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Abstract

In this paper we construct three infinite series and two extra triples (E8 and Ê8) of complex

matrices B; C; and A ¼ Bþ C of special spectral types associated to Simpson’s classification in

Amer. Math. Soc. Proc. 1 (1992) 157 and Magyar et al. classification in Adv. Math. 141 (1999)

97. This enables us to construct Fuchsian systems of differential equations which generalize

the hypergeometric equation of Gauss–Riemann. In a sense, they are the closest relatives of

the famous equation, because their triples of spectral flags have finitely many orbits for the

diagonal action of the general linear group in the space of solutions. In all the cases except for

E8; we also explicitly construct scalar products such that A; B; and C are self-adjoint with

respect to them. In the context of Fuchsian systems, these scalar products become monodromy

invariant complex symmetric bilinear forms in the spaces of solutions.

When the eigenvalues of A; B; and C are real, the matrices and the scalar products become

real as well. We find inequalities on the eigenvalues of A; B; and C which make the scalar

products positive-definite.

As proved by Klyachko, spectra of three hermitian (or real symmetric) matrices B; C; and
A ¼ Bþ C form a polyhedral convex cone in the space of triple spectra. He also gave a

recursive algorithm to generate inequalities describing the cone. The inequalities we obtain

describe non-recursively some faces of the Klyachko cone.
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1. Introduction

Let V be a vector space over complex numbers such that dim V ¼ n where
1onoN: Let B; C be linear operators in V and let A ¼ Bþ C: We call the pair B;C
irreducible if the operators do not preserve simultaneously any proper subspace of V :

Let OA be the adjoint orbit of A in End V under the GLðVÞ action. We call the

triple A; B; C rigid, if any other triple B0; C0; A0 ¼ B0 þ C0 such that A0AOA; B
0AOB;

and C0AOC is conjugate to the triple A; B; C:
For a linear operator AAEnd V ; we call the multiset of its eigenvalues the

spectrum of A: This means that each eigenvalue li is taken with its multiplicity mi:
Any ordering l1; l2;y; lk of distinct eigenvalues of A allows us to represent the
spectrum of A by a vector sðAÞ ¼ ðl1?l1|fflfflffl{zfflfflffl}

m1 times

; l2?l2|fflfflffl{zfflfflffl}
m2 times

;y; lk?lk|fflfflffl{zfflfflffl}
mk times

ÞACn: For a

diagonalizable operator A; we call the partition ðm1;m2;y;mkÞ of n the spectral

type of A: With slight abuse of terminology, we also call the spectral type of A any
composition obtained by some ordering of l1;y; lk: We say that a vector

ðx1;y; xn; y1;y; yn; z1;y; znÞAðCnÞ3 satisfies the trace condition if
Pn

i¼1 xi ¼Pn
i¼1 ðyi þ ziÞ: Then ðsðAÞ; sðBÞ; sðCÞÞ belongs to the hyperplane in ðCnÞ3 defined

by the trace condition. We call this hyperplane the space of triple spectra. Let a ¼
ðm1;m2;y;mpÞ; b ¼ ðn1; n2;y; nqÞ; and g ¼ ðk1; k2;y; krÞ (compositions of n) be

the spectral types of A; B; and C: Then ðsðAÞ; sðBÞ; sðCÞÞ lies in the part

Sða; b; gÞCC3n defined as follows. A vector ðx; y; zÞAC3n is in Sða; b; gÞ if x1 ¼ x2 ¼
? ¼ xm1

axm1þ1 ¼ ? ¼ xm1þm2
a? and the same for y and z:

Consider the following table of triples of spectral types.

ð1:1Þ

Here and later ð1nÞ is a shorthand for ð1; 1;y; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n times

Þ:

Theorem 1.1 (Simpson, Kostov). Let ða; b; gÞ be a triple of spectral types such that at

least one of them is ð1nÞ: The following conditions are equivalent:
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1. for a generic point ðx; y; zÞASða; b; gÞ there exists a rigid irreducible triple ðA ¼
Bþ C;B;CÞ of diagonalizable operators such that ðsðAÞ; sðBÞ; sðCÞÞ ¼ ðx; y; zÞ;

2. ða; b; gÞ is one of the triples in (1.1).

Remark 1.1. This theorem is an additive version of Theorem 4 of [29]. This version
easily follows from Simpson’s results. A more elementary proof of Theorem 4 of [29]
and a proof of Theorem 1.1 were given by Kostov [17].

The first main result of this paper is that for each triple ða; b; gÞ of spectral types
from (1.1) and a generic vector from Sða; b; gÞ we explicitly construct the
corresponding triple ðA;B;CÞ:

Recently, there appeared algorithms to produce all rigid irreducible r-tuples of
matrices M1;y;Mr such that M1 þ?þ Mr ¼ 0; see [4,5]. We use a different (less
general, but more powerful for our particular purposes) tool: Magyar et al. [26]
constructed all indecomposable triple partial flag varieties with finitely many orbits
for the diagonal action of the general linear group. Their list (4.41) is strikingly
similar to list (1.1) of Simpson. It has just one more family: the E8-family. A triple of
spectral flags (for the definition, see Section 4) of the matrices A; B; and C
constructed from Simpson’s list (1.1) gives a representative of the open orbit of the
corresponding triple flag variety from (4.41).

Our A; B; and C have the following common features. B is block upper-triangular,
C is block lower-triangular. The block sizes of B and C are given by the compositions
b and g; respectively. Each entry of A; B; and C is a ratio of products of linear forms
in the eigenvalues of A; B; and C: The coordinates of all eigenvectors of A; B; and C
are also ratios of products of linear forms in the eigenvalues. The linear forms are
remarkably simple: all the coefficients are equal to either 1 or �1: As a corollary of
our construction, we obtain the following.

Theorem 1.2. For every composition ða; b; gÞ from Simpson’s list (1.1), there exist open

subsets S00ða; b; gÞCS0ða; b; gÞCSða; b; gÞ with the following properties.

1. Each of S0ða; b; gÞ and S00ða; b; gÞ is obtained from Sða; b; gÞ by removing finitely

many hyperplanes.
2. If ðsðAÞ; sðBÞ; sðCÞÞAS0ða; b; gÞ; then there exists a non-zero symmetric bilinear

form on V such that A; B; and C are self-adjoint with respect to it.
3. If ðsðAÞ; sðBÞ; sðCÞÞAS00ða; b; gÞ; then there exists a non-degenerate

symmetric bilinear form on V such that A; B; and C are self-adjoint with

respect to it.

This theorem is proved case by case in Theorems 2.2, 2.5, 2.8, 2.11 for the bilinear
forms given by formulas (2.4), (2.14), (2.22), (2.25) correspondingly.

Remark 1.2. The main virtue of this theorem is not the proof of existence of the
objects, but an explicit construction of all of them.

ARTICLE IN PRESS
O. Gleizer / Advances in Mathematics 178 (2003) 311–374 313



In Simpson’s list (1.1), the last composition g is always ð1nÞ: Thus, the
matrix C has all eigenvalues distinct. Let vi be the eigenvector of C corresponding
to the eigenvalue ci: If C is self-adjoint with respect to a scalar product /* ; *S
on V ; then /vi; vjS ¼ lidij: If we manage to find li such that the matrix B

becomes self-adjoint with respect to /* ; *S as well, then A is also self-adjoint
with respect to /* ; *S as A ¼ Bþ C: We find the li and it turns out that they
are also ratios of products of linear forms in the eigenvalues of A; B; and C:
And again all the coefficients of the forms are equal to either 1 or �1: The set of
linear forms that appear in the li includes the set of linear forms that appear
in the matrix elements of A; B; and C and in the coordinates of their
eigenvectors. The hyperplanes one has to remove from Sða; b; gÞ to obtain
S00ða; b; gÞ of Theorem 1.2 are exactly the zero levels of the linear forms that appear
in the li: The explicit formulas we find for the li give explicit description of these
hyperplanes.

Probably the most important applications of our explicit construction is to
Fuchsian systems (see Section 6 for the definition). Let z1; z2; z3 be distinct points of

CP1: Consider the following system of differential equations

df

dz
¼ B

z � z2
þ C

z � z3
� A

z � z1

� �
f ðzÞ; ð1:2Þ

where A ¼ Bþ C; zACP1
\fz1; z2; z3g and f takes values in V : The matrices

A; B; and C are called the residue matrices of (1.2). Their eigenvalues are
called local exponents. Real parts of the local exponents are the rates of
growth of solutions of (1.2) expanded analytically towards the corresponding
singularities (and restricted to sectors centered at the singularities). Thus, at
each singularity the space of solutions stratifies into a flag. Local basis changes
near each singularity turn this flag into a flag variety. The triple of flag
varieties of the Gauss–Riemann equation has finitely many orbits for the
action of the general linear group in the space of solutions. The Fuchsian
systems constructed by means of our matrices exhaust the list of Fuchsian
systems (with more than two singularities) having this property. In this sense, they
are the simplest Fuchsian systems possible and we expect their solutions to be
interesting functions.

It was known to Klein that if the hypergeometric equation of Gauss–Riemann had
real local exponents, then there existed a monodromy invariant hermitian form in
the space of solutions. If the local exponents were generic, then the form was non-
degenerate and unique up to a real constant multiple. We prove the same for all the
Fuchsian systems constructed from (1.1). Indeed, when all the eigenvalues of A; B;
and C are real, the form /* ; *S becomes real as well. So do the matrices A; B; and C
themselves. Thus, A; B; and C become matrices of real operators acting on the real
space VR and self-adjoint with respect to the real symmetric bilinear form /* ; *SR:
Let us extend the form /* ; *SR to the hermitian form ð* ; *Þ on V : This form gives
rise to the monodromy invariant hermitian form in the space of solutions of (1.2).
Once again, the forms are constructed explicitly. For the hypergeometric family, this
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result is not new. The Fuchsian systems from the hypergeometric family are
equivalent to the generalized hypergeometric equations studied by Beukers and
Heckman [2]. Among other things, they construct the hermitian form. Also the
generalized hypergeometric equations were studied in what became later known as
the Okubo normal form by Okubo [27]. For the generalized hypergeometric equations
in the Okubo normal form, the monodromy invariant hermitian form was
constructed by Haraoka [12].

As proved by Klyachko [14], if a hermitian form is positive definite, then the
spectra of hermitian matrices B; C and A ¼ Bþ C form a polyhedral convex cone in
the space of triple spectra. His proof contains a recursive algorithm to compute the
inequalities describing the cone. We call this cone the Klyachko cone and we call
the inequalities the Klyachko inequalities. Beukers and Heckman [2] give explicitly
the inequalities on the local exponents of the generalized hypergeometric equation
which make the monodromy invariant hermitian form in the space of solutions
positive definite. Thus, they describe non-recursively a non-trivial face of the
Klyachko cone. We do the same for all the Fuchsian systems constructed from (1.1).
Hence the second important application of our results is an explicit description of
some interesting faces of the Klyachko cone. Beukers and Heckman [2] use their
criterion of positivity of the hermitian form to see when solutions of the generalized
hypergeometric equations are algebraic functions. It is also needed to know the
signature of the form for applications to number theory, see [2,5]. Our construction
provides tools to answer similar questions about the solutions of our Fuchsian
systems.

Let l; m; and n be highest weights of GLðVÞ: Let Vl; Vm; and Vn be the

corresponding rational irreducible representations of GLðVÞ: Let Vl#Vm ¼P
n cnlmVn be the decomposition of the tensor product of Vl and Vm into the

sum of irreducible representations. It follows from the results of Klyachko [14]
combined with a refinement by Knutson and Tao [15] that the lattice points
of the Klyachko cone are precisely the triples of weights l; m; n with non-zero
Littlewood–Richardson coefficient cnlm: Thus, our techniques allow us to explicitly

describe some triples of highest weights with non-zero Littlewood–Richardson
coefficients. In fact, for all the cases we consider, the Littlewood–Richardson
coefficients are equal to 1:

The paper is organized as follows. In Section 2, we formulate main results of the
paper. Namely, we list the triples ðA;B;CÞ; the scalar products, and the Klyachko
inequalities for all the partitions from Simpson’s list (1.1). In Section 3, theorems of
Section 2 are proved and elaborated.

Although the actual construction of the matrices relied heavily on the
explicit description of representatives of the open orbits [26], it turned
out that once the answers were known, it was much simpler to prove
them by inspection. We start using the results of [26] directly only in
Section 4. In the section, we construct the matrices A; B; and C which give rise to
the E8-family of Magyar, Weyman, and Zelevinsky. We also prove the following
theorem.
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Theorem 1.3. Let ða; b; gÞ be a triple of spectral types from Theorem 1.1. If

ðsðAÞ; sðBÞ; sðCÞÞ is a point of S00ða;b; gÞ then the triple ðA;B;CÞ is irreducible.

The proof of the Theorem for the hypergeometric family is on page 22, for all
other families—on page 40.

Remark 1.3. If we take a different ordering of the eigenvalues of A; B; and C; then
the scalar products /vi; viS change. So does the set S0; but the set S00 does not.

Remark 1.4. The genericity condition of Theorem 1.1 is somewhat a mysterious
one. A theorem of Katz (see [13]) excludes the coexistence of irreducible
and reducible triples in rigid cases. If one deals with a reducible triple, then
except for the ‘‘big’’ trace condition one also has a ‘‘small’’ trace condition
coming from the reduced submatrices. These are the trace conditions resulting
from the diagonal blocks of a block upper-triangular triple of matrices. Thus,
people call generic spectra that stay away from all the ‘‘small trace condition’’
hyperplanes possible (see Kostov’s papers [17–25]). In our cases however,
Theorem 1.3 gives an explicit meaning to the genericity condition: ‘‘generic’’ means
‘‘not in S00’’.

Let A; B; and C be self-adjoint with respect to a non-zero symmetric bilinear form
on V : Let ða; b; gÞ be a triple of spectral types from Theorem 1.1. Then the following
corollary of Theorem 1.3 strengthens the third statement of Theorem 1.2.

Corollary 1.1. If ðsðAÞ; sðBÞ; sðCÞÞ is a point of S00ða; b; gÞ; then the form is unique up

to a constant multiple.

Proof. If ðsðAÞ; sðBÞ; sðCÞÞ is a point of S00ða; b; gÞ; then it follows from Theorem 1.3
that the triple ðA;B;CÞ is irreducible. If a triple ðA;B;CÞ is irreducible, then
uniqueness of the form follows from Schur’s lemma. &

In Section 5, we introduce the Berenstein–Zelevinsky triangles which provide a
geometric version of the celebrated Littlewood–Richardson rule. For the E8 family,
we do not have formulas for the hermitian form as nice as we have for other families.
However, the Berenstein–Zelevinsky triangles enable us to compute the Klyachko
inequalities for the E8-family as well.

Section 6 contains no new results. In the section, we provide (very) basic facts
about Fuchsian systems and raise questions we plan to answer in subsequent
publications. In particular, we quote some results from [11,12,31], which are very
similar to (but different from) ours.

Most of the proofs of the paper boil down to proofs of certain rational identities.
These identities are collected in Section 7 (the appendix).
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2. Main results

2.1. Hypergeometric family

Let us pick a vector ða1; a2;y; a2|fflfflfflfflffl{zfflfflfflfflffl}
m�1 times

; b1;y; bm; c1;y; cmÞ from Sðð1;m � 1Þ;

ð1mÞ; ð1mÞÞ: Recall that this means a1aa2; all bi are distinct, all ci are distinct, and

the trace condition holds: a1 þ ðm � 1Þa2 ¼
Pm

i¼1ðbi þ ciÞ: Define the matrix

elements of B and C as follows:

Bij ¼
0 if ioj

bi if i ¼ j

bi þ cmþ1�i � a2 if i4j

;

8><>: Cij ¼
bi þ cmþ1�i � a2 if ioj;

cmþ1�i if i ¼ j;

0 if i4j:

8><>: ð2:3Þ

Here is an example with m ¼ 5:

Example 2.1.

B ¼

b1 b1 þ c5 � a2 b1 þ c5 � a2 b1 þ c5 � a2 b1 þ c5 � a2

0 b2 b2 þ c4 � a2 b2 þ c4 � a2 b2 þ c4 � a2

0 0 b3 b3 þ c3 � a2 b3 þ c3 � a2

0 0 0 b4 b4 þ c2 � a2

0 0 0 0 b5

26666664

37777775;

C ¼

c5 0 0 0 0

b2 þ c4 � a2 c4 0 0 0

b3 þ c3 � a2 b3 þ c3 � a2 c3 0 0

b4 þ c2 � a2 b4 þ c2 � a2 b4 þ c2 � a2 c2 0

b5 þ c1 � a2 b5 þ c1 � a2 b5 þ c1 � a2 b5 þ c1 � a2 c1

26666664

37777775:

It is clear that sðBÞ ¼ fb1;y; bmg and sðCÞ ¼ fc1;y; cmg: Since all the bi and all the
ci are distinct, B and C are diagonalizable.

Theorem 2.1. If B and C are given by (2.3), then A ¼ Bþ C is diagonalizable and

sðAÞ ¼ fa1; a2; a2;y; a2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m�1 times

g:

For i ¼ 1;y;m; let vi ¼ ðv1i ;y; vi�1
i ; 1; 0;y; 0Þ be the eigenvector of B with the

eigenvalue bi:
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Lemma 2.1. For 1pjoipm; we have

v
j
i ¼

bj þ cmþ1�j � a2

bi � bj

Yi�j�1

k¼1

bi þ cmþ1�j�k � a2

bi � bjþk

:

Here and in the sequel, all empty products are understood to be equal to 1:

Here is an example with m ¼ 5:

Example 2.2.

v1 ¼ ð1; 0; 0; 0; 0Þ;

v2 ¼
b1 þ c5 � a2

b2 � b1
; 1; 0; 0; 0

� �
;

v3 ¼
ðb1 þ c5 � a2Þðb3 þ c4 � a2Þ

ðb3 � b1Þðb3 � b2Þ
;
b2 þ c4 � a2

b3 � b2
; 1; 0; 0

� �
;

v4 ¼
ðb1 þ c5 � a2Þðb4 þ c3 � a2Þðb4 þ c4 � a2Þ

ðb4 � b1Þðb4 � b2Þðb4 � b3Þ
;
ðb2 þ c4 � a2Þðb4 þ c3 � a2Þ

ðb4 � b2Þðb4 � b3Þ
;

�
b3 þ c3 � a2

b4 � c3
; 1; 0

�
;

v5 ¼
ðb1 þ c5 � a2Þðb5 þ c2 � a2Þðb5 þ c3 � a2Þðb5 þ c4 � a2Þ

ðb5 � b1Þðb5 � b2Þðb5 � b3Þðb5 � b4Þ
;

�
ðb2 þ c4 � a2Þðb5 þ c2 � a2Þðb5 þ c3 � a2Þ

ðb5 � b2Þðb5 � b3Þðb5 � b4Þ
;
ðb3 þ c3 � a2Þðb5 þ c2 � a2Þ

ðb5 � b3Þðb5 � b4Þ
;

b4 þ c2 � a2

b5 � b4
; 1

�
:

We define a scalar product on V by setting

/vi; vjS ¼ dij

Qm
k¼iþ1ðbi � bkÞQi�1

k¼1ðbi � bkÞ

Qm
k¼mþ2�iðbi þ ck � a2ÞQmþ1�i

k¼1 ðbi þ ck � a2Þ
: ð2:4Þ

Here is an example of the form with m ¼ 5:
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Example 2.3.

/v1; v1S ¼ ðb1 � b2Þðb1 � b3Þðb1 � b4Þðb1 � b5Þ
ðb1 þ c1 � a2Þðb1 þ c2 � a2Þðb1 þ c3 � a2Þðb1 þ c4 � a2Þðb1 þ c5 � a2Þ

;

/v2; v2S ¼ ðb2 � b3Þðb2 � b4Þðb2 � b5Þðb2 þ c5 � a2Þ
ðb2 � b1Þðb2 þ c1 � a2Þðb2 þ c2 � a2Þðb2 þ c3 � a2Þðb2 þ c4 � a2Þ

;

/v3; v3S ¼ ðb3 � b4Þðb3 � b5Þðb3 þ c4 � a2Þðb3 þ c5 � a2Þ
ðb3 � b1Þðb3 � b2Þðb3 þ c1 � a2Þðb3 þ c2 � a2Þðb3 þ c3 � a2Þ

;

/v4; v4S ¼ ðb4 � b5Þðb4 þ c3 � a2Þðb4 þ c4 � a2Þðb4 þ c5 � a2Þ
ðb4 � b1Þðb4 � b2Þðb4 � b3Þðb4 þ c1 � a2Þðb4 þ c2 � a2Þ

;

/v5; v5S ¼ðb5 þ c2 � a2Þðb5 þ c3 � a2Þðb5 þ c4 � a2Þðb5 þ c5 � a2Þ
ðb5 � b1Þðb5 � b2Þðb5 � b3Þðb5 � b4Þðb5 þ c1 � a2Þ

:

Let S0ðð1;m � 1Þ; ð1mÞ; ð1mÞÞ be obtained from Sðð1;m � 1Þ; ð1mÞ; ð1mÞÞ by
removing the hyperplanes which are zero levels of the linear forms in the denomi-
nators of /vi; viS: Let S00ðð1;m � 1Þ; ð1mÞ; ð1mÞÞ be obtained from S0ðð1;m � 1Þ;
ð1mÞ; ð1mÞÞ by removing the hyperplanes which are zero levels of the linear forms in
the numerators of /vi; viS: It is clear that if ðsðAÞ; sðBÞ; sðCÞÞ lies in S0ðð1;m � 1Þ;
ð1mÞ; ð1mÞÞ; then form (2.4) is well-defined. It is clear that if ðsðAÞ; sðBÞ; sðCÞÞ lies in
S00ðð1;m � 1Þ; ð1mÞ; ð1mÞÞ; then the form (2.4) is non-degenerate.

Theorem 2.2. The operators A; B; and C are self-adjoint with respect to the scalar

product (2.4).

Now suppose that the eigenvalues of the matrices A; B; and C are real
numbers. Let b14b24?4bm and c14c24?4cm: We call a real symmetric
bilinear (or hermitian) form sign-definite if it is either positive-definite or negative-
definite.

Theorem 2.3. Let the form /* ; *S be defined by (2.4). Then it is sign-definite precisely

in the following two situations:
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ð2:5Þ

If the form e/* ; *S is positive-definite for e ¼ 71; then e ¼ signða1 � a2Þ: If the

inequalities of the first column hold, then a14a2: If the inequalities of the second

column hold, then a1oa2:

2.2. Even family

Let us pick a vector ða1?; a1|fflfflfflffl{zfflfflfflffl}
m times

; a2;y; a2|fflfflfflfflffl{zfflfflfflfflffl}
m times

; b1; b2;y; b2|fflfflfflfflffl{zfflfflfflfflffl}
m�1 times

; b3;y; b3|fflfflfflfflffl{zfflfflfflfflffl}
m times

; c1;y; c2mÞ from

Sððm;mÞ; ð1;m � 1;mÞ; ð12mÞÞ: Recall that this means a1aa2; all bi are distinct, all cj

are distinct, and the trace condition holds: ma1 þ ma2 ¼ b1 þ ðm � 1Þb2 þ mb3 þP2m
i¼1 ci: Let us set up the following notation:

p
jk
i ¼ ci þ bj � ak; qij ¼ ci þ cj þ b2 þ b3 � a1 � a2: ð2:6Þ

We now define the matrices B and C by setting

where

B1;1þj ¼ ð�1Þmþ1�j

Qm
k¼jþ1 qk;2m�jQ2m�1�j

k¼mþ1 ðck � c2m�jÞ
ð1pjpm � 1Þ; ð2:7Þ
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B1;mþj ¼ ð�1Þm�j
p31

mþ1�j

Q2m�1
k¼mþj qmþ1�j;kQm�j

k¼1ðck � cmþ1�jÞ
ð1pjpmÞ; ð2:8Þ

B1þi;mþj

¼ ð�1Þm�j
p31

mþ1�j

Qi
k¼1

kamþ1�j

qk;2m�i

Q2m�1
k¼mþj

ka2m�i

qmþ1�j;kQ2m�1
k¼2mþ1�i ðc2m�i � ckÞ

Qm�j
k¼1 ðck � cmþ1�jÞ

ð1pipm � 1; 1pjpmÞ; ð2:9Þ

where

C1þi;1 ¼ �
Qi

k¼1 qk;2m�iQ2m�1
k¼2mþ1�i ðc2m�i � ckÞ

ð1pipm � 1Þ; ð2:10Þ

Cmþi;1 ¼ �p32
mþ1�i

Qm�1þi
k¼mþ1 qmþ1�i;kQm

k¼mþ2�i ðcmþ1�i � ckÞ
ð1pipmÞ; ð2:11Þ

Cmþi;1þj

¼ ð�1Þmþ1�j
p32

mþ1�i

Qm�1þi
k¼mþ1

ka2m�j

qmþ1�i;k

Qm
k¼jþ1

kamþ1�i

qk;2m�jQm
k¼mþ2�i ðcmþ1�i � ckÞ

Q2m�1�j
k¼mþ1 ðck � c2m�jÞ

ð1pipm; 1pjpm � 1Þ: ð2:12Þ

Here is an example with m ¼ 3:
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Example 2.4.

It is clear that B and C are diagonalizable and that their spectra are
sðBÞ ¼ fb1; b2; b2;y; b2;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

m�1 times

; b3; b3;y; b3; b3|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
m times

g; sðCÞ ¼ fc1;y; c2mg:

Theorem 2.4. If B and C are as above, then A ¼ Bþ C is diagonalizable and

sðAÞ ¼ fa1;y; a1;|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m times

a2;y; a2|fflfflfflfflffl{zfflfflfflfflffl}
m times

g:

For i ¼ 1;y; 2m; let vi ¼ ð0;y; 0; 1; v2mþ2�i
i ;y; v2m

i Þ be the eigenvector of the

matrix C with the eigenvalue ci:
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Lemma 2.2. 1. For 1pipm; we have v
j
i ¼ 0 for all 2m þ 1� ioj:

2. For 1pipm � 1; we have v
j
mþi ¼ 0 when m þ 1� iojpm and

v
mþj
mþi ¼ ð�1Þi

p32
mþ1�j

Qm�1þj
k¼mþ1
kamþi

qmþ1�j;k

Qm
k¼mþ1�i
kamþ1�j

qk;mþi

ðcmþ1�j � cmþiÞ
Qm

k¼mþ2�j ðcmþ1�j � ckÞ
Qm�1þi

k¼mþ1 ðck � cmþiÞ

for 1pjpm:
3. For 1pjpm � 1 we have

v
1þj
2m ¼

Qj
k¼1 qk;2m�jQ2m

k¼2mþ1�j ðc2m�j � ckÞ

and for 1pjpm we have

v
mþj
2m ¼ð�1Þmþ1

p32
mþ1�j

cmþ1�j � c2m

	

Qm
k¼1

kamþ1�j

qk;2m

Qm�1þj
k¼mþ1 qmþ1�j;kQ2m�1

k¼mþ1 ðck � c2mÞ
Qm

k¼mþ2�j ðcmþ1�j � ckÞ
: ð2:13Þ

Here is an example with m ¼ 3 (e1;y; e2m is the standard basis of V ).

Example 2.5

v1 ¼ e6; v2 ¼ e5; v3 ¼ e4;

v4 ¼ 0; 0; 1;� p32
3

c3 � c4
;� p32

2 q34

ðc2 � c3Þðc2 � c4Þ
;� p32

1 q15q34

ðc1 � c2Þðc1 � c3Þðc1 � c4Þ

� �
;

v5 ¼ 0; 1; 0;
p32
3 q25

ðc3 � c5Þðc4 � c5Þ
;

p32
2 q24q35

ðc2 � c3Þðc2 � c5Þðc4 � c5Þ
;

�
p32
1 q14q25q35

ðc1 � c2Þðc1 � c3Þðc1 � c5Þðc4 � c5Þ

�
;

ARTICLE IN PRESS
O. Gleizer / Advances in Mathematics 178 (2003) 311–374 323



v6 ¼ 1;
q15

c5 � c6
;

q14q24

ðc4 � c5Þðc4 � c6Þ
;

p32
3 q16q26

ðc3 � c6Þðc4 � c6Þðc5 � c6Þ
;

�

p32
2 q24q16q36

ðc2 � c3Þðc2 � c6Þðc4 � c6Þðc5 � c6Þ
;

p32
1 q14q15q26q36

ðc1 � c2Þðc1 � c3Þðc1 � c6Þðc4 � c6Þðc5 � c6Þ

�
:

We define a scalar product on V by setting

/vi; vjS ¼ dij

Q2m
k¼iþ1 ðci � ckÞQi�1

k¼1ðci � ckÞ

Q2m
k¼2mþ1�i

kai

qikmQ2m�i
k¼1
kai

qik

	
p31

i

p32
i

if ipm;

p31
i p32

i if i4m:

8><>: ð2:14Þ

Here is an example with m ¼ 3:

Example 2.6.

/v1; v1S ¼ðc1 � c2Þðc1 � c3Þðc1 � c4Þðc1 � c5Þðc1 � c6Þ 	
p31
1

p32
1

	 q16

q12q13q14q15
;

/v2; v2S ¼ðc2 � c3Þðc2 � c4Þðc2 � c5Þðc2 � c6Þ
c2 � c1

	 p31
2

p32
2

	 q25q26

q12q23q24
;

/v3; v3S ¼ðc3 � c4Þðc3 � c5Þðc3 � c6Þ
ðc3 � c1Þðc3 � c2Þ

	 p31
3

p32
3

	 q34q35q36

q13q23
;

/v4; v4S ¼ ðc4 � c5Þðc4 � c6Þ
ðc4 � c1Þðc4 � c2Þðc4 � c3Þ

	 p31
4 p32

4 	 q34q45q46

q14q24
;

/v5; v5S ¼ c5 � c6

ðc5 � c1Þðc5 � c2Þðc5 � c3Þðc5 � c4Þ
	 p31

5 p32
5 	 q25q35q45q56

q15
;
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/v6; v6S ¼ 1

ðc6 � c1Þðc6 � c2Þðc6 � c3Þðc6 � c4Þðc6 � c5Þ
	 p31

6 p32
6 	 q16q26q36q46q56:

The sets S0ððm;mÞ; ð1;m � 1;mÞ; ð12mÞÞ and S00ððm;mÞ; ð1;m � 1;mÞ; ð12mÞÞ are
constructed from (2.14) similarly to the hypergeometric case (see page 7) and have
the same properties.

Theorem 2.5. The operators A; B; and C are self-adjoint with respect to the scalar

product (2.14).

Now suppose that the eigenvalues of the matrices A; B; and C are real numbers.
Let a14a2 and c14c24?4c2m:

Theorem 2.6. The form /* ; *S defined by (2.14) is sign-definite precisely in the

following six situations:

If the form e/* ; *S is positive-definite for e¼71; then e¼ signððb1 � b2Þðb1 � b3ÞÞ:
In each case, the inequalities between b1; b2; and b3 are implied by other

inequalities.
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2.3. Odd family

Let us pick a vector ða1;y; a1|fflfflfflfflffl{zfflfflfflfflffl}
mþ1 times

; a2;y; a2|fflfflfflfflffl{zfflfflfflfflffl}
m times

; b1; b2;y; b2|fflfflfflfflffl{zfflfflfflfflffl}
m times

; b3;y; b3|fflfflfflfflffl{zfflfflfflfflffl}
m times

; c1;y; c2mþ1Þ

from Sððm þ 1;mÞ; ð1;m;mÞ; ð12mþ1ÞÞ: Recall that this means a1aa2; all bi are

distinct, all cj are distinct, and the trace condition holds: ðm þ 1Þa1 þ ma2 ¼
b1 þ mb2 þ mb3 þ

P2mþ1
i¼1 ci:

We now define the matrices B and C by setting

where

B1;1þj ¼ ð�1Þm�j
p21
2mþ1�j

Qm
k¼jþ1 qk;2mþ1�jQ2m�j

k¼mþ1 ðck � c2mþ1�jÞ
ð1pjpmÞ; ð2:15Þ

B1;mþ1þj ¼ ð�1Þm�j
p31

mþ1�j

Q2m
k¼mþ1þj qmþ1�j;kQm�j

k¼1 ðck � cmþ1�jÞ
ð1pjpmÞ; ð2:16Þ

B1þi;mþ1þj ¼ð�1Þm�j
p31

mþ1�j

	

Qi
k¼1

kamþ1�j

qk;2mþ1�i

Q2m
k¼mþ1þj

ka2mþ1�i

qmþ1�j;kQ2m
k¼2mþ2�iðc2mþ1�i � ckÞ

Qm�j
k¼1 ðck � cmþ1�jÞ

ð1pipm; 1pjpmÞ; ð2:17Þ
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where

C1þi;1 ¼ �
Qi

k¼1 qk;2mþ1�iQ2m
k¼2mþ2�iðc2mþ1�i � ckÞ

ð1pipmÞ; ð2:18Þ

Cmþ1þi;1 ¼ �
Qmþi

k¼mþ1 qmþ1�i;kQm
k¼mþ2�i ðcmþ1�i � ckÞ

ð1pipmÞ; ð2:19Þ

Cmþ1þi;1þj ¼ ð�1Þm�j
p21
2mþ1�j

Qmþi
k¼mþ1

ka2mþ1�j

qmþ1�i;k

Qm
k¼jþ1

kamþ1�i

qk;2mþ1�jQm
k¼mþ2�i ðcmþ1�i � ckÞ

Q2m�j
k¼mþ1 ðck � c2mþ1�jÞ

ð1pipm; 1pjpmÞ: ð2:20Þ

Here is an example with m ¼ 3:
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Example 2.7.

It is clear that B and C are diagonalizable and that their spectra are sðBÞ ¼
fb1; b2; b2;y; b2;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

m times

b3; b3;y; b3|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m times

g; sðCÞ ¼ fc1; c2;y; c2mþ1g:

Theorem 2.7. Let B and C be as above and let A ¼ Bþ C: Then A is diagonalizable

and sðAÞ ¼ fa1;y; a1|fflfflfflfflffl{zfflfflfflfflffl}
mþ1 times

a2;y; a2|fflfflfflfflffl{zfflfflfflfflffl}
m times

g:

For i ¼ 1;y; 2m þ 1; let vi ¼ ð0;y; 0; 1; v2mþ3�i
i ;y; v2mþ1

i Þ be the eigenvector of

the matrix C with the eigenvalue ci:

Lemma 2.3. 1. For 1pipm; we have v
j
i ¼ 0 for all 2m þ 2� ioj:

ARTICLE IN PRESS
O. Gleizer / Advances in Mathematics 178 (2003) 311–374328



2. For 1pipm; we have v
j
mþi ¼ 0 when 2m þ 2� iojpm þ 1 and

v
mþ1þj
mþi ¼

ð�1Þi
p21

mþi

cmþ1�j � cmþi

Qmþj
k¼mþ1
kamþi

qmþ1�j;k

Qm
k¼mþ2�i
kamþ1�j

qk;mþiQm
k¼mþ2�j ðcmþ1�j � ckÞ

Qm�1þi
k¼mþ1 ðck � cmþiÞ

for 1pjpm:

3. For 1pipm; we have

v1þi
2mþ1 ¼

Qi
k¼1 qk;2mþ1�iQ2mþ1

k¼2mþ2�i ðc2mþ1�i � ckÞ

and for 1pjpm; we have

v
mþ1þj
2mþ1 ¼ð�1Þm p21

2mþ1

cmþ1�j � c2mþ1

	

Qm
k¼1

kamþ1�j

qk;2mþ1

Qmþj
k¼mþ1 qmþ1�j;kQ2m

k¼mþ1 ðck � c2mþ1Þ
Qm

k¼mþ2�j ðcmþ1�j � ckÞ
: ð2:21Þ

Here is an example with m ¼ 3:

Example 2.8.

v1 ¼ e7; v2 ¼ e6; v3 ¼ e5;

v4 ¼ 0; 0; 0; 1;� p21
4

c3 � c4
;� p21

4 q25

ðc2 � c3Þðc2 � c4Þ
;� p21

4 q15q16

ðc1 � c2Þðc1 � c3Þðc1 � c4Þ

� �
;

v5 ¼ 0; 0; 1; 0;
p21
5 q34

ðc3 � c5Þðc4 � c5Þ
;

p21
5 q24q35

ðc2 � c3Þðc2 � c5Þðc4 � c5Þ
;

�
p21
5 q14q16q35

ðc1 � c2Þðc1 � c3Þðc1 � c5Þðc4 � c5Þ

�
;

v6 ¼ 0; 1; 0; 0;� p21
6 q26q34

ðc3 � c6Þðc4 � c6Þðc5 � c6Þ
;� p21

6 q24q25q36

ðc2 � c3Þðc2 � c6Þðc4 � c6Þðc5 � c6Þ
;

�
� p21

6 q14q15q26q36

ðc1 � c2Þðc1 � c3Þðc1 � c6Þðc4 � c6Þðc5 � c6Þ

�
;
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v7 ¼ 1;
q16

c6 � c7
;

q15q25

ðc5 � c6Þðc5 � c7Þ
;

q14q24q34

ðc4 � c5Þðc4 � c6Þðc4 � c7Þ
;

�

� p21
7 q17q27q34

ðc3 � c7Þðc4 � c7Þðc5 � c7Þðc6 � c7Þ
;

� p21
7 q17q37q24q25

ðc2 � c3Þðc2 � c7Þðc4 � c7Þðc5 � c7Þðc6 � c7Þ
;

� p21
7 q27q37q14q15q16

ðc1 � c2Þðc1 � c3Þðc1 � c7Þðc4 � c7Þðc5 � c7Þðc6 � c7Þ

�
:

We define a scalar product on V by setting

/vi; vjS ¼ dij

Q2mþ1
k¼1þiðci � ckÞQi�1

k¼1ðci � ckÞ

Q2mþ1
k¼2mþ2�i

kai

qikQ2mþ1�i
k¼1
kai

qik

	
p31

i

p21
i

if ipm;

p31
i p21

i if i4m:

8><>: ð2:22Þ

Here is an example with m ¼ 3:

Example 2.9.

/v1; v1S ¼ðc1 � c2Þðc1 � c3Þðc1 � c4Þðc1 � c5Þðc1 � c6Þðc1 � c7Þ

	 p31
1

p21
1

	 q17

q12q13q14q15q16
;

/v2; v2S ¼ ðc2 � c3Þðc2 � c4Þðc2 � c5Þðc2 � c6Þðc2 � c7Þ
c2 � c1

	 p31
2

p21
2

	 q26q27

q12q23q24q25
;

/v3; v3S ¼ ðc3 � c4Þðc3 � c5Þðc3 � c6Þðc3 � c7Þ
ðc3 � c1Þðc3 � c2Þ

	 p31
3

p21
3

	 q35q36q37

q13q23q34
;

/v4; v4S ¼ ðc4 � c5Þðc4 � c6Þðc4 � c7Þ
ðc4 � c1Þðc4 � c2Þðc4 � c3Þ

	 p31
4 p21

4 	 q45q46q47

q14q24q34
;

/v5; v5S ¼ ðc5 � c6Þðc5 � c7Þ
ðc5 � c1Þðc5 � c2Þðc5 � c3Þðc5 � c4Þ

	 p31
5 p21

5 	 q35q45q56q57

q15q25
;
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/v6; v6S ¼ c6 � c7

ðc6 � c1Þðc6 � c2Þðc6 � c3Þðc6 � c4Þðc6 � c5Þ

	 p31
6 p21

6 	 q26q36q46q56q67

q16
;

/v7; v7S ¼ 1

ðc7 � c1Þðc7 � c2Þðc7 � c3Þðc7 � c4Þðc7 � c5Þðc7 � c6Þ
	 p31

7 p21
7 	 q17q27q37q47q57q67:

The sets S0ððm þ 1;mÞ; ð1;m;mÞ; ð12mþ1ÞÞ and S00ððm þ 1;mÞ; ð1;m;mÞ; ð12mþ1ÞÞ
are constructed from (2.22) similarly to the hypergeometric case (see page 7) and
have the same properties.

Theorem 2.8. The operators A; B; and C are self-adjoint with respect to the scalar

product (2.22).

Now suppose that the eigenvalues of the matrices A; B; and C are real numbers.
Let b24b3 and c14c24?4c2mþ1:

Theorem 2.9. Under the condition b24b3; the form /* ; *S defined by (2.22) is sign-

definite precisely in the following three situations:

If the form e/* ; *S is positive-definite for e¼71; then e¼ signððb1�b2Þðb1 � b3ÞÞ:
In each case, the inequalities between b1 and b2 or b3 are implied by other

inequalities.
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2.4. Extra case

Let us pick a vector ða1; a1; a1; a1; a2; a2; b1; b1; b2; b2; b3; b3; c1; c2; c3; c4; c5; c6Þ from
Sðð4; 2Þ; ð2; 2; 2Þ; ð16ÞÞ: Recall that this means a1aa2; all bi are distinct, all cj are

distinct, and the trace condition holds: 4a1 þ 2a2 ¼ 2b1 þ 2b2 þ 2b3 þ
P6

i¼1 ci: Let us

set up the following notation:

pij ¼ bi þ cj � a1; qijk ¼ 2ci þ 2cj þ 2ck �
1

2

X6
l¼1

cl : ð2:23Þ

We now define the matrices B and C by setting

ð2:24Þ

It is clear that B and C are diagonalizable and that their spectra are sðBÞ ¼
fb1; b1; b2; b2; b3; b3g; sðCÞ ¼ fc1; c2; c3; c4; c5; c6g:
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Theorem 2.10. For B and C as above, let A ¼ Bþ C: Then A is diagonalizable and

sðAÞ ¼ fa1; a1; a1; a1; a2; a2g:

Lemma 2.4. The following are the eigenvectors of the matrix C (vi corresponds to the

eigenvalue ci):

v1 ¼ð0; 0; 0; 0; 0; 1Þ;

v2 ¼ð0; 0; 0; 0; 1; 0Þ;

v3 ¼ 0; 0; 0; 1;
p32

c2 � c3
;

p31q236

ðc1 � c2Þðc1 � c3Þ

� �
;

v4 ¼ 0; 0; 1; 0;� p32q235

ðc2 � c4Þðc3 � c4Þ
;� p31q245q246

ðc1 � c2Þðc1 � c4Þðc3 � c4Þ

� �
;

v5 ¼ 0; 1;
p24

c4 � c5
;

p23q245

ðc3 � c4Þðc3 � c5Þ
;� p25p32q234

ðc2 � c5Þðc3 � c5Þðc4 � c5Þ
;

�
� p25p31q245q256

ðc1 � c2Þðc1 � c5Þðc3 � c5Þðc4 � c5Þ

�
;

v6 ¼ 1; 0;
p24q236

ðc4 � c6Þðc5 � c6Þ
;

p23q235q246

ðc3 � c4Þðc3 � c6Þðc5 � c6Þ
;

�
� p26p32q234q235

ðc2 � c6Þðc3 � c6Þðc4 � c6Þðc5 � c6Þ
;

� p26p31q236q246q256

ðc1 � c2Þðc1 � c6Þðc3 � c6Þðc4 � c6Þðc5 � c6Þ

�
:

Let us define a scalar product on V by setting /vi; vjS ¼ 0 for iaj and setting

/v1; v1S ¼ � ðc1 � c2Þðc1 � c3Þðc1 � c4Þðc1 � c5Þðc1 � c6Þ
p11p21p31

;

/v2; v2S ¼ðc2 � c3Þðc2 � c4Þðc2 � c5Þðc2 � c6Þ
ðc2 � c1Þp12p22p32

	 q134q135q136q145

q146q156
;

/v3; v3S ¼ðc3 � c4Þðc3 � c5Þðc3 � c6Þp33

ðc3 � c1Þðc3 � c2Þp13p23
	 q124q125q126q145

q146q156
;
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/v4; v4S ¼ ðc4 � c5Þðc4 � c6Þp34

ðc4 � c1Þðc4 � c2Þðc4 � c3Þp14p24
	 q123q125q126q135q136

q156
;

/v5; v5S ¼ ðc5 � c6Þp25p35

ðc5 � c1Þðc5 � c2Þðc5 � c3Þðc5 � c4Þp15
	 q123q124q126q134q136

q146
;

/v6; v6S ¼ p26p36

ðc6 � c1Þðc6 � c2Þðc6 � c3Þðc6 � c4Þðc6 � c5Þp16

	 q123q124q125q134q135q145: ð2:25Þ

The sets S0ðð4; 2Þ; ð2; 2; 2Þ; ð16ÞÞ and S00ðð4; 2Þ; ð2; 2; 2Þ; ð16ÞÞ are constructed from
(2.25) similarly to the hypergeometric case (see page 7) and have the same properties.

Theorem 2.11. The operators A; B; and C are self-adjoint with respect to the scalar

product (2.25).

Now suppose that the eigenvalues of the matrices A; B; and C are real numbers.
Let b14b24b3 and c14c24?4c6:

Theorem 2.12. The form /* ; *S defined by (2.25) is sign-definite precisely in the

following two situations:

If the form e/* ; *S is positive-definite for e ¼ 71; then e ¼ signða1 � a2Þ: If the

inequalities of the first column hold, then a14a2: If the inequalities of the second

column hold, then a1oa2:

3. Proofs and more results

In this section we prove theorems from Section 2. In the process, some new results
are obtained.
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The following simple observation is helpful in this section. If we replace a triple
ðA ¼ Bþ C;B;CÞ by the triple

*A ¼ kAþ yId;

*B ¼ kBþ fId;

*C ¼ kCþ ðy� fÞId;

k; y;fAC and ka0; ð3:26Þ

then we still have *A ¼ *Bþ *C: This transformation changes neither irreducibility nor
rigidity of the triple. If, say, v is an eigenvector of B with the eigenvalue b; then v is an

eigenvector of *B with the eigenvalue kb þ f: If A; B; and C were self-adjoint with

respect to a symmetric bilinear form , then *A; *B; and *C are self-adjoint with respect
to the form as well.

3.1. Hypergeometric family

An affine transformation (3.26) with k ¼ 1; y ¼ �a2; and f ¼ �a2=2 normalizes A

to *A such that the eigenvalue of *A of multiplicity m � 1 is 0: So, without loss of
generality, we can assume that a2 ¼ 0: Now let us prove Theorem 2.1.

Proof of Theorem 2.1. Consider the matrix A (with a2 ¼ 0). Here is an example with
m ¼ 5:

A ¼

b1 þ c5 b1 þ c5 b1 þ c5 b1 þ c5 b1 þ c5

b2 þ c4 b2 þ c4 b2 þ c4 b2 þ c4 b2 þ c4

b3 þ c3 b3 þ c3 b3 þ c3 b3 þ c3 b3 þ c3

b4 þ c2 b4 þ c2 b4 þ c2 b4 þ c2 b4 þ c2

b5 þ c1 b5 þ c1 b5 þ c1 b5 þ c1 b5 þ c1

26666664

37777775:

Now A has rank 1; and its image is the linear span of the vector i ¼ ðb1 þ cm; b2 þ
cm�1;y; bm þ c1Þ: Ai¼ a1ia0: Thus, A is diagonalizable, and sðAÞ ¼ f

Pm
i¼1 ðbi þ ciÞ;

0; 0;y; 0g: Thus, before the normalizing affine transformation we had
sðAÞ ¼ fa1; a2;y; a2|fflfflfflfflffl{zfflfflfflfflffl}

m�1 times

g: &

In our normalized version,

Bij ¼
0 if ioj

bi if i ¼ j

bi þ cmþ1�i if i4j

;

8><>: Cij ¼
0 if i4j;

cmþ1�i if i ¼ j;

bi þ cmþ1�j if ioj:

8><>: ð3:27Þ
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We are ready to prove Lemma 2.1, that is to show that for every i ¼ 1;y;m the

vector vi ¼ ðv1i ;y; vi�1
i ; 1; 0;y; 0Þ with

v
j
i ¼

bj þ cmþ1�j

bi � bj

Yi�j�1

k¼1

bi þ cmþ1�j�k

bi � bjþk

i ðj ¼ 1;y; i � 1Þ ð3:28Þ

is an eigenvector of B with the eigenvalue bi:

Proof of Lemma 2.1. Remembering definition (3.27) of B; we need to show the

following equality for all joi: ðbi � bjÞvj
i ¼ ðbj þ cmþ1�jÞ

Pi
k¼jþ1 vk

i ; or equivalently

Xi

jþ1

vk
i ¼

Yi�j�1

k¼1

bi þ cmþ1�j�k

bi � bjþk

: ð3:29Þ

This identity becomes obvious once we rewrite (3.28) as

v
j
i ¼

Yi�j

k¼1

bi þ cmþ1�j�k

bi � bjþk

�
Yi�j�1

k¼1

bi þ cmþ1�j�k

bi � bjþk

; ð3:30Þ

and use telescoping. &

Now we are ready to prove Theorem 2.2, that is to show that the operators A; B;
and C are self-adjoint with respect to the scalar product (2.4).

Proof of Theorem 2.2. The operator B is self-adjoint with respect to the scalar
product by construction. To show that A is self-adjoint, we have to show that
/Avi; vjS ¼ /vi;AvjS: As we have seen, A has a one-dimensional image spent by the

vector i ¼ ðb1 þ cm; b2 þ cm�1;y; bm þ c1Þ: Namely, for any vector k ¼
ðk1; k2;y; kmÞ; Ak ¼ ð

Pm
i¼1 kiÞi: In particular, Avi ¼ ð

Pm
j¼1 v

j
iÞi: In view of (3.29),

we have

Avi ¼
Yi�1

k¼1

bi þ cmþ1�k

bi � bk

 !
i: ð3:31Þ

It will be convenient to introduce the following notation:

si ¼
Yi�1

k¼1

bi þ cmþ1�k

bi � bk

; xi ¼ ðbi þ cmþ1�iÞ
Ym�i

k¼1

bi þ cmþ1�i�k

bi � biþk

: ð3:32Þ

Then Avi ¼ sii and (2.4) can be rewritten as /vi; viS ¼ si=xi: Now the desired
equality /Avi; vjS ¼ sixj/vj; vjS ¼ sixjsj=xj ¼ sisj ¼ /vi;AvjS becomes a conse-

quence of the following lemma. &

Lemma 3.1.
Pm

i¼1 xivi ¼ i:
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Proof. We have vi ¼ ðv1i ;y; vi�1
i ; 1; 0y; 0Þ: Thus, to prove the lemma we have to

prove that the identity
Pm

j¼i xjv
i
j ¼ bi þ cmþ1�i holds for 1pipm: This is equivalent

to xi ¼ bi þ cmþ1�i �
Pm�i

k¼1 xiþkvi
iþk: This identity after minor simplification

becomes

Xm

j¼i

Qm�i
k¼1 ðbj þ ckÞQm
k¼i
kaj

ðbj � bkÞ
¼ 1:

Let us set n ¼ m � i þ 1; x1 ¼ bi; x2 ¼ biþ1;y; xn ¼ bm; y1 ¼ �c1; y2 ¼
�c2;y; yn�1 ¼ �cm�i: This change of variables transforms the last identity into
identity (7.60) which we prove in the appendix. &

Now we prove Theorem 1.3 for the hypergeometric family. That is, we show that if
the vector ðsðAÞ; sðBÞ; sðCÞÞ lies in S00ðð1;m � 1Þ; ð1mÞ; ð1mÞÞ; then the triple ðA;B;CÞ
is irreducible.

Proof of Theorem 1.3. Suppose that the triple preserves a non-trivial subspace of V :

Then this subspace is spanned by some of the eigenvectors vj of B: But Avj ¼Pm
i¼1 sjxivi: If ðsðAÞ; sðBÞ; sðCÞÞ lies in S00ðð1;m � 1Þ; ð1mÞ; ð1mÞÞ; then all the

coefficients sjxi are non-zero, so A does not preserve any such proper subspace.

Thus, the triple ðA;B;CÞ is irreducible. &

Let us prove Theorem 2.3, that is determine the inequalities on the real spectra
of A; B; and C which make form (2.4) sign-definite. Recall that we are working

with the normalized version a2¼0: Then the trace identity gives us a1¼
Pm

i¼1 ðbiþciÞ:
Also, it is an assumption of Theorem 2.3 that b14b24?4bm and
c14c24?4cm:

Proof of Theorem 2.3. It immediately follows from Theorem 2.2 that

signð/vi; viSÞ ¼ ð�1Þi�1 sign
Ym
j¼1

ðbi þ cjÞ
 !

:

Construct an m 	 m matrix T where Ti;j ¼ bi þ cj : Notice that Ti;j4Ti;jþ1

and Ti;j4Tiþ1;j for all i and j: Then signð/vi; viSÞ ¼ ð�1Þi�1 	 ð�1Þ#fj: Ti;jo0g:
Thus, to keep the sign constant, #fj: Ti;jo0g must differ from #fj : Tiþ1;jo0g
by an odd number for all m rows of T : This gives us only two possibilities:
either Ti;m�i404Ti;mþ1�i; or Ti;mþ1�i404Ti;mþ2�i: Here is a picture

which illustrates the two situations for m ¼ 5: The line separates Ti;j40 from

ARTICLE IN PRESS
O. Gleizer / Advances in Mathematics 178 (2003) 311–374 337



Ti;jo0:

The sum of Ti;j along the non-main diagonal of T equals a1: Thus,

Ti;m�i404Ti;mþ1�i forces a1o0 and Ti;mþ1�i404Ti;mþ2�i forces a140: &

Remark 3.1. Let the eigenvalues of A; B; and C be real numbers, and let form (2.4)

be positive-definite. Then in the basis *ei ¼ vi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/vi; viS

p
; the form becomes standard

(/*ei; *ejS ¼ dij). Let *A; *B; and *C; be the matrices A; B; and C in the basis

*e1; *e2;y; *em: Then for i; j ¼ 1; 2;y;m;

Ãij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xixjsisj

p
;

B̃ij ¼ dijbi;

C̃ij ¼ Ãij � B̃ij:

3.2. Even family

In order to make proofs simpler, let us normalize A; B; and C so that they become
traceless and a1 ¼ 1; a2 ¼ �1: The affine transformation (3.26) with k ¼ 2=ða1 � a2Þ;
y ¼ �ða1 þ a2Þ=2; and f ¼ �ðb1 þ ðm � 1Þb2 þ mb3Þ=ð2mÞ does the job.

Let us prove Theorem 2.4. In our normalized version, we have to prove that A is
diagonalizable and that sðAÞ ¼ f1;y; 1;|fflfflfflffl{zfflfflfflffl}

m times

�1;y;�1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m times

g:

Proof of Theorem 2.4. First, let us prove that A2 ¼ Id: For that, we have to prove the
following eleven identities.

1. The identity
P2m

l¼1 A1lAl1 ¼ 1 with the help of identity (7.60) can be reduced to

the identity

ððm � 1Þb2 þ mb3 þ c1 þ c2 þ?þ c2m�1Þ2

¼
Xm�1

i¼1

Qm
j¼1 ðb2 þ b3 þ cj þ cmþiÞQm�1

j¼1
jai

ðcmþi � cmþjÞ

þ
Xm

i¼1

ðb3 þ ciÞ2
Qm�1

j¼1 ðb2 þ b3 þ ci þ cmþjÞQm
j¼1
jai

ðci � cjÞ
:
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For 1pipm � 1; let us set xi ¼ cmþi þ b2: For 1pipm; let us set yi ¼ ci þ b3:
Then the last identity becomes

Xm�1

i¼1

xi þ
Xm

i¼1

yi

 !2

¼
Xm�1

i¼1

Qm
j¼1 ðxi þ yjÞQm�1

j¼1
jai

ðxi � xjÞ
þ
Xm

i¼1

y2
i

Qm�1
j¼1 ðxj þ yiÞQm
j¼1
jai

ðyi � yjÞ
: ð3:33Þ

Introducing xm ¼ xmþ1 ¼ 0; we can rewrite the last term in (3.33) as

Xm

i¼1

y2
i

Qm�1
j¼1 ðxj þ yiÞQm
j¼1
jai

ðyi � yjÞ
¼
Xm

i¼1

Qmþ1
j¼1 ðyi þ xjÞQm
j¼1
jai

ðyi � yjÞ
:

Now we can prove identity (3.33) with the help of identity (7.62) from the
appendix.

2. For 1pipm � 1; the identity
P2m

l¼1 A1;lAl;1þi ¼ 0 after some simplification

becomes

Xm

j¼1

ððb3 þ cjÞ2 � 1Þ

Q2m�1
k¼mþ1

ka2m�i

qj;kQm
k¼1
kaj

ðcj � ckÞ
¼
Xm

j¼1

ðcj þ b3Þ þ
X2m�1

j¼mþ1
ja2m�i

ðcj þ b2Þ:

For 1pjpm; set xj ¼ b3 þ cj : For 1pjpm � 1 and jam � i; set yj ¼ �ðb2 þ
cmþjÞ: The identity

Xm

j¼1

Q2m�1
k¼mþ1

ka2m�i

qj;kQm
k¼1
kaj

ðcj � ckÞ
¼ 0

is equivalent to identity (7.59) from the appendix. Now the identity to prove
becomes

Xm

j¼1

ðb3 þ cjÞ2
Q2m�1

k¼mþ1
ka2m�i

qj;kQm
k¼1
kaj

ðcj � ckÞ
¼
Xm

j¼1

ðcj þ b3Þ þ
X2m�1

j¼mþ1
ja2m�i

ðcj þ b2Þ: ð3:34Þ

Introducing ym�i ¼ ym ¼ 0; we reduce the last identity to identity (7.61) from the
appendix.

3. For 1pjpm; the identity
P2m

l¼1 A1;lAl;mþj ¼ 0 reduces to identity (7.61) from the

appendix.

4. For 1pipm � 1; the identity
P2m

l¼1 A1þi;lAl;1 ¼ 0 reduces to identity (7.61) from

the appendix.

5. Let 1pi; jpm � 1; iaj: The identity
P2m

l¼1 A1þi;lAl;1þj ¼ 0 reduces to identity

(7.60) from the appendix.
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6. For 1pipm � 1; the identity
P2m

l¼1 A1þi;lAl;1þi ¼ 1 after some simplification

becomes

Xm

j¼1

p31
j p32

j

Qm
k¼1
kaj

qk;i

Q2m�1
k¼mþ1

kai

qj;kQm
k¼1
kaj

ðcj � ckÞ
Q2m�1

k¼mþ1
kai

ðci � ckÞ

¼ 1� ðb2 þ ciÞ2 þ
Qm

k¼1 qk;iQ2m�1
k¼mþ1

kai

ðci � ckÞ
:

Recall that in the normalized version p31
i ¼ ci þ b3 � 1 and p32

i ¼ ci þ b3 þ 1:
For 1pipm; let us set xi ¼ b3 þ ci: For 1pipm � 1; let us set yi ¼ �b2 � cmþi:
The above identity splits into two homogeneous identities: one of degree 0 and
the other of 2 (in xi and yj). The first is equivalent to identity (7.63) from the

appendix. The second is equivalent to identity (7.64) from the appendix.

7. For 1pipm � 1 and 1pjpm; the identity
P2m

l¼1 A1þi;lAl;mþj ¼ 0 reduces to the

trivial identity
q2m�i;mþ1�j

q2m�i;mþ1�j
� 1 ¼ 0:

8. For 1pipm; the identity
P2m

l¼1 Amþj;lAl;1 ¼ 0 reduces to the identity

Xm�1

j¼1

Qm
k¼1

kamþ1�i

qk;2m�jQ2m�1
k¼mþ1

ka2m�j

ðc2m�j � ckÞ
¼ �b1 � b3 � cmþ1�i � c2m:

The latter follows from identity (7.61) of the appendix and from the fact that the
normalized B and C are traceless.

9. Let 1pipm and 1pjpm � 1: The identity
P2m

l¼1 Amþj;lAl;1þi ¼ 0 reduces to the

trivial identity
q2m�j;mþ1�i

q2m�j;mþ1�i
� 1 ¼ 0:

10. Let 1piajpm: The identity
P2m

l¼1 Amþj;lAl;mþi ¼ 0 reduces to identity (7.60)

from the appendix.

11. Let 1pipm: To prove that
P2m

l¼1 Amþi;lAl;mþi ¼ 1; we set x1 ¼ b3 þ c1; x2 ¼
b3 þ c2;y; xm ¼ b3 þ cm; y1 ¼ b2 þ cmþ1; y2 ¼ b2 þ cmþ2;y; ym�1 ¼ b2 þ c2m�1:
This reduces the identity in question to identity (7.65) of the appendix.

Now we are ready to prove that if ðsðAÞ; sðBÞ; sðCÞÞ is a point of S00ððm;mÞ; ð1;m �
1;mÞ; ð12mÞÞ; then sðAÞ ¼ f1;y; 1|fflfflffl{zfflfflffl}

m times

;�1;y;�1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m times

g: We know that A2 ¼ Id: Thus, A is

diagonalizable and the eigenvalues of A are 1 and �1: For 1pipm; let us set

aþi ¼ ðAþ IdÞemþi;

a�i ¼ ðA� IdÞemþi: ð3:35Þ
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Then ðA� IdÞaþi ¼ ðA� IdÞðAþ IdÞemþi ¼ 0 and ðAþ IdÞa�i ¼ ðAþ IdÞðA�
IdÞemþi ¼ 0: If we take a look at the matrix A; we see that the condition

ðsðAÞ; sðBÞ; sðCÞÞAS00ððm;mÞ; ð1;m � 1;mÞ; ð12mÞÞ guarantees that the vectors

faþi gi¼1;y;m are linearly independent as well as the vectors fa�i gi¼1;y;m: (If this

condition is violated, then aþi and a�i are not necessarily linearly independent. For

example, if p31
i ¼ 0; then a�i ¼ 0:) &

Let us prove Lemma 2.2, that is compute the coordinates v
j
i of the eigenvectors vi

of the matrix C:

Proof of Lemma 2.2. The only non-trivial part of the lemma is formula (2.13). A
direct computation gives

vmþi
2m ¼ 1

cmþ1�i � c2m

�Cmþi;1 þ
Xm�1

j¼1

Cmþi;jþ1Cjþ1;1

c2m�j � c2m

" #
;

where Cjþ1;1 is given by (2.10), Cmþi;1 is given by (2.11), and Cmþi;jþ1 is given by

(2.13), see page 9. Comparing the formula for vmþi
2m given by (2.13) to the right-hand

side of the last formula, we obtain an identity which reduces to identity (7.60) from
the appendix. &

The following lemma expresses the vectors ei of the standard basis in terms of the
eigenvectors vj of the matrix C:

Lemma 3.2. 1. e1 ¼ v2m �
Pm�1

i¼1

Qm�i

k¼1
qk;mþiQ2m

k¼mþ1þi
ðcmþi�ckÞ

vmþi �
Pm

i¼1

p32
i

Q2m�i

k¼1
kai

qikQ2m

k¼1þi
ðci�ckÞ

vi;

2. e1þi ¼ v2m�i þ
Pm

j¼1 ð�1Þmþ1�i p32
j

cj�c2m�i

Q2m�j

k¼mþ1
ka2m�i

qj;k

Qm

k¼1þi
kaj

qk;2m�iQm

k¼1þj
ðcj�ckÞ

Q2m�1�i

k¼mþ1
ðck�c2m�iÞ

vj for i ¼

1; 2;y;m � 1:
3. emþi ¼ vmþ1�i for i ¼ 1; 2;y;m:

Proof. For 1pipm; let

ei
1 ¼

Xm

i¼1

p32
i

Q2m�i
k¼1
kai

qikQ2m
k¼1þi ðci � ckÞ

ð3:36Þ

be the i coordinate of e1 in the basis vi: Formula (3.36) is the only non-trivial part of
the lemma. To prove it we have to show that

ei
1 þ v2mþ1�i

2m �
X2m�1

k¼mþ1

v2mþ1�i
k v2mþ1�k

2m ¼ 0; where i ¼ 1; 2;y;m: ð3:37Þ
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Let us use the formulas for v
j
i given in Lemma 2.2 and the following change of

variables: for a fixed 1pipm; set x0 ¼ ci þ b3; x1 ¼ cmþ1 þ b3; x2 ¼ cmþ2 þ
b3;y; xm ¼ c2m þ b3; y1 ¼ �b2 � c1; y2 ¼ �b2 � c2;y; yi�1 ¼ �b2 � ci�1; yi ¼
�b2 � ciþ1;y; ym�1 ¼ �b2 � cm: This reduces (3.37) to identity (7.59) from the
appendix. &

To prove Theorem 2.5, we have to compute eigenvectors of the matrix B (see page
8 for its description). Let us recall that B is diagonalizable. Let us call w1 the
eigenvector of B corresponding to the eigenvalue b1; w2;y;wm the eigenvectors of B
corresponding to the eigenvalue b2; and wmþ1;y;w2m the eigenvectors of B
corresponding to the eigenvalue b3:

Lemma 3.3. 1. We have w1 ¼ e1:
2. For 1pipm � 1; we have w1þi ¼ �B1;1þi

b1�b2
e1 þ e1þi:

3. For 1pipm; we have wmþi ¼ xmþi e1 �
Pm�1

j¼1
Bjþ1;mþi

b2�b3
ejþ1 þ emþi; where

xmþi ¼
ð�1Þmþ1�i

p31
mþ1�iðb1 þ b2 þ cmþ1�i þ c2mÞ
ðb1 � b3Þðb2 � b3Þ

Q2m�1
k¼mþi qmþ1�i;kQm�i

k¼1 ðck � cmþ1�iÞ
: ð3:38Þ

Here is an example with m ¼ 3:

Example 3.1.

w1 ¼ð1; 0; 0; 0; 0; 0Þ;

w2 ¼
q25q35

ðc4 � c5Þðb1 � b2Þ
; 1; 0; 0; 0; 0

� �
;

w3 ¼ � q34

b1 � b2
; 0; 1; 0; 0; 0

� �
;

w4 ¼ � ðb1 þ b2 þ c3 þ c6Þp31
3 q34q35

ðb1 � b3Þðb2 � b3Þðc1 � c3Þðc2 � c3Þ
;� p31

3 q34q15

ðb2 � b3Þðc1 � c3Þðc2 � c3Þ
;

�
� p31

3 q14q24q35

ðb2 � b3Þðc1 � c3Þðc2 � c3Þðc4 � c5Þ
; 1; 0; 0

�
;
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w5 ¼
ðb1 þ b2 þ c2 þ c6Þp31

2 q25

ðb1 � b3Þðb2 � b3Þðc1 � c2Þ
;

�
p31
2 q15

ðb2 � b3Þðc1 � c2Þ
;

p31
2 q14q25

ðb2 � b3Þðc1 � c2Þðc4 � c5Þ
; 0; 1; 0

�
;

w6 ¼ �ðb1 þ b2 þ c1 þ c6Þp31
1

ðb1 � b3Þðb2 � b3Þ
;� p31

1

b2 � b3
;� p31

1 q24

ðb2 � b3Þðc4 � c5Þ
; 0; 0; 1

� �
:

Proof of Lemma 3.3. All the formulas in Lemma 3.3 are immediate except for (3.38).
A direct computation gives

ðb1 � b3Þxmþi þ
Xm�1

j¼1

ð�1Þm�j

Qm
k¼1þj qk;2m�jQ2m�1�j

k¼mþ1 ðck � c2m�jÞ
B1þj;mþi

b2 � b3

þ ð�1Þm�i
p31

mþ1�i

Q2m�1
k¼mþi qmþ1�i;kQm�i

k¼1 ðck � cmþ1�iÞ
¼ 0;

where B1þj;mþi is given by (2.9). To prove (3.38), we have to show that the formula

we derive for xmþi from the equation above equals the formula for xmþi from (3.38).
This boils down to a proof of identity (7.60) from the appendix. &

Lemma 3.4. The following is the matrix of the scalar product (2.14) in the standard

basis e1;y; e2m:

1. /e1; e1S ¼ ðb1 � b2Þðb1 � b3Þ;

2. /e1; e1þiS ¼ ðb1 � b3Þ
Qm

k¼1þi
q2m�i;kQ2m�1�i

k¼mþ1
ðc2m�i�ckÞ

for i ¼ 1; 2;y;m � 1;

3. /e1; emþiS ¼ �p31
mþ1�i

Q2m

k¼mþi
qmþ1�i;kQm�i

k¼1
ðcmþ1�i�ckÞ

for i ¼ 1; 2;y;m;

4.

/e1þi; e1þjS

¼
Qm

k¼1þi q2m�i;k

Qm
k¼1þj q2m�j;kQ2m�1�i

k¼mþ1 ðc2m�i � ckÞ
Q2m�1�j

k¼mþ1 ðc2m�j � ckÞ

	 1� ðb2 � b3Þ
Xm

r¼1

cr

Q2m
k¼mþ1
ka2m�i
ka2m�j

qr;k

Q2m
k¼mþ1

ka2m�i
ka2m�j

ðcr � ckÞQm
k¼1
kar

qr;k

Qm
k¼1
kar

ðcr � ckÞ

8>>><>>>:
9>>>=>>>;

for i; j ¼ 1; 2;y;m � 1; iaj;
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5.

/e1þi; e1þiS ¼
Qm

k¼1þi q2m�i;kQ2m�1�i
k¼mþ1 ðc2m�i � ckÞ

	
Qm

k¼1þi q2m�i;kQ2m�1�i
k¼mþ1 ðc2m�i � ckÞ

8><>:
� ðb2 � b3Þc2m�i

Q2m
k¼2mþ1�i ðc2m�i � ckÞ

Q2m
k¼mþ1

ka2m�i

q2m�i;kQm
k¼1 ðc2m�i � ckÞ

Qi
k¼1 q2m�i;k

�ðb2 � b3Þ
Qm

k¼1þi q2m�i;kQ2m�1�i
k¼mþ1 ðc2m�i � ckÞ

	
Xm

r¼1

cr

ðcr � c2m�iÞq2m�i;r

Q2m
k¼mþ1

ka2m�i

qr;k

Q2m
k¼mþ1
ka2m�i

ðcr � ckÞQm
k¼1
kar

qr;k

Qm
k¼1
kar

ðcr � ckÞ

9>=>;:

6.

/e1þi; emþjS ¼
p31

mþ1�j

qmþ1�j;2m�i

Qm
k¼1þi qk;2m�iQ2m�1�i

k¼mþ1 ðc2m�i � ckÞ

	
Q2m

k¼mþj qmþ1�j;kQm�j
k¼1 ðcmþ1�j � ckÞ

Q2m
k¼mþ1
ka2m�i

ðcmþ1�j � ckÞQm
k¼1

kamþ1�j

qmþ1�j;k

for i ¼ 1; 2;y;m � 1 and j ¼ 1; 2;y;m

7.

/emþj; emþiS ¼ dij

p31
mþ1�i

p32
mþ1�i

Q2m
k¼mþ2�i ðcmþ1�i � ckÞQm�i

k¼1 ðcmþ1�i � ckÞ

Q2m
k¼mþi qmþ1�i;kQm�1þi

k¼1
kamþ1�i

qmþ1�i;k

for i; j ¼ 1; 2;y;m:

Proof.

1. We obtain by direct computation

/e1; e1S ¼
X2m

i¼1

p31
i p32

i

Q2m
k¼1
kai

qikQ2m
k¼1
kai

ðci � ckÞ
:
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For 1pip2m let us set xi ¼ ci þ ðb2 þ b3Þ=2: Identities (7.66), (7.67), and (7.68)
from the appendix finish the proof.

2. A direct computation gives

/e1; e1þiS ¼ � p31
2m�ip

32
2m�i

Q2m
k¼1þi

ka2m�i

q2m�i;kQ2m�1�i
k¼1 ðc2m�i � ckÞ

�
Xm

r¼1

p31
r p32

r

cr � c2m�i

Q2m
k¼mþ1

ka2m�i

qrk

Qm
k¼1þi qk;2m�iQm

k¼1
kar

ðcr � ckÞ
Q2m�1�i

k¼mþ1 ðc2m�i � ckÞ
:

After cancelling out common multiples, we have to prove that

Xm

r¼1

p31
r p32

r

cr � c2m�i

Q2m
k¼mþ1

ka2m�i

qrkQm
k¼1
kar

ðcr � ckÞ
¼ � p31

2m�ip
32
2m�i

Q2m
k¼mþ1

ka2m�i

q2m�i;kQm
k¼1 ðc2m�i � ckÞ

� ðb1 � b3Þ:

Let us set xr ¼ cr þ ðb2 þ b3Þ=2; yr ¼ cmþr þ ðb2 þ b3Þ=2: Now identities (7.63),
(7.69), and (7.70) from the appendix finish the proof.

3. This formula is proved by direct computation.
4. A direct computation gives

/e1þi; e1þjS ¼
Qm

k¼1þi q2m�i;k

Qm
k¼1þj q2m�j;kQ2m�1�i

k¼mþ1 ðc2m�i � ckÞ
Q2m�1�j

k¼mþ1 ðc2m�j � ckÞ

	
Xm

r¼1

p31
r p32

r

Q2m
k¼mþ1
ka2m�i
ka2m�j

qr;k

Q2m
k¼mþ1
ka2m�i
ka2m�j

ðcr � ckÞQm
k¼1
kar

qr;k

Qm
k¼1
kar

ðcr � ckÞ
:

Let us set x1 ¼ c1 þ ðb2 þ b3Þ=2; x2 ¼ c2 þ ðb2 þ b3Þ=2;y; xm ¼ cm þ ðb2 þ b3Þ=2;
y1 ¼ cmþ1 þ ðb2 þ b3Þ=2; y2 ¼ cmþ2 þ ðb2 þ b3Þ=2;y; ym ¼ cmþm þ ðb2 þ b3Þ=2:
Identities (7.59) and (7.60) from the appendix finish the proof.
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5. A direct computation gives

/e1þi; e1þiS ¼
Qm

k¼1þi q2m�i;kQ2m�1�i
k¼mþ1 ðc2m�i � ckÞ

Qm
k¼1þi q2m�i;kQ2m�1�i

k¼mþ1 ðc2m�i � ckÞ

8><>:
	
Xm

r¼1

p31
r p32

r

ðcr � c2m�iÞq2m�i;r

Q2m
k¼mþ1
ka2m�i

qr;k

Q2m
k¼mþ1

ka2m�i

ðcr � ckÞQm
k¼1
kar

qr;k

Qm
k¼1
kar

ðcr � ckÞ

þ p31
2m�ip

32
2m�i

Q2m
k¼2mþ1�i ðc2m�i � ckÞQm

k¼1 ðc2m�i � ckÞ

Q2m
k¼mþ1

ka2m�i

q2m�i;kQi
k¼1 q2m�i;k

9>=>;:

Let us set xr ¼ cr þ ðb2 þ b3Þ=2; yr ¼ cmþr þ ðb2 þ b3Þ=2 for r ¼ 1; 2;y;m:
Identities (7.60) and (7.63) from the appendix finish the proof.

6. Proved by direct computation.
7. Proved by direct computation. &

Now it is time to prove Theorem 2.5, that is prove that the matrices A; B; and C
are self-adjoint with respect to the scalar product (2.14). C is self-adjoint with respect
to the scalar product by construction. The space V splits into the direct sum V ¼
Vb1"Vb2"Vb3 of the spectral subspaces of B: If the subspaces Vb1 ; Vb2 ; and Vb3 are

mutually orthogonal with respect to the scalar product (2.14), then B is self-adjoint
with respect to it as well. Then A is also self-adjoint, as A ¼ Bþ C: Proof of the
following lemma finishes the proof of Theorem 2.5.

Lemma 3.5. The subspaces Vb1 ; Vb2 ; and Vb3 are mutually orthogonal with respect to

the scalar product (2.14).

Proof. We use the formulas of Lemma 3.3 to express the eigenvectors wi of the
matrix B in terms of the standard basis fe1; e2;y; e2mg: Then we use the formulas of
Lemma 3.4 to expand /ei; ejS:

1.

/w1;w1þiS ¼ e1; e1þi �
1

b1 � b2

Qm
k¼1þi qk;2m�iQ2m�1�i

k¼mþ1 ðc2m�i � ckÞ
e1

* +

¼/e1; e1þiS� 1

b1 � b2

Qm
k¼1þi qk;2m�iQ2m�1�i

k¼mþ1 ðc2m�i � ckÞ
/e1; e1S

¼ðb1 � b3Þ
Qm

k¼1þi qk;2m�iQ2m�1�i
k¼mþ1 ðc2m�i � ckÞ

� ðb1 � b2Þðb1 � b3Þ
b1 � b2

Qm
k¼1þi qk;2m�iQ2m�1�i

k¼mþ1 ðc2m�i � ckÞ
¼ 0:
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2. The identity /w1;wmþiS ¼ 0 ði ¼ 1; 2;y;mÞ reduces to identity (7.61) from the
appendix.

3. Lemma 3.3 gives us

w1þi ¼ e1þi �
1

b1 � b2

Qm
k¼1þi qk;2m�iQ2m�1�i

k¼mþ1 ðc2m�i � ckÞ
e1:

We know that e1 ¼ w1 and that /w1;wmþiS ¼ 0: Thus, /w1þi;wmþjS ¼
/e1þi;wmþjS: The identity /e1þi;wmþjS ¼ 0 after expansion and some simplifica-

tion becomes the following identity:

Xm�1

r¼1

Qm
k¼1

kamþ1�j

q2m�r;kQ2m�1
k¼mþ1

ka2m�r

ðc2m�r � ckÞ

Xm

s¼1

cs

q2m�i;sðcs � c2m�iÞ

	

Q2m
k¼mþ1

ka2m�r

qs;k

Q2m
k¼mþ1

ka2m�r

ðcs � ckÞQm
k¼1
kas

qs;k

Qm
k¼1
kas

ðcs � ckÞ

¼ 1� c2m�iðc2m�i � c2mÞ
q2m�i;mþ1�j

Q2m
k¼mþ1

ka2m�i

q2m�i;kQm
k¼1 ðc2m�i � ckÞ

� qmþ1�j;2m

qmþ1�j;2m�i

Q2m
k¼mþ1
ka2m�i

ðcmþ1�j � ckÞQm
k¼1

kamþ1�j

qmþ1�j;k
:

For i ¼ 1; 2;y;m; let us set xi ¼ ci þ ðb2 þ b3Þ=2 and yi ¼ cmþi þ ðb2 þ b3Þ=2: Let
us write cs ¼ xs � y2m�i þ y2m�i � ðb2 þ b3Þ=2 and c2m�i ¼ y2m�i � ðb2 þ b3Þ=2:
Now identities (7.59), (7.63), and (7.71) of the appendix finish the proof. &

Let us prove Theorem 2.6, that is determine the inequalities on the real
spectra of A; B; and C which make form (2.14) sign-definite. It is an assumption
of Theorem 2.6 that c14c24?4c2m: The assumption a14a2 of the
theorem is satisfied automatically, because in our normalized version a1 ¼ 1 and
a2 ¼ �1:

Proof of Theorem 2.6. It is immediately clear from Theorem 2.5 that

signð/vi; viSÞ ¼ ð�1Þi�1 signðp31
i p32

i Þ sign
Y2m

j¼1
jai

qi;j

0BB@
1CCA:

Let Q be a 2m 	 2m array such that Qi;j ¼ qi;j for iaj and Qi;i are not defined. Then

Qi;j4Qi;jþ1 and Qi;j4Qiþ1;j for all i and j such that neither of the array elements

involved belongs to the main diagonal. Let P be a 2m 	 2 matrix such that Pi;1 ¼ p32
i
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and Pj;2 ¼ p31
j : The fact a14a2 implies p32

i 4p31
i : Then signð/vi; viSÞ ¼

ð�1Þi�1þ#fj: Qi;jo0gþ#fj: Pi;jo0g: In order to keep signð/vi; viSÞ constant, the number
of negative elements in the i row of the arrays Q and P must differ from the number
of negative elements in the i þ 1 row by an odd number. This and the fact that
Qi;j ¼ Qj;i leaves room for the following six configurations. The first is given by the

inequalities:

p31
m�1404p31

m q1;2m�2404q1;2m�1

q2;2m�3404q2;2m�2

p32
2m�1404p32

2m q3;2m�4404q3;2m�3

^

qm�1;m404qm�1;mþ1:

We have qi;2m�io0 for i ¼ 1; 2;y;m � 1: Let us sum up these inequalities with

p32
2mo0 and p31

m o0: Recalling that C is traceless, we obtain ðm � 1Þb2 þ ðm þ
1Þb3o0: Recalling that B is traceless, we obtain b14b3: We have p31

m�140 and

p32
2m�140: Thus, �p31

m�1 � p32
2m�1o0: We also have qm�1;2m�1oqm�1;mþ1o0 for m42

and qm�1;2m�1 ¼ qm�1;mþ1o0 for m ¼ 2 because ciocj for i4j: Thus, we have

�p31
m�1 � p32

2m�1 þ qm�1;2m�1o0: This gives us b34b2: So, we have b14b34b2: Here is

a picture illustrating the case of m ¼ 3: The line separates positive elements from
negative.

The second configuration is given by the following inequalities.

p31
1 404p31

2 q2;2m404q3;2m

q3;2m�1404q4;2m�1

p32
mþ1404p32

mþ2 q4;2m�2404q5;2m�2

^

qm;mþ2404qmþ1;mþ2:

We have p31
2 o0 and p32

mþ2o0: Thus, we have �p31
2 � p32

mþ240: We also have

q2;mþ24qm;mþ240 for m42 and q2;mþ2 ¼ qm;mþ240 for m ¼ 2: Thus, q2;mþ2 � p31
2 �

p32
mþ240: This implies b24b3: We have qi;2mþ2�i40 for i ¼ 2; 3;y;m: Summing up

these inequalities with p31
1 40 and p32

mþ140; we obtain ðm � 1Þb2 þ ðm þ 1Þb340:
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Thus, b34b1: So, we have b24b34b1: Here is the picture illustrating the case of
m ¼ 3:

The third configuration is given by the following inequalities:

04p31
1 q1;2m�1404q1;2m

q2;2m�2404q2;2m�1

p32
m 404p32

mþ1 ^

qm�1;mþ1404qm�1;mþ2

04qm;mþ1:

The inequalities p32
mþ1o0 and p31

1 o0 imply the inequality 2b3 þ c1 þ cmþ1o0: The

inequality q1;2m�140 implies the inequality q1;mþ140 because cmþ14c2m�1 for m42

and cmþ1 ¼ c2m�1 for m ¼ 2: Now, the inequalities b2 þ b3 þ c1 þ cmþ140 and
�2b3 � c1 � cmþ140 imply the inequality b2 � b340: So, b24b3: Let us sum up the
inequalities qi;2mþ1�io0 for i ¼ 1; 2;y;m: The sum of all the ci is equal to zero. Thus

we obtain mb2 þ mb3o0 which is equivalent to b2 � b1o0: This gives us b14b24b3:
Here is the picture illustrating the case of m ¼ 3:

The fourth configuration is given by the following inequalities.

p31
m 404p31

mþ1 q1;2m404q2;2m

q2;2m�1404q3;2m�1

p32
2m40 ^

qm�1;mþ2404qm;mþ2

qm;mþ140:
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We have qm;2moqm;mþ2o0 for m42 and qm;2m ¼ qm;mþ2o0 for m ¼ 2: We also

have �p32
2mo0 and �p31

m o0: Summing up these inequalities, we obtain b34b2: We

also have qi;2mþ1�i40 for i ¼ 1; 2;y;m: Summing up these inequalities, we obtain

b24b1: This gives us b34b24b1: Here is the picture illustrating the case of m ¼ 3:

The fifth configuration is given by the following inequalities:

04p31
1 q1;2m404q2;2m

q2;2m�1404q3;2m�1

p32
m 404p32

mþ1 ^

qm�1;mþ2404qm;mþ2

qm;mþ140:

We have qi;2mþ2�io0 for i ¼ 2; 3;y;m: Summing up these inequalities with p31
1 o0

and p32
mþ1o0; we obtain ðm � 1Þb2 þ ðm þ 1Þb3o0: The last is equivalent to b14b3:

We also have qi;2mþ1�i40 for i ¼ 1; 2;y;m: Summing up these inequalities, we

obtain mb2 þ mb340 which is equivalent to b24b1: This gives us b24b14b3: Here is
the picture illustrating the case of m ¼ 3:

The last configuration possible is given by the following inequalities.

p31
m 404p31

mþ1 q1;2m�1404q1;2m

q2;2m�2404q2;2m�1

p32
2m40 ^

qm�1;mþ1404qm�1;mþ2

04qm;mþ1:
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We have qi;2mþ1�io0 for i ¼ 1; 2;y;m: Summing up these inequalities, we obtain

mb2 þ mb3o0 which is equivalent to b14b2: We also have qi;2m�i40 for i �
1; 2;y;m � 1: Summing up these inequalities with p32

2m40 and p31
m 40; we obtain

ðm � 1Þb2 þ ðm þ 1Þb340 which is equivalent to b34b1: This gives us b34b14b2:
Here is the picture illustrating the case of m ¼ 3:

So, in these six cases the form /* ; *S is sign-definite. Lemma 3.4 gives /e1; e1S ¼
ðb1 � b2Þðb1 � b3Þ: Thus, signð/* ; *SÞ ¼ signððb1 � b2Þðb1 � b3ÞÞ: &

3.3. Odd family

For the hypergeometric, odd, and even family, let us call the objects fV ;A ¼
Bþ C;B;C;/* ; *Sg where ðA;B;CÞ is a rigid irreducible triple of matrices of the
corresponding spectral types and /* ; *S is the non-degenerate scalar product such
that A; B; and C are self-adjoint with respect to it, m-hypergeometric module, m-even

module, and m-odd module. Let us denote these objects as HGMm; EMm; and OMm:
The reason for calling these objects modules comes from the theory of quiver
representations and will not be explained in this paper.

It is possible to prove Theorems 2.7, 2.8, Lemma 2.3, etc. in the same fashion as
for the even family. But we choose a different approach. We show that by means of
violating the ‘‘generic eigenvalues’’ condition it is possible to construct OMm�1 as a
submodule of EMm: Then all the formulas follow from the corresponding formulas
for the even family.

Let V be the same 2m-dimensional linear space as in the previous subsection and
let e1;y; e2m be the standard basis of V : Let A; B; and C be the matrices from the
previous subsection, too. Fix an integer i such that 1pipm: Let Vs

î
be the subspace

of V spanned by the vectors e1; e2;y; e2m�i; de2mþ1�ie2mþ1�i; e2mþ2�i;y; e2m: It follows from
the formulas of Lemma 2.2 that V s

î
is spanned by v1; v2;y; vi�1; bvivi; viþ1;y; v2m

(hence the notation). Then the following lemma follows at once from the formulas
for A; B; and C of Section 2.2.

Lemma 3.6. If p32
i ¼ 0; then V s

î
is invariant with respect to A; B; and C:
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Thus, it makes sense to consider the restrictions of A; B; and C to V s
î
and call them

As

î
; Bs

î
; and Cs

î
: We will also call /* ; *S

s

î
the form /* ; *S restricted to V s

î
: Note

that p32
i ¼ 0 forces qij ¼ p21

j and ci � cj ¼ �p32
j :

Theorem 3.1. If ðsðAÞ; sðBÞ; sðCÞÞ is a generic point of the intersection of

Sððm;mÞ; ð1;m � 1;mÞ; ð12mÞÞ with the hyperplane given by the equation p32
i ¼ 0 for

a fixed 1pipm; then fV s
î
; As

î
;Bs

î
;Cs

î
;/* ; *S

s

î
g is OMm�1:

Here is an example of the matrices Bs
#2
and Cs

#2
obtained from the matrices B and C

of Example 2.4 by setting p32
2 ¼ 0 and restricting them to V s

#2
:

Example 3.2.

We first prove Theorem 3.1 and then we derive all the proofs for the odd family
from what we already know about the even family. Let us prove Theorem 3.1.
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Proof of Theorem 3.1. It is clear that Bs

î
is diagonalizable and that

sðBs

î
Þ ¼ fb1; b2;y; b2|fflfflfflfflffl{zfflfflfflfflffl}

m�1 times

; b3;y; b3|fflfflfflfflffl{zfflfflfflfflffl}
m�1 times

g:

It is clear that Cs
î

is diagonalizable and that sðCs
î
Þ ¼

fc1; c2;y; ci�1; bcici; ciþ1;y; c2mg: In view of Lemma 3.6 and Theorem 2.4, it is clear
that As

î
is diagonalizable as well. In the notations of Section 3.2, A has eigenvectors

aþj corresponding to the eigenvalue a1 (normalized to 1). Vectors a�j are eigenvectors

of A corresponding to the eigenvalue a2 (normalized to �1). Once we set p32
i ¼ 0; all

the eigenvectors of A belong to Vs
î

except for a�mþ1�i and the proof follows

immediately. &

To finish the rest of the proofs for the odd family, we just have to say that all the
formulas for OMm in this paper were obtained from the formulas for EMmþ1 by

setting p32
mþ1 ¼ 0 and renumbering the remaining c1; c2;y; cm; cmþ2;y; c2mþ2 as

c1; c2;y; c2mþ1:

Remark 3.2. In exactly the same fashion, we can construct OMm�1 as a factor

module of EMm by setting p31
i ¼ 0 for 1pipm; we can construct EMm as a factor

module of OMm by setting either p31
i ¼ 0 for 1pipm or p21

i ¼ 0 for m þ 1pip2m:
Also similarly, one can show that setting bi þ cmþ1�i � a2 ¼ 0 for 1pipm creates
HGMm�1 as a submodule of HGMm:

3.4. Extra case of Simpson

Consider the following vectors.

w1 ¼ð1; 0; 0; 0; 0; 0Þ;

w2 ¼ð0; 1; 0; 0; 0; 0Þ;

w3 ¼
p16q245

ðb1 � b2Þðc3 � c4Þ
;� p15q235q246

ðb1 � b2Þðc3 � c4Þðc5 � c6Þ
; 1; 0; 0; 0

� �
;

w4 ¼ � p16

b1 � b2
;

p15q236

ðb1 � b2Þðc5 � c6Þ
; 0; 1; 0; 0

� �
;
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w5 ¼ � p16q245ðq126 � p31Þ
ðb1 � b3Þðb2 � b3Þðc1 � c2Þ

;
p15q236q246ðq125 � p31Þ

ðb1 � b3Þðb2 � b3Þðc1 � c2Þðc5 � c6Þ
;

�
p24q236

ðb2 � b3Þðc1 � c2Þ
;

p23q245q246

ðb2 � b3Þðc1 � c2Þðc3 � c4Þ
; 1; 0

�
;

w6 ¼ � p16 ðq126 � p32Þ
ðb1 � b3Þðb2 � b3Þ

;
p15q235ðq125 � p32Þ

ðb1 � b3Þðb2 � b3Þðc5 � c6Þ
;� p24

b2 � b3
;

�

� p23q235

ðb2 � b3Þðc3 � c4Þ
; 0; 1

�
: ð3:39Þ

Theorem 2.10 and Lemma 2.4 are proved by direct computation as well as the
following two lemmas.

Lemma 3.7. Let B be as in (2.24). Then w1 and w2 are eigenvectors of B with the

eigenvalue b1; w3 and w4 are eigenvectors of B with the eigenvalue b2; and w5 and w6 are

eigenvectors of B with the eigenvalue b3:

Lemma 3.8. Let /* ; *S be defined by (2.25). Let Vb1 be the subspace of V spanned by

w1 and w2: Let Vb2 be the subspace of V spanned by w3 and w4: Let Vb3 be the subspace

of V spanned by w5 and w5: Then Vb1 ; Vb2 ; and Vb3 are mutually orthogonal with

respect to /* ; *S:

Theorem 2.11 follows from Lemmas 2.4 and 3.8. Finally, Theorem 2.12 can be
proved similarly to Theorems 2.3 and 2.6.

4. Indecomposable triple flag varieties with finitely many orbits

Let iAf1; 2; 3g: For a triple of flags | ¼ V i
0CV i

1CVi
2C?CV i

ki�1CV i
ki
¼ V ;

we call the dimension vector in the jump coordinates the vector

ððdimðV 1=V 1
0 Þ; dimðV1

2 =V1
1 Þ;y; dimðV1

k1
=V 1

k1�1ÞÞ; ðdimðV2
1 =V2

0 Þ; dimðV 2
2 =V 2

1 Þ;y;

dimðV2
k2
=V 2

k2�1ÞÞ; ðdimðV3
1 =V3

0 Þ; dimðV 3
2 =V 3

1 Þ;y; dimðV 3
k3
=V3

k3�1ÞÞÞ: We say that this

triple of flags is in a standard form, if V is given a basis z1;y; zn with the following

property: for the flag | ¼ V2
0CV2

1CV 2
2C?CV2

k2�1CV 2
k2

¼ V ; the subspace V2
i of

dimension d2
i is spanned by the first d2

i basis vectors z1; z2;y; for the flag | ¼
V 3

0CV 3
1CV3

2C?CV 3
k3�1CV3

k3
¼ V ; the subspace V3

j of dimension d3
j is spanned by

the last d3
j basis vectors zn; zn�1;y :

Magyar et al. [26] classify all indecomposable triple partial flag varieties with
finitely many orbits of the diagonal action of the general linear group. They work
over an algebraically closed field. C is enough for our purposes. Among other results,
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they give the dimension vectors in the jump coordinates as well as explicit
representatives of the open orbit in the standard form. For every element of their list,

the first flag turns to be just a subspace V1
1CV : It also turns out that this subspace is

spanned by vectors ai such that all their coordinates in the standard basis z1;y; zn
are equal to either 0 or 1: Their list is given on page 37.

Remark 4.1. Our definition of a standard form for a triple of flags is weaker than
that of Magyar, Weyman, and Zelevinsky (includes more triple flags).

Recall that we proved Theorem 1.3 only for the hypergeometric family so far.
Now we use the results of Magyar, Weyman and Zelevinsky to prove the
counterparts of this result for all other families of Simpson. Let us begin with the
even family. Recall that we work with the normalized matrices A; B; and C: This
means that they are traceless and the eigenvalues of A are 1 and �1: Let Z be the
following matrix:

where

Z1þi;1þj ¼

0 if ioj;

1 if i ¼ j;Qi

k¼1þj
qk;2m�iQ2m�j

k¼2mþ1�i
ðc2m�i�ckÞ

if i4j;

8>>><>>>:
Zmþi;mþj ¼

0 if ioj;

1 if i ¼ j;Qm�1þi

k¼mþj
qmþ1�i;kQmþ1�j

k¼mþ2�i
ðcmþ1�i�ckÞ

if i4j:

8>>><>>>:
ð4:40Þ

Note that Z is lower-triangular with all the diagonal elements equal to 1.
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For 1pip2m; let zi ¼ Zei: The matrix Z is non-degenerate, so zi is a basis of V :

Consider the following flags: V 2
1CV2

2CV and V 3
1CV3

2C?CV 3
2m�1CV where V 2

1 is

spanned by z1; V 2
2 is spanned by z1; z2;y; zm; and V 3

i is spanned by

z2m; z2m�1;y; z2mþ1�i: They are the second and the third flags of the even family

with the dimension vector ððm;mÞ; ð1;m � 1;mÞ; ð12mÞÞ in (4.41).

ð4:41Þ

Here is an example of the matrix Z with m ¼ 3:
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Example 4.1.

Definition 4.1. Let A be a diagonalizable complex linear operator with the spectrum
ðl1; l2;y; lkÞ: Let Vli

be the eigenspace of A corresponding to the eigenvalue li: We

will call the flag Vl1CVl1"Vl2C?CV the spectral flag of A corresponding to the
ordering ðl1; l2;y; lkÞ of its spectrum.

If ðm1;m2;y;mkÞ are the multiplicities of the spectrum of A from the above
definition, then the dimension vector in the jump coordinates of its spectral flag is
also ðm1;m2;y;mkÞ:

If we take another look at the eigenvectors of B (Lemma 3.3) and at the
eigenvectors of C (Lemma 2.2), we see that the spectral flags of these matrices are
exactly the second and the third flags of the Magyar, Weyman, and Zelevinsky triple

ððm;mÞ; ð1;m � 1;mÞ; ð12mÞÞ:

Lemma 4.1. The subspace V 1
1 spanned by the vectors a1;y; am (from the

ððm;mÞ; ð1;m � 1;mÞ; ð12mÞÞ entry in (4.41)) is the spectral subspace of the matrix A

corresponding to the eigenvalue �1:

Proof. In order to prove ðAþ IdÞai ¼ 0 for 1pipm; we have to prove the following
identities.

1. The first identity says that the first component of ðAþ IdÞai is zero.

b1 þ c2m þ 1þ
Xm�1

j¼i

Z1þj;1þi B1;1þj þ
Xm

mþ1�i

Zmþj;2mþ1�i B1;mþj ¼ 0: ð4:42Þ
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2. The second identity says that the components 2 through m of ðAþ IdÞai are zero.

C1þj;1 þ ðc2m�j þ b2 þ 1ÞZ1þj;1þi þ
Xm

k¼mþ1�i

Zmþk;2mþ1�i B1þj;mþk ¼ 0: ð4:43Þ

3. The third identity says that the components m þ 1 through 2m of ðAþ IdÞai are
zero.

Cmþj;1 þ ðcmþ1�j þ b3 þ 1ÞZmþj;2mþ1�i þ
Xm�1

k¼i

Z1þk;1þi Cmþj;1þk ¼ 0: ð4:44Þ

Recall that the matrix elements of the matrices B and C are given by formulas
(2.7)–(2.12) on pages 8–9. Then the first identity becomes

b1 þ c2m þ 1þ
Xm�1

j¼i

Qm
k¼1þi qk;2m�jQ2m�i

k¼mþ1
ka2m�j

ðc2m�j � ckÞ

þ
Xm

j¼mþ1�i

p31
mþ1�j

Q2m�1
k¼2mþ1�i qmþ1�j;kQi
k¼1

kamþ1�j

ðcmþ1�j � ckÞ
¼ 0: ð4:45Þ

In our normalized version, p31
mþ1�j ¼ cmþ1�j þ b3 � 1: Thus, (4.45) splits into two

identities of homogeneous degrees 0 and 1. The part of degree 0 is

Xm

j¼mþ1�i

Q2m�1
k¼2mþ1�i qmþ1�j;kQi
k¼1

kamþ1�j

ðcmþ1�j � ckÞ
¼ 1:

This identity is equivalent to (7.60) from the appendix. The part of degree 1 is

b1 þ c2m þ
Xm�1

j¼i

Qm
k¼1þi qk;2m�jQ2m�i

k¼mþ1
ka2m�j

ðc2m�j � ckÞ

þ
Xm

j¼mþ1�i

ðb3 þ cmþ1�jÞ
Q2m�1

k¼2mþ1�i qmþ1�j;kQi
k¼1

kamþ1�j

ðcmþ1�j � ckÞ
¼ 0:

This one is proved similarly to identity (3.34) on page 24 with the help of identity
(7.61) from the appendix applied separately to each of the sums.
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To prove the second identity (4.43), let us recall that

Z1þj;1þi ¼

0 if joi;

1 if j ¼ i;Qj
k¼1þi qk;2m�jQ2m�i

k¼2mþ1�j ðc2m�j � ckÞ
if j4i:

8>>>><>>>>:
Thus, the second identity (4.43) splits into three different identities. In case joi; we
have

C1þj;1 þ
Xm

k¼mþ1�i

Zmþk;2mþ1�i B1þj;mþk ¼ 0:

This identity, after cancelling out common multiples, splits into a sum of two
identities: one of degree �1 and the other of degree 0. The first reduces to identity
(7.59) and the second reduces to identity (7.60) from the appendix.

In case i ¼ j; we have

C1þj;1 þ ðc2m�j þ b2 þ 1Þ þ
Xm

k¼mþ1�i

Zmþk;2mþ1�i B1þj;mþk ¼ 0:

This identity splits into two parts of degree 0 and 1. The part of degree 0 reduces to
identity (7.63) from the appendix. The part of degree 1 is a sum of two identities: one
is equivalent to (7.60) and the other is equivalent to (7.63) from the appendix. The
case j4i; after cancelling out common multiples, becomes equivalent to the case
j ¼ i:

To prove the third identity (4.44), recall that

Zmþj;2mþ1�i ¼

0 if i þ jom þ 1;

1 if i þ j ¼ 1;Qm�1þj

k¼2mþ1�i
qmþ1�j;kQi

k¼mþ2�j
ðcmþ1�j�ckÞ

if i þ j4m þ 1:

8>>><>>>:
Thus, the third identity splits into three different identities. In case i þ jom þ 1; after
cancelling out common multiples, (4.44) becomes equivalent to identity (7.60) from
the appendix. In cases i þ j ¼ m þ 1 and i þ j4m þ 1; identity (7.65) from the
appendix does the job.

Finally, it is clear from (4.41) and (4.40) that for 1pipm; the vectors ai are
linearly independent. &

Now let us get back to the proof of Theorem 1.3.

Proof of Theorem 1.3. For a triple of partitions S00ða; b; gÞ from Simpson’s list (1.1),
we want to prove that if ðsðAÞ; sðBÞ; sðCÞÞ is a point of S00ða; b; gÞ; then the triple
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ðA;B;CÞ is irreducible. We have proved it already for the hypergeometric family in
Section 3.1. To prove it for the even family, let us recall that if
ðsðAÞ; sðBÞ; sðCÞÞAS00ða; b; gÞ; then the scalar product (2.14) is well-defined and
non-degenerate. Assume that the triple of matrices ðA;B;CÞ is reducible. Then they
all preserve a non-trivial subspace V 0: This subspace is spanned by some eigenvectors
of C: Let V 00 be the subspace of V spanned by the complementary eigenvectors of C:
But all eigenvectors of C are orthogonal to each other with respect to (2.14). Thus,
the space V splits into the orthogonal direct sum V 0"V 00: Thus, the matrices A and
B preserve the subspace V 00 as well. So, no matter how we introduce linear orders on
the spectra of A; B; and C; the corresponding triple of flags will decompose.

However, if ðsðAÞ; sðBÞ; sðCÞÞ is a point of S00ððm;mÞ; ð1;m � 1;mÞ; ð12mÞÞ; then as
follows from Lemma 4.1 and the preceding discussion, the spectral flags of the
matrices A; B; and C give the Magyar, Weyman, and Zelevinsky representative of
the open orbit of the corresponding triple flag variety. According to Magyar,
Weyman, and Zelevinsky, this triple of flags is indecomposable. Thus, the
assumption that the triple ðA;B;CÞ is reducible cannot be true. This proves
Theorem 1.3 in the even case.

The Z-matrix for the odd family triple ððm þ 1;mÞ; ð1;m;mÞ; ð12mþ1ÞÞ can be
obtained from the Z-matrix for the even family triple ððm þ 1;m þ 1Þ; ð1;m;m þ 1Þ;
ð12mþ2ÞÞ by restricting the latter to Vs

mþ1 as in the proof of Theorem 3.1 on page 34.

The rest of the argument is the same. Finally, let us give the Z-matrix for the extra
case of Simpson (or, more precisely, for the triple of compositions

ðð4; 2Þ; ð2; 2; 2Þ; ð16ÞÞ of the Ê8-family from (4.41)).

ð4:46Þ

The only family of Magyar, Weyman, and Zelevinsky which does not appear in
the list of Simpson, is the E8-family. We now construct the matrices A ¼ Bþ C;B;C
such that their spectral flags form the Magyar, Weyman, and Zelevinsky
representative for the open orbit of the triple flag variety of dimension
ðð3; 3Þ; ð2; 2; 2Þ; ð1; 1; 1; 1; 2ÞÞ: This time the standard basis ei and the z-basis of
Magyar, Weyman, and Zelevinsky zi coincide ðzi ¼ eiÞ:

Let ða1; a1; a1; a2; a2; a2; b1; b1; b2; b2; b3; b3; c1; c2; c3; c4; c5; c5ÞASðð3; 3Þ; ð2; 2; 2Þ;
ð1; 1; 1; 1; 2ÞÞ:
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ð4:47Þ

ð4:48Þ
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It is clear that B and C are diagonalizable and that sðBÞ ¼ fb1; b1; b2; b2; b3; b3g;
sðCÞ ¼ fc1; c2; c3; c4; c5; c5g: The following is proved by direct computation.

Theorem 4.1. For B and C as in (4.47) and (4.48), let A ¼ Bþ C: Then A is

diagonalizable and sðAÞ ¼ fa1; a1; a1; a2; a2; a2g:

The existence of a scalar product on V such that A; B; and C are self-adjoint with
respect to it can be proved using methods of the theory of quiver representations. It
follows from Schur’s lemma that if ðsðAÞ; sðBÞ; sðCÞÞ is a generic point in
Sðð3; 3Þ; ð2; 2; 2Þ; ð1; 1; 1; 1; 2ÞÞ; then the form is unique up to a constant multiple. It
would be interesting to find a basis in which the form is ‘‘nice’’ (for instance, having
matrix entries as ratios of products of linear forms in the eigenvalues of A; B; and C).

5. Connections with the Littlewood–Richardson rule

An irreducible rational representation of GLðn;CÞ is uniquely determined by its
highest weight l ¼ ðl1; l2;y; lnÞ where li are integers such that l1Xl2X?Xln: We
can decompose tensor products of irreducible representations into sums of irreducibles:

Vl#Vm ¼
X
n

cnlmVn: ð5:49Þ

The number cnlm of copies of Vn in Vl#Vm is called the Littlewood–Richardson

coefficient. There exists a famous combinatorial algorithm to compute the Littlewood–
Richardson coefficient called the Littlewood–Richardson rule (see [9] for more
information). It follows from the results of Klyachko [14] combined with a refinement
by Knutson and Tao [15], that the lattice points of the Klyachko cone are exactly the
triples of highest weights with non-zero Littlewood–Richardson coefficients (see also [8]
for a nice survey). The question whether all the lattice points of the Klyachko cone were
such triples was raised in [32] under the name of the saturation conjecture. The
conjecture was proved by Knutson et al. in [15]. Some of the Klyachko inequalities
describing the Klyachko cone are redundant. Knutson et al. in [16] give the set of
necessary inequalities for the Klyachko cone. Derksen and Weyman [6] give a proof of
the saturation conjecture different from that of Knutson and Tao. They use methods of
the theory of quiver representations, developing further ideas of Schofield [28].
Moreover, Derksen and Weyman [7] give description of all the faces of the Klyachko
cone of arbitrary dimension. However, all these results involve recursive computations.

The inequalities of Theorems 2.3, 2.6, 2.9, and 2.12 give non-recursive description
of some faces of the Klyachko cone. Thus, integral solutions to these inequalities
give non-recursive description of some triples of highest weights with cnlma0:

Let us show a different way to derive these inequalities and also show that the
corresponding cnlm ¼ 1: For that, we use the Berenstein–Zelevinsky triangle. It was

invented in [1] as a geometric version of the Littlewood–Richardson rule. A variation
of the BZ-triangle was used in [15] under the name of a honeycomb tinkertoy. A
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different variation of the triangle was used in [10] under the name of a web-function

to examine relations of the Littlewood–Richardson coefficients with a Quantum–
Yang–Baxter-Type equation.

Consider the following graph.

This is the Berenstein–Zelevinsky triangle for slr: In order to define it formally, it is

convenient to use the barycentric coordinates in R2: Namely, we represent a point in

R2 by a triple ða; b; gÞ such that aþ bþ g ¼ 0: The r Berenstein–Zelevinsky triangle

BZr is the set of points in R2 with barycentric coordinates ða; b; gÞ; such that

1. 0obo� aor þ 1;
2. the numbers 2a; 2b; and 2g are integers,
3. at least one a; b; or g is not integer.

Every integer point ða; b; cÞ; a þ b þ c ¼ 0; with 0obo� aor þ 1 has six
neighbors in BZr that form vertices of the following hexagon:

Definition 5.1. A function f : BZr-f0; 1; 2;yg is called a BZ-filling if for any
hexagon as above we have f ðAÞ þ f ðBÞ ¼ f ðDÞ þ f ðEÞ; f ðBÞ þ f ðCÞ ¼ f ðEÞ þ f ðFÞ;
and f ðCÞ þ f ðDÞ ¼ f ðFÞ þ f ðAÞ (the last condition follows from the first two). We
call this the hexagon condition.
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Let l ¼
Pr

i¼1 lioi; m ¼
Pr

i¼1 mjoi; and n ¼
Pr

i¼1 nioi; where the oi are the

fundamental weights of slðr þ 1;CÞ: Let us assign li; mi; and ni to the boundary
segments of the BZr as shown in the picture on page 43. Note that li ¼ li � liþ1;
mi ¼ mi � miþ1; ni ¼ ni � niþ1:

Definition 5.2. A filling f of BZr satisfies boundary conditions if for any boundary
segment with vertices A; B; and a non-negative integer value v assigned to the
segment, f ðAÞ þ f ðBÞ ¼ v:

Theorem 5.1 (Berenstein, Zelevinsky). Let l ¼
Pr

i¼1 lioi; m ¼
Pr

i¼1 mjoi; and n ¼Pr
i¼1 nioi be dominant weights of slðr þ 1;CÞ: Then cnlm ¼ #fof fillings of BZr

satisfying the boundary conditionsg:

Let us use the BZ-triangle for a different proof of Theorem 2.3, and also to show
that the corresponding Littlewood–Richardson coefficient is equal to one.

Proof of Theorem 2.3. Let us assume that a1oa2: Consider BZr for the
hypergeometric case ðr ¼ m � 1Þ: For that, we have to switch from glðn;CÞ to

slðn;CÞ: Let us set *A ¼ A� 1
rþ1

trðAÞId; *B ¼ B� 1
rþ1

trðBÞId; and *C ¼ C�
1

rþ1
trðCÞId: Then sð *AÞ ¼ fã; ã;y; ã;�r ãg: Let us call the eigenvalues of *B and *C

b̃i and c̃j: We have
Prþ1

j¼1 b̃j ¼
Prþ1

j¼1 c̃j ¼ 0: Recall that li ¼ b̃i � b̃iþ1; mi ¼ c̃i � c̃iþ1;

n1 ¼ n2 ¼ ? ¼ nr�1 ¼ 0; and nr ¼ ðr þ 1Þa:
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If a hexagon has two zeros on a side, then the non-negativity of BZ-fillings and the
hexagon condition force two zeros on the opposite side. In the hypergeometric case,
this mechanism reduces the BZ-triangle to a strip. Let us put a variable x in an
unfilled vertex of the strip. Then the filling is expressed in terms of x; and the
boundary conditions. Also the lr-boundary condition gives a linear equation on x:

The lr-boundary condition gives us the equation �
Pr�1

j¼1 ðr þ 1� jÞlj þPr
j¼1 jmj � rnr þ ðr þ 1Þx ¼ lr: Thus,

x ¼
Pr

j¼1 ðr þ 1� jÞlj �
Pr

j¼1 jmj þ rnr

r þ 1

and the filling is defined uniquely. Let us list the Klyachko inequalities. First, x ¼
b̃1 þ c̃n þ rã40: However, this inequality is not a generating one. If we have another
look at the strip above, we see that x has a neighboring 0-vertex. So, x is the sum of

the numbers at the opposite edge ð�b̃2 � c̃n�1 þ ã; and b̃1 þ b̃2 þ c̃n�1 þ c̃n þ ðn �
2ÞãÞ: All the numbers in the middle part of the strip except for the utmost right one

ð�b̃n � c̃1 þ ãÞ do not produce generating inequalities for the same reason. The
numbers on the lower part of the strip together with the last middle number produce
the following generating inequalities:

b̃1 þ c̃m�1 4 4 b̃1 þ c̃m

b̃2 þ c̃m�2 4 4 b̃2 þ c̃m�1

? ã ?

b̃m�1 þ c̃1 4 4 b̃m�1 þ c̃2

4 b̃m þ c̃1:

ð5:50Þ

Switching back to glðn;CÞ proves the theorem in this case. The case a14a2 is
obtained from the case a1oa2 in the following way. Let us multiply A; B; and C by
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�1: Then let us renumber bi and cj so that b14b24?4bm and c14c24?4cm

again. &

One can similarly prove Theorems 2.6, 2.9, 2.12 and also show that the
corresponding Littlewood–Richardson coefficients are equal to one.

In the E8 case of the Magyar, Weyman, and Zelevinsky list (4.41), we do not have
an explicit criterion for positivity of the corresponding Hermitian form. However,
the BZ-triangle enables us to compute the inequalities on the eigenvalues of A; B;
and C which make the form sign-definite. In the notations of (4.47), (4.48), let a14a2

and b14b24b3: Then the form is sign-definite precisely in the following
situations.

ð5:51Þ

The first set of inequalities forces c14c24c34c44c5 realizing the dimension
vector ð3; 3Þ; ð2; 2; 2Þ; ð1; 1; 1; 1; 2Þ: The second set of inequalities forces
c14c24c34c54c4 realizing the dimension vector ð3; 3Þ; ð2; 2; 2Þ; ð1; 1; 1; 2; 1Þ: The
third set of inequalities forces c14c24c54c34c4 realizing the dimension vector
ð3; 3Þ; ð2; 2; 2Þ; ð1; 1; 2; 1; 1Þ: The forth set of inequalities forces c14c54c24c34c4
realizing the dimension vector ð3; 3Þ; ð2; 2; 2Þ; ð1; 2; 1; 1; 1Þ: The last set of inequalities
forces c54c14c24c34c4 realizing the dimension vector ð3; 3Þ; ð2; 2; 2Þ; ð2; 1; 1; 1; 1Þ:
Thus, all the members of the E8-family from (4.41) can be constructed this way with
the help of the corresponding eigenvectors of A; B; and C:
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6. Fuchsian systems, Fuchsian equations, Okubo normal forms, and the list of

Haraoka–Yokoyama

Let us consider a system of linear differential equations on a Cn-valued function f

on CP1:

df ¼ of ; ð6:52Þ

where o is a ðn 	 nÞ matrix-valued 1-differential form on CP1: Let the form be

holomorphic everywhere on CP1 except for a finite set of points D ¼ fz1; z2;y; zkg:
Let us consider a solution of (6.52) restricted to a sectorial neighborhood centered at
any ziAD: If any such solution has polynomial growth when it approaches zi within
any such sector, then system (6.52) is called linear regular. If o has only first-order
poles at D; then the system is called Fuchsian. Any Fuchsian system is linear regular,
but there exist linear regular systems which are not Fuchsian (for more detailed
treatment, see [3] or [30]).

An n order Fuchsian equation is a linear differential equation

f nðzÞ þ q1ðzÞf n�1ðzÞ þ?þ qnðzÞf ðzÞ ¼ 0 ð6:53Þ

such that its coefficients qjðzÞ have a finite set of poles D ¼ fz1; z2;y; zkg and in a

small neighborhood of a pole zi the coefficients of (6.53) have the form

qjðzÞ ¼
rjðzÞ

ðz � ziÞj
; j ¼ 1;y; n; ð6:54Þ

where the rjðzÞ are holomorphic functions. Solutions of Fuchsian equations have

polynomial growth when continued analytically towards a pole. This distinguishes

Fuchsian differential equations from all other linear differential equations on CP1:
Thus, for linear differential equations the notions ‘‘Fuchsian’’ and ‘‘linear regular’’
coincide.

The matrix Ri ¼ Resz¼zi
oðzÞ is called the residue of a linear regular system at zi:

By the Cauchy residue theorem,
Pk

i¼1 Ri ¼ 0:

Theorem 6.1 (see Bolibrukh [3]). Any Fuchsian system has the standard form

df

dz
¼
Xk

i¼1

Ri

z � zi

f ðzÞ: ð6:55Þ

Theorem 6.2 (see Bolibrukh [3]). For any Fuchsian equation on the Riemann sphere, it

is possible to construct a Fuchsian system with the same singular points and the same

monodromy. The converse is not true.
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Remark 6.1. Thus, the notion of a residue matrix makes sense for a Fuchsian
equation as well as for a Fuchsian system.

To study Fuchsian differential equations, Okubo had invented what became later
known as the Okubo normal form of a Fuchsian equation. In [27], he proves that any
Fuchsian equation can be written in the following form:

ðt Id� BÞ dx

dt
¼ Ax; ð6:56Þ

where t is a complex variable, xACn is an unknown vector, Id is the identity matrix
of order n; B is a constant diagonal n 	 n matrix, and A is a constant n 	 n matrix.
Let

B ¼ diagðz1;y; z1|fflfflfflfflffl{zfflfflfflfflffl}
n1

; z2;y; z2|fflfflfflfflffl{zfflfflfflfflffl}
n2

;y; zk;y; zk|fflfflfflfflffl{zfflfflfflfflffl}
nk

Þ; ð6:57Þ

such that ziazj for iaj; n1 þ n2 þ?þ nk ¼ n; and n1Xn2X?Xnk: The partition

ðn1; n2;y; nkÞ of n endows A with the block decomposition A ¼ ðAijÞ1pi;jpd : Let us

call Li the set of eigenvalues of Aii and let us call LN the set of eigenvalues of A:
Then z1; z2;y; zk and N are the singular points of (6.56). At the point zi; (6.56) has
ni non-holomorphic solutions with local exponents ljALi: At N; (6.56) has local

exponents ljALN:

Yokoyama [31] used Okubo theory to classify the spectral types of rigid
irreducible Fuchsian equations. For such, all Aii are diagonalizable as well as A itself.
Quoting the result of Yokoyama, we will not give the spectral types of Aii and A the
way he does. Instead, we will list spectral types of the residue matrices (which are
diagonalizable, too).

ð6:58Þ

Haraoka explicitly constructed the equations of the above spectral types in [11]. In
[12], he explored the solutions of these equations: computed their monodromies,
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found monodromy invariant forms in their spaces of solutions, etc. It turns out that
the solutions of these equations are important hypergeometric functions. It also
turns out that the Fuchsian systems constructed in our paper are closely related to
Yokoyama–Haraoka equations: sometimes the A matrices are just the same! We
think it is interesting to understand the nature of this relation, find solutions to our
systems, and their monodromies. We plan to do it in a subsequent publication.
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Appendix

In this section we collect the identities needed for the proofs in the previous
sections.

For kon � 1:

Xn

i¼1

Qk
j¼1 ðxi � yjÞQn
j¼1
jai

ðxi � xjÞ
¼ 0; ð7:59Þ

Xn

i¼1

Qn�1
j¼1 ðxi � yjÞQn
j¼1
jai

ðxi � xjÞ
¼ 1; ð7:60Þ

Xn

i¼1

Qn
j¼1 ðxi � yjÞQn
j¼1
jai

ðxi � xjÞ
¼
Xn

i¼1

ðxi � yiÞ; ð7:61Þ
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Xn

i¼1

Qnþ1
j¼1 ðxi þ yjÞQn
j¼1
jai

ðxi � xjÞ
¼
Xn

i¼1

x2
i þ

X
1piojpn

xixj þ
X

1piojpnþ1

yiyj

þ
Xn

i¼1

xi

 ! Xnþ1

i¼1

yi

 !
: ð7:62Þ

For 1pipm � 1:

Xm

j¼1

Qm
k¼1
kai

ðxj � ykÞQm
k¼1
kaj

ðxj � xkÞ

Qm
k¼1
kaj

ðyi � xkÞQm
k¼1
kai

ðyi � ykÞ
¼ 1; ð7:63Þ

y2
i

Qm�1
k¼1
kai

ðyi � ykÞQm
k¼1 ðyi � xkÞ

þ
Xm

j¼1

x2
j

ðyi � xjÞ2

Qm�1
k¼1 ðxj � ykÞQm
k¼1
kaj

ðxj � xkÞ
¼ 1: ð7:64Þ

For 1pipm: Qm
k¼1
kai

ðxi � xkÞQm�1
k¼1 ðxi þ ykÞ

þ
Xm�1

j¼1

1

xi þ yj

Qm
k¼1
kai

ðyj þ xkÞQm�1
k¼1
kaj

ðyj � ykÞ
¼ 1; ð7:65Þ

Xn

i¼1

ðxi þ x1Þðxi þ x2Þ? dðxi þ xiÞðxi þ xiÞ?ðxi þ xnÞ
ðxi � x1Þðxi � x2Þ? dðxi � xiÞðxi � xiÞ?ðxi � xnÞ

¼
0 if n is even;

1 if n is odd;

(
ð7:66Þ

Xn

i¼1

xi

ðxi þ x1Þðxi þ x2Þ? dðxi þ xiÞðxi þ xiÞ?ðxi þ xnÞ
ðxi � x1Þðxi � x2Þ? dðxi � xiÞðxi � xiÞ?ðxi � xnÞ

¼ x1 þ x2 þ?þ xn; ð7:67Þ

Xn

i¼1

x2
i

ðxi þ x1Þðxi þ x2Þ? dðxi þ xiÞðxi þ xiÞ?ðxi þ xnÞ
ðxi � x1Þðxi � x2Þ? dðxi � xiÞðxi � xiÞ?ðxi � xnÞ

¼ ðx1 þ x2 þ?þ xnÞ2; ð7:68Þ

yj

Qm
k¼1
kaj

ðyj þ ykÞQm
k¼1 ðyj � xkÞ

þ
Xm

r¼1

xr

xr � yj

Qm
k¼1
kaj

ðxr þ ykÞQm
k¼1
kar

ðxr � xkÞ
¼ 1

for j ¼ 1; 2;y;m � 1; ð7:69Þ
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y2
j

Qm
k¼1
kaj

ðyj þ ykÞQm
k¼1 ðyj � xkÞ

þ
Xm

r¼1

x2
r

xr � yj

Qm
k¼1
kaj

ðxr þ ykÞQm
k¼1
kar

ðxr � xkÞ
¼
Xm

r¼1

ðxr þ yrÞ

for j ¼ 1; 2;y;m � 1: ð7:70Þ

For i ¼ 1; 2;y;m � 1 and j ¼ 1; 2;y;m:

Xm�1

r¼1

Qm
k¼1
kaj

ðxk þ yrÞQm�1
k¼1
kar

ðyr � ykÞ

Xm

s¼1

1

xs þ yi

Qm
k¼1
kar

ðx2
s � y2

kÞQm
k¼1
kas

ðx2
s � x2

kÞ

þ xj þ ym

xj þ yi

Qm
k¼1
kai

ðxj � ykÞQm
k¼1
kaj

ðxj þ xkÞ
¼ 1: ð7:71Þ

All these identities have the following features: the left-hand side Lðx; yÞ is a
rational homogeneous function in xi and yj: All the denominators of Lðx; yÞ are

products of linear forms a of the form ðxi7xjÞ; ðyi7yjÞ; or ðxi7yjÞ: The power of

every such form in any denominator is 1: The right-hand sides Rðx; yÞ are constants
or homogeneous polynomials in xi and yj of degree 1 or 2.

The first step to prove such an identity is to prove that Lðx; yÞ is in fact a
polynomial. For that, it is enough to prove that aLðx; yÞja¼0 ¼ 0 for every form a
from any denominator of the identity. For all the identities except for (7.71), the
restriction of aLðx; yÞ to the hyperplane a ¼ 0 turns to be a sum of just two terms
with equal absolute values and opposite signs. For example, consider identity (7.60).
Let us fix p and q such that 1ppoqpn: Consider

ðxp � xqÞ
Xn

i¼1

Qn�1
j¼1 ðxi � yjÞQn
j¼1
jai

ðxi � xjÞ

restricted to the hyperplane xp ¼ xq: The restriction equals

Qn�1
j¼1 ðxp � yjÞQn
j¼1
jap
jaq

ðxp � xjÞ
�
Qn�1

j¼1 ðxq � yjÞQn
j¼1
jaq
jap

ðxq � xjÞ
¼ 0:

For identity (7.71), the same technique works for all the forms in the
denominators except for a ¼ xp þ xm where 1pppm � 1: If a ¼ xp þ xm; then the
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restriction of aLðx; yÞ to the hyperplane a ¼ 0 is

�
Xm�1

r¼1

Qm�1
k¼1 ðxk þ yrÞQm�1
k¼1
kar

ðyr � ykÞ

Qm
k¼1
kar

ðx2
p � y2

kÞQm�1
k¼1
kap

ðx2
p � x2

kÞ
1

y2
1 � x2

p

þ ym � xp

y1 � xp

Qm
k¼2 ðxp þ ykÞQm�1
k¼1
kap

ðxp � xkÞ
:

The fact that this restriction equals zero is equivalent to the identity

Xm

r¼1

Qm
k¼1
kap

ðyr þ xkÞQm
k¼1
kar

ðyr � ykÞ

Qm
k¼1
kar

ðxp � ykÞQm
k¼1
kap

ðxp þ xkÞ
¼ 1 ð7:72Þ

which is similar to identity (7.63), but different from it. In order to prove (7.72), it is
convenient to rewrite it as

Xm

r¼1

Qm
k¼1
kap

ðyr þ xkÞQm
k¼1
kar

ðyr � ykÞ
1

xp � yr

�

Qm
k¼1
kap

ðxp þ xkÞQm
k¼1 ðxp � ykÞ

¼ 0

and use the same technique over again.
The second step in the proofs is to show that a polynomial Lðx; yÞ equals the

corresponding polynomial Rðx; yÞ: Let us, for example, consider (7.68). In this case,
LðxÞ and RðxÞ are symmetric homogeneous polynomials in x of degree 2. The space

of such polynomials is two dimensional. It is spanned by s2 ¼ x2
1 þ?þ x2

n and s21;
where s1 ¼ x1 þ?þ xn: To prove that LðxÞ � RðxÞ; we have to find two linearly
independent functionals f1 and f2 on this space such that fiðLÞ ¼ fiðRÞ for i ¼ 1; 2:
We will treat the cases n ¼ 2k and n ¼ 2k þ 1 separately.

Let n ¼ 2k: Let p1 ¼ ð�k;�k þ 1;y;�1; 1; 2;y; kÞ and p2 ¼ ð�k þ 1;�k þ
2;y;�1; 1; 2;y; k þ 1Þ: For a symmetric homogeneous polynomial s of degree 2,
let fiðsÞ ¼ sðpiÞ; where i ¼ 1; 2: Then

f1ðs2Þ f1ðs21Þ

f2ðs2Þ f2ðs21Þ

+++++++
+++++++ ¼

ð2kþ1Þðkþ1Þk
3

0

ð2k�1Þkðk�1Þ
3

þ k2 þ ðk þ 1Þ2 ð2k þ 1Þ2

++++++++
++++++++ ¼

ð2k þ 1Þ3ðk þ 1Þk
3

a0:

Thus, f1 and f2 are linearly independent. We have f1ðLÞ ¼ Lðp1Þ ¼ 0 ¼ Rðp1Þ ¼
f1ðRÞ and f2ðLÞ ¼ Lðp2Þ ¼ ð2k þ 1Þ2 ¼ Rðp2Þ ¼ f2ðRÞ: This finishes the proof for n ¼
2k: For n ¼ 2k þ 1; take p1 ¼ ð�k;�k þ 1;y; kÞ and p2 ¼ ð�k þ 1;�k þ 2;y; k þ1Þ:
The rest of the proof is analogous to the case n ¼ 2k: Proofs of other identities are
finished similarly.
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