If @ has only first-order
poles at &, then the system is called Fuchsian. Any Fuchsian system is linear regular,
but there exist linear regular systems which are not Fuchsian (for more detailed
treatment, see [3] or [30]).
An n order Fuchsian equation is a linear differential equation

'@+ @@ @)+ + (S (2) = 0 (6.53)

such that its coefficients ¢;(z) have a finite set of poles ¥ = {zy,z,...,z} and in a
small neighborhood of a pole z; the coefficients of (6.53) have the form

g(2) = (zrj—(zz),-)f’ j=1,n, (6.54)

where the r;(z) are holomorphic functions. Solutions of Fuchsian equations have
polynomial growth when continued analytically towards a pole. This distinguishes
Fuchsian differential equations from all other linear differential equations on CP!.
Thus, for linear differential equations the notions “Fuchsian’ and “linear regular”
coincide.

The matrix R; = Res._,,w(z) is called the residue of a linear regular system at z;.

By the Cauchy residue theorem, Zf;l R, =0.

Theorem 6.1 (see Bolibrukh [3]). Any Fuchsian system has the standard form

. k )
qa _ ' R; £ (2). (6.55)

Theorem 6.2 (see Bolibrukh [3]). For any Fuchsian equation on the Riemann sphere, it
is possible to construct a Fuchsian system with the same singular points and the same
monodromy. The converse is not true.
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Remark 6.1. Thus, the notion of a residue matrix makes sense for a Fuchsian
equation as well as for a Fuchsian system.

To study Fuchsian differential equations, Okubo had invented what became later
known as the Okubo normal form of a Fuchsian equation. In [27], he proves that any
Fuchsian equation can be written in the following form:

dx
(tId — B) — = Ax, (6.56)
dt
where 7 is a complex variable, xe C" is an unknown vector, Id is the identity matrix
of order n, B is a constant diagonal n x n matrix, and A is a constant n X n matrix.
Let

B=diag(z1, ..., 21,22, «cesZ2y ooy Zky oy Zk), (6.57)
e — e — ——

ny n s

such that z;#z; for i#j, ny +ny + -+ + m = n, and ny =ny > --- =ng. The partition
(n1,ma, ..., i) of n endows A with the block decomposition 4 = (4), ;<4 Let us
call A; the set of eigenvalues of A; and let us call A, the set of eigenvalues of A.
Then zy, z3, ..., zx and oo are the singular points of (6.56). At the point z;, (6.56) has
n; non-holomorphic solutions with local exponents 4;eA;. At oo, (6.56) has local
exponents A€ .

Yokoyama [31] used Okubo theory to classify the spectral types of rigid
irreducible Fuchsian equations. For such, all 4; are diagonalizable as well as 4 itself.
Quoting the result of Yokoyama, we will not give the spectral types of 4;; and A4 the
way he does. Instead, we will list spectral types of the residue matrices (which are
diagonalizable, t0o).

I (m-1,1),(a™),(1™) m>2
II (m,1™), (m,1™), (m,m —1,1) m>2
III | (m,1™*),(m+1,1™),(m,m,1) m>2

v | (41,1),2,1,1,1,1),(2,2,2)

| m=1,1), (m—1,1) m>2 (6.58)

m times

Ir | (m,1™),(m+1,1™1), (2m - 1,1),(m,m) | m>2

II* | (m+1,1™), (m +1,1™), (2m, 1), (m + 1,m) | m > 2

IV* (4’ 1) 1)7(4’]‘71)7(471!1)1(472)

Haraoka explicitly constructed the equations of the above spectral types in [11]. In
[12], he explored the solutions of these equations: computed their monodromies,
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found monodromy invariant forms in their spaces of solutions, etc. It turns out that
the solutions of these equations are important hypergeometric functions. It also
turns out that the Fuchsian systems constructed in our paper are closely related to
Yokoyama—-Haraoka equations: sometimes the 4 matrices are just the same! We
think it is interesting to understand the nature of this relation, find solutions to our
systems, and their monodromies. We plan to do it in a subsequent publication.
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Appendix

In this section we collect the identities needed for the proofs in the previous
sections.

For k<n—1:
. k
(X =y
H];1 ( ¥j) o, (7.59)
— [l=1(xi —x;)
J#i
n n—1
(X
[ s-m) | 60)
 1l=1(xi—x))
J#i
- H]}?:l (xi = ») -
7 = Xi — i), 761
> Tt =)~ 2 () (7.61)
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I<i<j<n I<i<j<n+l

H?ill (xi + ;)

T e N ; + XiXj + YiVj
I e R SEAD LD SR

j

For 1<i<m—1:

m H?cn ( yk) Hk 1 (yl )
Z Hkyét k#j _ 1,

k=1 Xj — Xk) Hk (i — i)

k#i
1
-5 T
2 #i k=1 ]
-+ Z =1
Vi Hm yl — xk = Hk 1 (Xj — Xk)
k#j

For 1<i<m:

Hyknzl (xi - xk) m—1 1 szzl(yj + xk)

k#i + k?&l — 1
IG5 Ga+on) = X0 IRE 0y — )
k#j

—

1 if nis odd,

2 x,+x1 x,+xz)---(x,-q—\x,-)-~~(xi+x,1)_{0 if n is even,

=1 (X — x1)(x; — x2) - (X — x3) - (X — Xx)

—

— - ny

= (X —xl)(x —xp) (X — xp) e (X — X)

—

Z 5 (i x1) (3 4 x2) - (3 + x3) -+ (X + x5)

— :(x1+xz+...+xn)27

P (i = x1) (i — x2) -+ (3 = x1) - (X — xp)

AT | CRCEST
#J r #j
+ =1
Y Ty Oy — xi) ; X =y [Teer (o — xx)
k#r

forj=1,2,....m—1,

(7.62)

(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

(7.68)

(7.69)
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M 05400 o T e,

2 k#j Xy k#j
Vi " + = (X,- +y1)
e (v — Xk) = Xr = Hg?(xr — Xk) —1
r
forj=1,2,...,m—1. (7.70)

Fori=1,2,....m—1landj=12, ..., m:

o1 LI (X + ) [T (2 = »2)

k#j Z 1 ktr
r=1 HZI;II (yr - yk) s=1 Xs +yl H’;{Ll (XA% - X%)
k#r k#s

H?:l (7 — k)
XV kg
x;+vi [Tier (x5 + xx)

k#j

=1. (7.71)

All these identities have the following features: the left-hand side L(x,y) is a
rational homogeneous function in x; and y;. All the denominators of L(x,y) are
products of linear forms o of the form (x;+Xx;), (yi+y;), or (xi%y;). The power of
every such form in any denominator is 1. The right-hand sides R(x, y) are constants
or homogeneous polynomials in x; and y; of degree 1 or 2.

The first step to prove such an identity is to prove that L(x,y) is in fact a
polynomial. For that, it is enough to prove that «L(x,y)|,_, = 0 for every form «
from any denominator of the identity. For all the identities except for (7.71), the
restriction of aL(x,y) to the hyperplane o = 0 turns to be a sum of just two terms
with equal absolute values and opposite signs. For example, consider identity (7.60).
Let us fix p and ¢ such that 1 <p<g<n. Consider

n—1
(x, — x,) e (im0
P T (- xg)
i

restricted to the hyperplane x, = x,. The restriction equals

H;l;]l (xp =) H;?;ll (xq —¥j)

= — =0.
[T=1 (5 =) TTi=1 (g — X))

J#p J#q

J#q J#p

For identity (7.71), the same technique works for all the forms in the
denominators except for o = x, + x,, where 1<p<m — 1. If « = x, + x,,,, then the
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restriction of aL(x,y) to the hyperplane o = 0 is

m

k=1 (X,E =)

m—1 m—1
k= 1 Xk +yr) k#r 1
z : m—1 2N\ 12 2
=1 yr = i) [i=1 (xf; - xk) =%
k#l k#p

4 Ym — Xp HII?:2 (xp + Vi)
=X [THt (xp — )
k#p

The fact that this restriction equals zero is equivalent to the identity

[T=1 O+ x0) TTH=1 (3 — wx)

k#p k#_,
=1 7.72
Z,.:l T Or— o) T (5 +x0) (7.72)
k;é) k#p

which is similar to identity (7.63), but different from it. In order to prove (7.72), it is
convenient to rewrite it as

[Ti=1 O + x0) [Ti=1 (xp + k)
Z k#p 1 ___k#p =0
Hk 1 J}r .Vk) Xp — Vr T:l (xP - yk)

k#r

and use the same technique over again.

The second step in the proofs is to show that a polynomial L(x,y) equals the
corresponding polynomial R(x,y). Let us, for example, consider (7.68). In this case,
L(x) and R(x) are symmetric homogeneous polynomials in x of degree 2. The space
of such polynomials is two dimensional. It is spanned by s = x? + --- + x> and s7,
where s; = x| + -+ + x,,. To prove that L(x) = R(x), we have to find two linearly
independent functionals f; and f> on this space such that f;(L) = f;(R) for i =1, 2.
We will treat the cases n = 2k and n = 2k + 1 separately.

Let n=2k. Let pj=(—k,—k+1,...,—1,1,2,...)k) and p, =(—k+1,—k+
2,...,—1,1,2, ...,k +1). For a symmetric homogeneous polynomial s of degree 2,
let fi(s) = s(p;), where i = 1,2. Then

2 (2k+1)(k+ 1)k
Sils2)  filsi) B s 7(2k+1)3(k+1)k¢0
. : B B 3 '
) fols)| | FEDEED g2 4 (1) 2k + 1)

Thus, fi and f, are linearly independent We have fi(L)=L(p1) =0=R(p)) =
fi(R)and f5(L) = L(p2) = (2k +1)* = R(pz) /f2(R). This finishes the proof for n =
2k.Forn=2k+1,takep; = (—k,—k+1,....k)and p = (—k+ 1, —k+2, ...,k +1).
The rest of the proof is analogous to the case n = 2k. Proofs of other identities are
finished similarly.
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