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a b s t r a c t

Bonato and Tardif [A. Bonato, C. Tardif, Mutually embeddable graphs and the tree
alternative conjecture, J. Combinatorial Theory, Series B 96 (2006), 874–880] conjectured
that the number of isomorphism classes of trees mutually embeddable with a given tree T
is either 1 or infinite. We prove the analogue of their conjecture for rooted trees. We also
make some progress towards the original conjecture for locally finite trees and state some
new conjectures.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Embeddings and isomorphisms of infinite graphs have beenmuch studied since Rado’s [7] classical paper in 1964.We say
that a graph G embeds into a graph H if there exists an injective graph homomorphism φ: G→ H . Equivalently, G embeds
into H if G is isomorphic to a subgraph of H . We say that G strongly embeds into H if G is isomorphic to an induced subgraph
of H . Let us call two graphs G and H twinned ormutually embeddable, in notation G ∼ H , if G embeds into H and vice versa.
Similarly, we call G and H mutually strongly embeddable, written G ≈ H , if G strongly embeds into H and vice versa. It is clear
that∼ and≈ are equivalence relations and that∼ is refined by≈which, in turn, is refined by the isomorphism relation∼=.
If G and H are two finite mutually embeddable graphs, then they are isomorphic. However, for infinite graphs this is no

longer the case. For example, if a countable graph G contains a copy of the complete countably infinite graph Kω then G and
Kω are twinned. Also, if a countable graph G contains the Rado graph R (see [3,7]) as an induced subgraph, then G and R
are mutually strongly embeddable, since R contains every countable graph as an induced subgraph. In both examples the
number of isomorphism classes of mutually (strongly) embeddable graphs is infinite. On the other hand, there are examples
of graphs for which the above number is 1; for instance a graph that consists of a vertex with finitely many infinite paths
originating from it. Thus, a natural question to ask is whether for some graph this number can be finite, but strictly larger
than 1. For strong embeddings this questionwas first raised by Bonato and Tardif [1], and is, to our knowledge, still unsolved.
In [2] Bonato and Tardif formulated a similar question for infinite trees. Note that for two trees T and T ′, an embedding

of T into T ′ is strong automatically, and therefore T ∼ T ′ implies T ≈ T ′. On the other hand, if a tree T and a graph G are
mutually embeddable or strongly embeddable, G need not be connected, and so it can happen that T ∼ G, but not T ≈ G.
In this paper, however, we consider only embeddings between trees, therefore we can safely write ‘‘mutually embeddable’’
or ‘‘twinned’’ meaning T ≈ T ′. All trees we deal with are infinite, although we shall occasionally emphasize this. We work
entirely within ZFC.
Like general graphs, twinned trees need not be isomorphic. For example, let T be a one-way infinite path with a leaf

attached to each vertex. Then the removal of any finite number of leaves yields a tree T ′ with T ′ ≈ T , but in general T and
T ′ are non-isomorphic. In fact, if we remove the first n attached leaves for each n ∈ N, we obtain infinitely many pairwise
non-isomorphic trees T ′ with T ′ ≈ T .
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Given a tree T , define the twin number of T , writtenm(T ), to be the cardinality of the set of isomorphism classes of trees
T ′ with T ′ ≈ T . The above example, as well as many others, prompted Bonato and Tardif [2] to make the following tree
alternative conjecture.

Conjecture 1. For every tree T , m(T ) is either 1 or infinite.

Note that we do not distinguish here between infinite cardinalities, although even for a countable tree the twin number
can be both countable and uncountable. Bonato and Tardif [2] proved their conjecture for rayless trees, i.e. for trees without
one-way infinite paths. Their main idea was to show an analogous result for rooted rayless trees and then to extend it to
general rayless trees by applying a theorem of Halin [4].
The analogue of Conjecture 1 for rooted trees can be formulated as follows. A rooted tree (T , r) is a tree T with a

distinguished vertex r , called the root. Two rooted trees (T , r) and (T ′, r ′) are said to be twinned or mutually embeddable,
in notation (T , r) ≈ (T ′, r ′), if there are injective graph homomorphisms φ: T → T ′ and ψ: T ′ → T such that φ(r) = r ′
and ψ(r ′) = r . Similarly, (T , r) and (T ′, r ′) are isomorphic if there is an isomorphism between T and T ′ that maps r to r ′.
As above, for a given rooted tree (T , r), let the twin number m(T , r) be the number of isomorphism classes of rooted trees
(T ′, r ′) with (T ′, r ′) ≈ (T , r). Again, we only distinguish between natural numbers and∞. The authors of [2] implicitly
conjectured the following:

Conjecture 2. Every rooted tree (T , r) has twin number either 1 or∞.

As was already mentioned, for rayless trees Conjecture 2 was proved by Bonato and Tardif [2]. Our aim in this paper is to
prove it in full.

Theorem 1. Conjecture 2 holds.

In the next section we establish some basic properties of rooted trees and give a proof of Theorem 1. In Section 3 we
discuss Theorem 1 and Conjecture 1 applied to locally finite trees, i.e. trees without vertices of infinite degree. For locally
finite trees Theorem 1 is particularly easy to prove and can be strengthened to m(T , r) = 1. We also make some progress
towards proving Conjecture 1 for locally finite trees. Finally in Section 4 we formulate two new conjectures on embeddings
of locally finite trees and raise several other questions.

2. Proof of Theorem 1

Let (T , r) be a rooted tree. Denote the neighbours of r by (ri)αi=1, where α is an ordinal. Let Ti be the connected component
of T − {rri} that contains ri. We shall call (Ti, ri) a branch of (T , r). The following lemma from [2] provides a very useful
‘‘recursive’’ tool for dealing with rooted trees.

Lemma 1. If in a rooted tree (T , r) some branch (Ti, ri) is twinned with infinitely many pairwise non-isomorphic trees, then the
same applies to (T , r) itself.

Let us slightly extend the statement of Lemma 1. The next lemma shows that m(T , r) is at least as large as the maximal
m(Ti, ri) over all branches (Ti, ri). This corresponds exactly to the statement of Lemma 1 if m(Ti, ri) = ∞ for some i.
Moreover, we show that ifm(T , r) <∞, then equality between themaximum over all branches andm(T , r) can be attained
only if all remaining branches (Tj, rj) satisfym(Tj, rj) = 1, i.e. if none of them can bemutually embedded into any other tree.

Lemma 2. For any rooted tree (T , r) we have m(T , r) ≥ max1≤i≤α m(Ti, ri). Furthermore, if for some i we have 1 < m(T , r) =
m(Ti, ri) <∞, then m(Tj, rj) = 1 for all j 6= i.

Proof. Suppose that m(Ti, ri) ≥ n for some i ≤ α and n ∈ N. Let (T 1i , r
′), (T 2i , r

′), . . . , (T ni , r
′) be pairwise non-isomorphic

trees which are twinned with (Ti, ri). Let (T k, r) be the tree obtained from (T , r) by replacing all branches (Ti′ , ri′) ≈ (Ti, ri)
with a copy of (T ki , r

′). Then the resulting trees (T 1, r), (T 2, r), . . . , (T n, r) are twinned with (T , r), but pairwise non-
isomorphic. This implies thatm(T , r) ≥ n, proving the first assertion.
Suppose that in additionm(Tj, rj) ≥ 2 for some j 6= i. The trees (Ti, ri) and (Tj, rj) are either mutually embeddable or not.

Let us consider these two cases separately.
Case 1. (Tj, rj) ≈ (Ti, ri). Replace all branches (Ti′ , ri′) ≈ (Ti, ri) except (Tj, rj) with a copy of (T 1i , r

′) and replace (Tj, rj)
with a copy of (T 2i , r

′). This gives another tree, which is twinned with (T , r) but not isomorphic to (T k, r) for any k.
Case 2. (Tj, rj) 6≈ (Ti, ri). Since m(Tj, rj) ≥ 2, there must exist a rooted tree (T ′j , r

′

j ) such that (T
′

j , r
′

j ) ≈ (Tj, rj) and
(T ′j , r

′

j ) � (Tj, rj). Now take (T
1, r) and replace all branches that are twinned with (Tj, rj), including (Tj, rj) itself, by a copy

of (T ′j , r
′

j ). Again, we obtain a new isomorphism class of trees twinned with T .
Therefore, we havem(T , r) > m(Ti, ri) in both cases. �

With Lemma 2 at our disposal we can find a lower bound on m(T , r) if there is a branch m(Ti, ri) with m(Ti, ri) > 1.
However, if for all branches we have m(Ti, ri) = 1, Lemma 2 does not give us any information. The next lemma, which
allows us to deal with this case, was also proved by Bonato and Tardif [2].
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Lemma 3. If all branches (Ti, ri) of a rooted tree (T , r) satisfy m(Ti, ri) = 1, then m(T , r) is 1 or infinite.

From here it is a short step to establishing the result of Bonato and Tardif for rooted rayless trees. Indeed, if T is rayless
and 1 < m(T , r) < ∞, then by Lemmas 1 and 3 we must have 1 < m(Ti, ri) < ∞ for some branch. Now apply the above
lemmas to (Ti, ri) and repeat. Since the tree is rayless, the procedure must stop at some point. That means we would obtain
1 < m(T0, r0) <∞ for a tree T0 consisting of a single vertex r0, clearly a contradiction.
In order to prove Theorem 1, we apply Lemma 2 rather than Lemma 1.

Proof of Theorem 1. Suppose that 1 < m(T , r) = n <∞. For each vertex v of T define T (v) to be the tree spanned by v and
its descendants in the tree-order of (T , r). Abusing notation, we write m(v) for m(T (v), v). In particular, m(r) = m(T , r).
By Lemma 2, m(v) ≤ n for each v. This means that by passing to an appropriate subtree and perhaps to a different n > 1,
we may assume that for any v ∈ T the value m(v) is either 1 or n. Under this assumption it follows from Lemmas 2 and 3
that T contains a ray P := {r, v1, v2, . . .} such thatm(vi) = n for all i andm(v) = 1 for all v 6∈ P .
Let (T ′1, r

′), (T ′2, r
′), . . . , (T ′n, r

′) be n pairwise non-isomorphic trees twinned with (T (v1), v1). Let (T i, r) be the tree
obtained from (T , r) by replacing (T (v1), v1)with a copy of (T ′i , r

′). For each i, (T i, r) is twinnedwith (T , r) by fixing T−T (v1)
and embedding (T (v1), v1) into (T ′i , r

′) and vice versa. On the other hand, if there is an isomorphism φ: (T i, r) → (T j, r),
then v1 must be mapped on itself, for in both trees v1 is the only neighbour v of r , with m(v) = n. But then the restriction
of φ to (T i(v1), v1) yields an isomorphism between (T ′i , r

′) and (T ′j , r
′), a contradiction. Hence, the trees (T i, r) represent all

n isomorphism classes of trees twinned with (T , r). It follows that whenever (T ′, r ′) satisfies (T ′, r ′) ≈ (T , r), the root r ′
must have a neighbour v′1 such that (T

′(v′1), v
′

1) ≈ (T (v1), v1) and (T
′
− T ′(v′1), r

′) ∼= (T − T (v1), r).
Since (T (v1), v1) also contains a ray P1 := P − r = {v1, v2, . . .}, we can apply the above argument to (T (v1), v1)

to obtain that whenever (T ′, r ′) ≈ (T , r), there is a successor of v′1, say v
′

2, such that (T
′(v′2), v

′

2) ≈ (T (v2), v2) and
(T ′ − T ′(v′2), r

′) ∼= (T − T (v2), r). Applying the argument repeatedly to all vi ∈ P we obtain an isomorphism between
(T ′, r ′) and (T , r). This implies thatm(T , r) = 1, clearly a contradiction. �

3. Locally finite trees

Locally finite trees are in some sense the simplest of all infinite trees. They are countable and, by König’s lemma, a tree
which is locally finite and rayless must be finite. Therefore, it seems plausible that a proof of Conjecture 1 for locally finite
trees could be a first step towards proving it in full. The following lemma shows that for rooted locally finite trees there is
only one possible value ofm(T , r), namelym(T , r) = 1.

Lemma 4. If T is a locally finite tree, then any embedding, i.e. injective homomorphism, of (T , r) into itself is surjective.

Proof. Let ϕ: (T , r) → (T , r) be an embedding. Note that ϕ preserves the distance of a vertex from r , i.e. d(r, v) =
d(r, ϕ(v)). Therefore, for each n ∈ N, ϕ induces a self-embedding of the subtree (Tn, r) spanned by {v ∈ V (T ) : d(r, v) ≤ n}.
But since the latter trees are finite, ϕ is surjective on each of them, whence, ϕ is surjective on the whole of (T , r). �

Corollary. If T is a locally finite tree, then m(T , r) = 1.

Indeed, suppose that φ: (T , r)→ (T ′, r ′) andψ: (T ′, r ′)→ (T , r) are injective homomorphisms. Thenψ ◦ φ: (T , r)→
(T , r) is a self-embedding. By Lemma 4 itmust be surjective. Thus,ψ is surjective. Since a bijective homomorphism between
two trees is an isomorphism, (T , r) ∼= (T ′, r ′) holds.
Our next aim is to attack Conjecture 1 for locally finite trees. While, unfortunately, we cannot claim to have a proof, we

believe that the following observations could be of great help. First we provide a simple but useful isomorphism criterion
for rooted locally finite trees. It was first proved by Halin [5] in a slightly different setting. For the sake of completeness, we
recall the proof. We use the notation from the proof of Lemma 4.

Lemma 5. Two locally finite rooted trees (T , r) and (T ′, r ′) are isomorphic if they are locally isomorphic, that is (Tn, r) ∼= (T ′n, r
′)

for all n ∈ N.

Note that this statement does not generalise even to countable trees — let (T , r) be the tree consisting of r with countably
many finite paths of each finite length attached to it and define T ′ to be T with one additional infinite path attached to r . Then
(T , r) � (T ′, r) as the former is rayless and the latter is not. On the other hand (Tn, r) and (T ′n, r) are isomorphic, because
both comprise countably many paths of each lengthm ≤ n attached to r .

Proof. This is a standard compactness argument. The number of isomorphisms between two rooted finite trees is always
finite. Also, for m < n an isomorphism ϕn: (Tn, r) → (T ′n, r

′) induces an isomorphism between (Tm, r) and (T ′m, r
′) by

restriction. Thus, passing to an appropriate subsequence of local isomorphisms, we may assume that the restriction of any
ϕn on (T1, r) yields ϕ1. Now we can pass to the next subsequence and assume that for n ≥ 2 the restriction of ϕn to (T2, r)
gives ϕ2. Repeating this procedure n times for each n, we obtain a sequence of nested isomorphisms ϕn: (Tn, r)→ (T ′n, r

′).
Finally, since they are nested, we can ‘‘put them together’’, i.e. define ϕ(v) = ϕn(v), where n = dT (r, v), to obtain an
isomorphism ϕ: (T , r)→ (T ′, r ′). �
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Turning to unrooted isomorphisms, we can now formulate the following criterion.

Corollary. Two locally finite trees T and T ′ are isomorphic if there exists an assignment of some vertex r ∈ T to some r ′ ∈ T ′
such that the rooted trees (T , r) and (T ′, r ′) are locally isomorphic.

Note that once such an assignment exists for some r ∈ T , it exists for any other vertex of T as well. In other words, if we
want to show that two locally finite trees T and T ′ are not isomorphic, it suffices to fix a vertex r ∈ T and show that for no
r ′ ∈ T ′ the rooted trees (T , r) and (T ′, r ′) are locally isomorphic.
Now we are ready to prove Conjecture 1 for a fairly large class of locally finite trees.

Theorem 2. If T is a locally finite tree, S ≈ T and there exists an embedding φ: S → T such that T − φ(S) has infinitely many
components, then m(T ) = ∞.
Proof. Suppose, for a contradiction, that m(T ) = n < ∞ and let T 1, T 2, . . . , T n be representatives of the isomorphism
classes. Note that since S ≈ T , every tree T ′ with the ‘‘sandwich property’’ φ(S) ⊂ T ′ ⊂ T is twinned with T . So our task is
to find a tree having the sandwich property but being not isomorphic to any T i. For this sake we use the above corollary.
Fix a vertex r ∈ φ(S) and list all pairs, i.e. rooted trees, (T i, r ′) where r ′ ∈ T i and ranges over all vertices of T i, for all

i. Note that this list is countable. Now work through the list, starting with the first pair (T i1 , r1) and check, whether it is
isomorphic to (T , r). If it is, adjust T ′ = φ(S) by adding a component of T − φ(S) in the same way as it lies in T . Then
the local isomorphism breaks down at some n1 and so does the global one. Remember n1. If no, then by Lemma 5 the local
isomorphism already fails at some n1, which we then remember.
Take thenext pair (T i2 , r2) and check,whether (T i2 , r2) ∼= (T , r). If yes, adjust T ′ by adding another component of T−φ(S),

which is connected to a vertex v ∈ φ(S)with d(r, v) > n1 — this is always possible by the local finiteness and the fact that
the number of components is infinite. So the local isomorphism for (T i1 , r1) and (T , r) still fails at n1 and the one for (T i2 , r2)
and (T , r) fails now at some n2 > n1. Remember n2. If no, then the local isomorphism already fails for some n2 > n1, which
we then remember.
Repeating this procedure infinitely often we can disturb the local isomorphism for each pair (T i, r ′) from the list. Since T ′

has the sandwich property at each step of the construction, the limit tree T ′ is well-defined and has the sandwich property
as well. And since we chose the sequence n1, n2, . . . to be increasing, we must have (T ′, r) � (T i, r ′) for any pair from the
list. �

Remarkably, the proof actually shows that m(T ) is uncountable, since countably many representatives T 1, T 2, . . . also
would give rise to a countable list of rooted trees.

Corollary. If T is a locally finite tree and has a self-embedding φ: T → T such that T − φ (T ) has infinitely many components,
then m(T ) = ∞.

So we know that if T − φ(S) consists of infinitely many components, then m(T ) = ∞, but what can we say about the
components themselves? Using Theorem 2, it is not hard to pose a serious restriction on the ‘‘size’’ of the components.
Let us define a nearly finite tree to be a finite tree with finitely many rays attached to it. Equivalently, T is nearly finite if

it is locally finite and has only finitely many vertices of degree 3 or more.
Define a comb to be a ray with infinitely many disjoint non-trivial paths of finite length attached to it. The ray in the

definition of a comb is called its spine, the endvertices of the attached paths are called teeth. The next lemma gives another
equivalent characterization of nearly finite trees.

Lemma 6. A tree T is nearly finite if and only if it is locally finite and contains no comb as a subtree.
Proof. The ‘‘only if’’ part is obvious. To show the ‘‘if’’ part, let us assume that T is not nearly finite and consider the connected
hull S of the set of all vertices of degree at least 3, i.e. the minimal subtree that contains all of them. Either S has a vertex of
infinite degree, in which case T is not locally finite, or, by König’s lemma, S contains a ray, which means T contains a comb
as a subtree. �

Theorem 3. If T is a locally finite tree, S ≈ T and there exists an embedding ψ: S → T such that a component of T − ψ(S) is
not nearly finite, then m(T ) = ∞.
Proof. If a component of T − ψ(S) is not nearly finite, it must by Lemma 6 contain a comb C . Let T ′ be the connected hull
of the spine of C together with ψ(S). Then S ∼= ψ(S) ⊂ T ′ ⊂ T so T ≈ T ′ but T − T ′ has infinitely many components, since
T ′ contains the spine of C but at most one tooth and the remaining teeth lie in pairwise different components of T − T ′.
Therefore, we are done by Theorem 2. �

Corollary. If T is a locally finite tree and there exists a self-embedding ψ: T → T such that a component of T − ψ(T ) is not
nearly finite, then m(T ) = ∞.

Theorem 3 can also be extended to arbitrary countable trees, which also gives us a new proof that does not rely on
Theorem 2.

Theorem 4. If T is a countably infinite tree, S ≈ T and there is an embedding ψ: S → T such that a component of T − ψ(S)
contains a comb, then m(T ) = ∞.
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Proof. Suppose thatm(T ) <∞ and that a component of T − ψ(S) contains a comb C . Let us assume for convenience that
all attached paths of C are of length 1.We lose no generality by doing so, since every comb contains a smaller combwith that
property. Let T̄ be the connected hull of ψ(S) and C . Note that C is a non-separating subgraph of T̄ , i.e. removing C would
not disconnect T̄ . Now, altering T̄ by removing some teeth of C , but leaving infinitely many, we obtain a family of trees Θ
satisfying |Θ| = 2ℵ0 and T ′ ≈ T for any T ′ ∈ Θ . Since m(T ) < ∞, we know that uncountably many members of Θ lie in
the same isomorphism class. Note however that by construction any tree fromΘ contains an isolated comb, i.e. a comb that
is a non-separating subgraph. Thus some countable T ′ ≈ T contains uncountably many pairwise different isolated combs. It
follows that some vertex of T̄ is the starting vertex for uncountably many spines of isolated combs, but this contradicts the
countability of T ′. �

4. Concluding remarks

We have shown that m(T ) = ∞ for a fairly large class of locally finite trees T . However, we have not managed to find
a locally finite tree with m(T ) = 1 in addition to the trees all whose self-embeddings are surjective, like regular (or d-ary)
trees, and the ray, which can be considered an exceptional very ‘‘small’’ tree. This prompts us to conjecture the following.

Conjecture 3. If T is a locally finite tree and has a non-surjective self-embedding, then m(T ) = ∞ unless T is a ray.

Obviously, Conjecture 3 implies Conjecture 1 for locally finite trees. Also, one could relax Conjecture 3 by replacing
m(T ) = ∞withm(T ) > 1.

Conjecture 4. If T is a locally finite tree and has a non-surjective self-embedding, then m(T ) > 1 unless T is a ray.

We believe, however, that this version should be as hard as Conjecture 3, in other words once we have proved
Conjecture 4, we know all about possible values m(T ) and then we either have proved Conjecture 3 or disproved
Conjecture 1, which we think would be even more interesting.
A way to attack Conjecture 4 would be to show that there is no locally finite tree with infinitely many leaves x1, x2, . . .

such that T ∼= T − x1 ∼= T − x2 ∼= . . .. This would imply Conjecture 4, but unfortunately the claim is false. In fact, in [8] we
showmuch more — there exists a tree T of maximal degree 3 and infinitely many leaves satisfying T ∼= T − x for any leaf x.
Turning to the original definition of a mutual embedding of graphs, let us remark that the number of pairwise non-

isomorphic graphs twinnedwith a given tree T is trivially 1 or infinite, regardless of whether T is locally finite or not. Indeed,
if T allows for a non-surjective self-embedding, then T is twinnedwith any graph consisting of a copy of T and a finite number
of isolated vertices. The analogous question with ‘‘embeddable’’ replaced by ‘‘strongly embeddable’’ is harder and seems to
be closely related to Conjecture 1. A rather exotic yet appealing question would be to determine possible cardinalities of
‘‘≈’’-equivalence classes of all graphs H with H ∼ G.
One could try to extend the definition ofm(T ) to a general connected graph G by considering the number of equivalence

classes of all connected graphs H with G ∼ H or G ≈ H . Again it would be very interesting to find a graph G for which one of
these numbers is finite, but larger than 1 or to prove that no such graph can exist.
Similar problems arise for other relations of graphs like the minor or the topological minor relation. Recently,

Matthiesen [6] proved a mutual containment result for the topological minor relation of trees.
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