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Abstract

We present common generalizations of some structure results of Freiman, Ruzsa, Balog–Szemerédi and
Laczkovich–Ruzsa. We also give some applications to Combinatorial Geometry and Algebra, some of
which generalize the aforementioned structure results even further.
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1. Introduction

An important theorem of Freiman [13] describes the structure of those sets A of integers (or
reals, or vectors) whose sumset

A + A = {a1 + a2: a1, a2 ∈ A}
is small. In a possible formulation, if |A| = n and |A + A| � λn, then A is contained in a gener-
alized arithmetic progression

P = {b + q1x1 + · · · + qkxk: 0 � xi � li − 1},
where the “dimension” k is less than λ, and the “size” satisfies

l1l2 · · · lk � f (λ)n.
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For different proofs and bounds on the functions involved see Freiman [13], Ruzsa [20], Bilu [2],
Chang [3].

Balog and Szemerédi [1] investigated the structure of A under the weaker assumption that
many of the sums a1 + a2 lie in a small set. To introduce the language we shall use in the sequel,
given a graph G with an operation + on the set of vertices, for two sets A,B of vertices we write

A
G+ B = {a + b: a ∈ A, b ∈ B, a ∼ b},

where a ∼ b means that there is an edge between a and b. With this notation, if G is a graph on
A, |A| = n, the graph has � βn2 edges with some β > 0 and

∣∣A G+ A
∣∣ � λn,

then they show in [1] that there is a subset A′ ⊂ A such that |A′| � γ n with some γ = γ (β,λ) > 0
and |A′ + A′| � λ′n with λ′ = λ′(β,λ); consequently, A′ has a cover by a generalized arithmetic
progression as described above.

This proof was based on Szemerédi’s regularity lemma, and consequently the bounds were
very weak. Recently a new proof with good bounds was given by Gowers [14] in his paper on
4-term arithmetic progressions in dense sets.

An extension was proved and applied by Laczkovich and Ruzsa [15]. They showed, under
the same assumption, the existence of an A′ ⊂ A with the following additional property: at least
β ′n2 edges of the graph are between points of A′, with some β ′ = β ′(β,λ).

The principal aim of this paper is to show the following. Let A be a set in an arbitrary com-
mutative group, G a graph on A such that

∣∣A G+ A
∣∣ � λn.

Further let an ε > 0 be given. Then there are disjoint subsets A1, . . . ,Ak ⊂ A such that k � 1/ε,
and together they contain all but at most εn2 edges of G; finally

|Ai + Ai | � f (λ, ε)n (1.1)

for all i. This clearly improves Laczkovich and Ruzsa’s result; furthermore, we give explicit
bounds for the function involved, in the form

f (λ, ε) = ε−c1/ελc2/ε.

Our method is related to Balog and Szemerédi’s and Gowers’; the connection is discussed in
Section 4, Remark 4.5.

The paper is divided into three parts. In Part I, Sections 2–3 we prove some graph theoretic
results. In Part II, Sections 4–5 we exactly state and prove our results about sumsets along a
graph. Finally, in Part III, Sections 6–11 we present some applications.

Given the small doubling property (1.1) of the sets, one could apply Freiman’s theorem to
find a cover by a generalized arithmetic progression. In Parts I–II we shall refrain from doing
so for the following reason. Our results will hold in every commutative group, some of them
even in non-commutative groups. A Freiman-type structure theorem is presently available only
in some subclasses; essentially in commutative groups which are either torsion-free (the original
case), or have a strong torsion property with a bound on the order of elements (Ruzsa [21];
cf. [4]). (A generalization to arbitrary commutative groups by B. Green and the second author
is in preparation.) Besides, even when such results do exist, they are probably far from optimal
and improvements can be expected in the near future. Part III will exhibit such covering results
in several situations.
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Part I. Connected graphs

2. Connected subgraphs of a graph

We shall consider undirected graphs G = (V ,E), with a set V of vertices and a set E of edges.
If x, y ∈ V are connected, that is, (x, y) ∈ E, we write x ∼ y. We shall exclude loops, albeit for
our application there is no a priori reason to exclude a sum with identical summands; however,
they do not affect the structural properties we deal with.

For A ⊂ V , we shall write G|A to denote the subgraph spanned by A. The degree of a vertex
x will be denoted by d(x).

For A,B ∈ V we shall write

e(A,B) = #
{
(x, y): x ∈ A, y ∈ B, x ∼ y

}
.

If A,B are disjoint, this is the number of edges between A and B . The quantity e(A,A) is the
total degree of the spanned subgraph, that is, twice the number of edges.

Definition 2.1. We call a graph G α-dense-connected with a number α ∈ [0,1] if it has the
following property. For any partition of the set of vertices into two disjoint parts, say V = A∪B ,
we have

e(A,B) � α|A||B|. (2.1)

Independently of us, such graphs were also introduced by M. Abért who even conjectured
Theorem 4.1 below.

Applying the definition for a one-element subset we see that in an α-dense-connected graph
every vertex has degree d(x) � α(n − 1).

In the sequel we shall find α-dense-connected subgraphs of certain graphs.

Theorem 2.2. Every α-dense-connected graph has an α/2-dense-connected bipartite subgraph
containing all the vertices.

Proof. Consider all partitions of V into two disjoint parts, say V = A ∪ B , and select one for
which e(A,B) is maximal. We show that the bipartite subgraph G′ induced by these parts is
α/2-dense-connected. We will write e′ for the corresponding function in G′.

Indeed, consider any partition of V in the form V = V1 ∪ V2. We can write the parts as

Vi = Ai ∪ Bi, Ai ⊂ A, Bi ⊂ B.

Now compare the partition into parts A1 ∪ B2 and A2 ∪ B1 with the partition A,B . The maxi-
mality of e(A,B) means that

e(A,B) = e(A1,B1) + e(A1,B2) + e(A2,B1) + e(A2,B2) � e(A1 ∪ B2,A2 ∪ B1)

= e(A1,B1) + e(A1,A2) + e(B1,B2) + e(A2,B2).

By canceling identical terms we obtain

e(A1,B2) + e(A2,B1) � e(A1,A2) + e(B1,B2). (2.2)

Now observe that

e(V1,V2) = e(A1,B2) + e(A2,B1) + e(A1,A2) + e(B1,B2)
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and

e′(V1,V2) = e(A1,B2) + e(A2,B1),

so by adding the latter equality to both sides of (2.2) we obtain

2e′(V1,V2) � e(V1,V2).

This quantity is � α|V1||V2| by the α-dense-connectedness of G. �
Remark 2.3. The parts are automatically large; as every degree must be � α(n − 1)/2, both
parts have at least that many elements. We cannot claim much more, since, on the other hand,
one can easily see that a complete bipartite graph with m and n − m vertices in the parts is
m/n-dense-connected for m � n/2.

Theorem 2.4. Let G be a graph on n vertices, and let α ∈ (0,1) arbitrary. There are disjoint sub-
sets of the vertices, say V1, . . . , Vk , such that |Vi | > αn (hence k < 1/α), each spanned subgraph
G|Vi

is α-dense-connected, and together they contain all but at most αn2 edges of G.

We shall prove this theorem together with the next one, which states that if all degrees are
large then the Vi can be required to form a partition of V .

Theorem 2.5. Let G be a graph on n vertices, and assume that the degree of each point is � βn

with some β > 0. Let α ∈ (0, β) arbitrary. There is a decomposition of the set of vertices into
disjoint subsets, say V = V1 ∪ · · · ∪ Vk , such that

|Vi | � β − α

1 − α
n

(hence k � (1 − α)/(β − α)), each spanned subgraph G|Vi
is α-dense-connected, and together

they contain all but at most αn2 edges of G. In particular, if α < β/2, then we have the bounds
|Vi | > βn/2 and k < 2/β .

Proof of Theorems 2.4 and 2.5. Consider all partitions of V into disjoint subsets, V = A1 ∪
· · · ∪ Ak , for all integers k � 1, and select one for which the sum∑

1�i<j�k

(
e(Ai,Aj ) − α|Ai ||Aj |

)

is minimal.
This partition has the following properties. First, each component Ai is α-dense-connected.

Indeed, if we could decompose it into Ai = X ∪ Y with e(X,Y ) < α|X||Y |, then we would get a
smaller sum by replacing the component Ai by the two parts X,Y . Next, we have

e(Ai,Aj ) � α|Ai ||Aj | (2.3)

for every i �= j , otherwise we would get a smaller sum by replacing the components Ai and Aj

by the single component Ai ∪ Aj .
By summing (2.3) for all pairs i < j we obtain

∑
e(Ai,Aj ) �

∑
α|Ai ||Aj | < αn2

2
, (2.4)
i<j i<j
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since

n2 =
(∑

|Ai |
)2 =

∑
|Ai |2 + 2

∑
i<j

|Ai ||Aj |.

(2.4) means that all but at most αn2/2 edges are within some Ai .
To prove Theorem 2.4, we keep only the parts with |Ai | > αn (thus the k of the theorem

will not be the k at the beginning of the proof). We estimate the number of edges within small
components as follows. In Ai the number of edges is < |Ai |2/2. Hence the total number of edges
within small Ai ’s is

<
∑

|Ai |�αn

|Ai |2
2

� αn

2

∑
|Ai | � αn2

2
.

This makes altogether � αn2 edges that are not within a large block.
To prove Theorem 2.5, we show that under the assumption that every degree is high, all the

parts above will be large. Assume that for all x ∈ V we have d(x) � βn with some number
β > α. We sum inequality (2.3) for a fixed i and all j �= i. We obtain∑

j �=i

e(Ai,Aj ) � α|Ai |
(
n − |Ai |

)
.

Also obviously e(Ai,Ai) � |Ai |2. Hence

k∑
j=1

e(Ai,Aj ) � |Ai |
(
αn + (1 − α)|Ai |

)
.

On the other hand, this quantity is

=
∑
x∈Ai

d(x) � βn|Ai |.

By comparing these inequalities we obtain

|Ai | � β − α

1 − α
n

as claimed. �
We also need one more fact that will be used for some applications in Part III.
Let G be a bipartite graph on vertex sets U , V . For any β ∈ (0,1) define another graph Gβ on

vertex set U by connecting u1, u2 ∈ U if they share at least β|V | common neighbors in V ; i.e.,
if at least that many vertices in V are connected both to u1 and u2.

Lemma 2.6. If G is α-dense-connected on U ∪ V then, for β = α2, Gβ is β-dense-connected
on U .

Proof. Cut U into two non-empty parts U = U1 ∪ U2. Write |U | = m, |Ui | = mi (i = 1,2) and
|V | = n. Assume m1 � m2. We want to show that at least βm1m2 pairs (u1, u2), ui ∈ Ui possess
at least βn common neighbors. In order to do so we will show that the number of “cherries,”
i.e., paths of type u1 − v − u2 with ui ∈ U (i = 1,2), v ∈ V is at least 2βm1m2n. Since those
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pairs that have less than βn common neighbors contribute less than βm1m2n, at least βm1m2n

comes from pairs with > βn neighbors each. Since each pair has at most n common neighbors,
the number of required pairs exceeds βm1m2.

To count the “cherries” we write di(v) to denote the number of edges from a vertex v to Ui .
The quantity we want to estimate is

∑
v∈V d1(v)d2(v).

Define

V1 = {
v ∈ V : d1(v) � d2(v)

}
and

V2 = {
v ∈ V : d1(v) < d2(v)

} = V \ V1.

Consider the partition of the original graph into parts U1 ∪ V1 and U2 ∪ V2. With the notation
|Vi | = ni by the α-dense-connectedness we obtain∑

v∈V

min
(
d1(v), d2(v)

)
� α(m1 + n1)(m2 + n2) � αm1(m2 + n)

(in the last step we use the assumption m1 � m2).
Next select an arbitrary v ∈ V and consider the partition of the original graph where one of

the parts is the one-element set {v}. The α-dense-connectedness property now implies

d(v) = d1(v) + d2(v) � α(m + n − 1) � α(m2 + n),

consequently

max
(
d1(v), d2(v)

)
� α(m2 + n)/2

for each v ∈ V . Hence
∑
v∈V

d1(v)d2(v) � α

2
(m2 + n)

∑
v∈V

min
(
d1(v), d2(v)

)
� α2

2
m1(m2 + n)2 � 2α2m1m2n.

In the last step we use the inequality between arithmetic and geometric means. �
3. Walks in a connected graph

We define a walk of length k as a sequence z0, . . . , zk of vertices, not necessarily distinct,
such that zi ∼ zi−1 for all i = 1, . . . , k. For two vertices x, y we denote by wk(x, y) the number
of walks of length k between x and y (that is, those walks where z0 = x, zk = y). In particular,
w0 = 1 if x = y, 0 otherwise, w1 = 1 if x ∼ y, 0 otherwise.

Theorem 3.1. Let x, y be arbitrary vertices in an α-dense-connected graph on n vertices. There
is an integer k � 4/α − 3 (depending on x, y), such that

wk(x, y) � δnk−1, δ = 4

α

(
α2

2

)4/α−3

. (3.1)

Proof. We consider x as fixed. We shall recursively define sets A0, . . . of vertices, show that an
estimate like (3.1) holds for y ∈ Ai and that a few Ai together contain every vertex.

We put A0 = {x} and A1 = {y: y ∼ x}. Given A0, . . . ,Ai , we write

Bi = A0 ∪ · · · ∪ Ai
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and

Ai+1 = {
y: y /∈ Bi, e(y,Bi) � γ n

}
,

that is, those new vertices that are connected to at least γ n old vertices, where γ = α2/2.
Observe that, since every degree is � α(n − 1), we have |A1| � α(n − 1), |B1| = 1 + |A1| �

αn. Now we prove that, for i � 2, |Ai | � αn/4 as long as Bi �= V .
Put C = V \ Bi . Write |Bi−1| = bn and |Ai | = an, so that clearly |C| = (1 − a − b)n. We

know that |Bi−1| � |B1| > αn, that is, b � α.
By definition, from a point of C there are less than γ n edges to Bi−1, hence

e(Bi−1,C) < γn|C| = γ (1 − a − b)n2. (3.2)

We shall apply the definition of α-dense-connectedness to the partitions Bi−1,Ai ∪ C and
Bi,C. We obtain

e(Bi−1,Ai) + e(Bi−1,C) � αb(1 − b)n2

and

e(Ai,C) + e(Bi−1,C) � α(a + b)(1 − a − b)n2.

We use (3.2) to estimate e(Bi−1,C), and estimate the other similar quantities by the product of
cardinalities. After dividing by n2 we obtain

ab + γ (1 − a − b) � αb(1 − b) (3.3)

and

a(1 − a − b) + γ (1 − a − b) � α(a + b)(1 − a − b). (3.4)

(3.3) yields

a � (αb − γ )(1 − b)

b − γ
.

We know that αb > α2 > 2γ , so αb − γ > αb/2, (αb − γ )/(b − γ ) > α/2. Hence the above
inequality shows a > α(1 − b)/2, which is > α/4 as long as b � 1/2.

For b > 1/2 we use (3.4). We divide by 1 − a − b (here we use the assumption Bi �= V , that
is, C �= ∅) and obtain

a � αb − γ

1 − α
>

(α/2) − (α2/2)

1 − α
= α

2
,

more than we need.
By an obvious induction we obtain

|Bi | �
(

1 + i − 1

4

)
αn

provided Bi �= V . Since this quantity must be < n, we see that Bk = V occurs for some k �
4/α − 3.

Next we define

Wk(y) =
k∑

wj(x, y)(γ n)−j . (3.5)

j=0
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Observe that for any vertex y we have (for j � 1)

wj(x, y) =
∑
z∼y

wj−1(x, z);

substituting this into (3.5) we obtain

Wk(y) = w0(y) + 1

γ n

∑
z∼y

Wk−1(z). (3.6)

Observe that W0(y) = 1 for y ∈ A0 and W1(y) = (γ n)−1 for y ∈ A1. We now show by induc-
tion that Wk(y) � (γ n)−1 for any y ∈ Bk . The introductory observation covers the initial step
k = 1. Now assume we have it for Bk−1. Consider any y ∈ Bk . If y ∈ Bk−1, the claim follows
from the monotonicity of Wi in i. If not, then y ∈ Ak . In this case we apply (3.6), retaining
only those terms in the sum where z ∈ Bk−1. We know that Wk−1 � (γ n)−1 by the induction
hypothesis, and the number of summands is � γ n by the definition of Ak .

So we know that Wk(y) � (γ n)−1 for every y with k � 4/α − 3. The definition of Wk is a
sum of k + 1 terms, thus at least one summand is at least 1/(k + 1) times the sum. This means

wj(x, y)(γ n)−j � 1

k + 1
(γ n)−1 >

4

α
(γ n)−1

for some j � k, which becomes (3.1) after a rearrangement and substituting γ = α2/2. �
Remark 3.2. We could improve the calculations at several points. However, it is necessary that
the bound is of this type. To see this, consider the following graph. We take k blocks of size n/k

each, say A1, . . . ,Ak , and connect two vertices if one of them is in Ai and the other in Ai+1 for
some i. It is easy to see that this graph is α-dense-connected with α = 1/(4k), say. However,
between a vertex in A1 and one in Ak there is no walk shorter than k − 1, and as each degree is
� (2/k)n, the coefficient of nj−1 for walks of length j must be � (2/k)j−1.

Part II. Sums along a graph

4. Results for every group

In this section we collect those results that hold even in non-commutative groups, and the next
section will present stronger results for commutative groups.

So in the sequel we take a graph whose vertices are a subset of a group. We denote the
operation additively, −x is the inverse of x and x − y stands for x + (−y). We recall that

A
G+ B = {a + b: a ∈ A, b ∈ B, a ∼ b},

and we define similarly

A
G− B = {a − b: a ∈ A, b ∈ B, a ∼ b}.

Theorem 4.1. Let G = (V ,E) be an α-dense-connected graph, |V | = n. Assume that V is a
subset of a group and

∣∣V G− V
∣∣ � λn
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with some λ � 2. Then

|V − V | � f (λ,α)n

with

f (λ,α) = (
2λ/α2)4/α

. (4.1)

Proof. Write D = V
G− V . We will apply Theorem 3.1 to our graph G. This means that for every

x, y ∈ V there is a k � 4/α − 3 such that there are at least δnk−1 walks of length k from x to y.
Given such a walk, say z0, . . . , zk with z0 = x, zk = y, we can express x − y as

x − y = z0 − zk = (z0 − z1) + (z1 − z2) + · · · + (zk−1 − zk).

This means that x − y has at least δnk−1 expressions in the form of a sum of k elements of D.
Since there are |D|k such sums, there may be (for a fixed k) no more than δ−1n1−k|D|k such
values. As different values of k may belong to different x and y, we have

|V − V | �
∑

k�4/α−3

δ−1n1−k|D|k � δn
∑

k�4/α−3

λk � δnλ4/α.

We obtain the bound by substituting the value of δ from Theorem 3.1; we rounded it up to get a
nicer expression. �
Remark 4.2. The only place where we used the assumption λ � 2 was the last inequality. For
λ < 2 we can use f1(2, α) as an upper estimate. The above argument yields some minor im-
provements over this bound for small values of λ. We add that λ cannot be very small. Since
each vertex has degree � α(n − 1), there are � αn(n − 1) formal differences, and a difference
occurs at most n − 1 times, thus λ � α a priori and the possible saving is small as compared to
the order of magnitude of our bounds.

Remark 4.3. It is likely that our bound (4.1) can be improved, but it must be exponential in 1/α.
We demonstrate this by an example. The graph will be the same as described in Remark 3.2. We
take sets, A1, . . . ,Ak , of m = n/k elements each, and two vertices are connected if they are in
some Ai and Ai+1. These sets will be arithmetic progressions, namely

Ai = {
ui + jqi : 0 � j � m − 1

}
with some starting points ui to make them disjoint. Then

|Ai − Ai+1| < (q + 1)m,

so
∣∣A G− A

∣∣ �
∑

|Ai − Ai+1| < (q + 1)n.

On the other hand,

|A − A| � |A1 − Ak| > qk−1m = qk−1

k
n

for n > qk . Here α is of order 1/k.
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Theorem 4.4. Let G = (V ,E) be an arbitrary graph, |V | = n. Assume that V is a subset of a
group and

∣∣V G− V
∣∣ � λn.

Further let an α ∈ (0,1) be given. Then we can find disjoint subsets of the vertices, say
V1, . . . , Vk , such that |Vi | � αn (hence k � 1/α), and together they contain all but at most αn2

edges of G; moreover,

|Vi − Vi | � f1(λ,α)n (4.2)

with a function of the form

f1(λ,α) = (
c1λ/α2)c2/α. (4.3)

Furthermore, the degree of each vertex in a spanned subgraph G|Vi
is at least α(|Vi |−1) 	 α2n.

Proof. We apply Theorem 2.4 to the graph. We obtain certain α-dense-connected subsets Vi ; the
claim about the degree of vertices follows from the α-dense-connectedness.

To prove (4.2) we apply the previous theorem to the graph G|Vi . We have

∣∣Vi

G− Vi

∣∣ �
∣∣V G− V

∣∣ � λn � λ′|Vi |
with λ′ = λ/α. Hence

|Vi − Vi | � f (λ/α,α)|Vi | � f (λ/α,α)n.

The function f (λ/α,α) clearly can be estimated from above by a function of type (4.3). �
Remark 4.5. Balog and Szemerédi’s theorem asserts the existence of a large A ⊂ V with small

doubling, on the assumptions that V
G− V is small and the graph has > βn2 edges. To deduce this

from our above theorem we can just apply it with α = β/2 and take any Vi as A.
The idea of expressing a general difference in many ways as a sum of differences along the

graph is already there in Balog and Szemerédi’s paper [1]. Gowers [14] does the same, finding
a subset where there are many walks of length 4 between the vertices. As the length of the
walk comes into the exponent, it is not surprising that this approach yields better estimates, and
for the aim of quantitatively improving Balog and Szemerédi’s result it is much superior to an
application of our above theorem. However, this method is not capable of finding sets containing
many edges.

Theorem 4.6. Let G = (V ,E) be an arbitrary graph, |V | = n. Assume that V is a subset of a
group and

∣∣V G− V
∣∣ � λn.

Further assume that the degree of each point is � βn with some β > 0. Let α ∈ (0, β/2) arbitrary.
There is a decomposition of the set of vertices into disjoint subsets, say V = V1 ∪ · · · ∪ Vk , such
that |Vi | � βn/2 (and hence k � 2/β), together they contain all but at most αn2 edges of G, and

|Vi − Vi | � f2(λ,α)n (4.4)
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with a function of the form

f2(λ,α) = (
c3λ/α2)c4/α. (4.5)

Furthermore, the degree of each vertex in a spanned subgraph G|Vi
is at least α(|Vi |−1) 	 αβn.

Proof. We apply Theorem 2.5 to the graph. We obtain certain α-dense-connected subsets Vi ; the
claim about the degree of vertices follows from the α-dense-connectedness.

To prove (4.4) we apply Theorem 4.1 to the graph G|Vi . We have

∣∣Vi

G− Vi

∣∣ �
∣∣V G− V

∣∣ � λn � λ′|Vi |
with λ′ = 2λ/β . Hence

|Vi − Vi | � f (2λ/β,α)|Vi | � f (2λ/β,α)n.

The function f (2λ/β,α) clearly can be estimated from above by a function of type (4.5), since
β > α. �
5. Results for commutative groups

For commutative groups the results of the previous section can be extended to involve com-
binations of sums and differences. This is due to the fact that the behavior of A + A and A − A

cannot be very different if the operation is commutative. We will show by examples that these
results cannot be extended to every non-commutative group.

Theorem 5.1. Let G = (V ,E) be an α-dense-connected graph, |V | = n. Assume that V is a
subset of a commutative group and either

∣∣V G+ V
∣∣ � λn

or
∣∣V G− V

∣∣ � λn.

Then

|V + V | � f3(λ,α)n

and

|V − V | � f3(λ,α)n

with a function of the form

f3(λ,α) = (
c5λ/α2)c6/α.

Proof. These are four inequalities packed into one theorem. We can call them ++, +−, −+ and
−− in a natural way. Of these, −− is Theorem 4.1.

To deduce the others we need the following lemma.

Lemma 5.2. Let A be a set in a commutative group. We have

|A − A| � |A + A|2
(5.1)
|A|
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and

|A + A| � |A − A|2
|A| . (5.2)

See Ruzsa [16–19].
To deduce case −+, we simply apply (5.2) with V in the place of A to the result of case −−.
Now we establish ++. First we apply Theorem 2.2 to split V into two disjoint subsets, V =

A∪B , so that the bipartite subgraph of G with these parts is α/2-dense-connected. As remarked
there, every degree in this subgraph is � (α/2)(n − 1), and hence the parts are large; we have

|A| � αn/3, |B| � αn/3. (5.3)

Next we define a new graph G′ as follows. The set of vertices will be

V ′ = A ∪ B ′, B ′ = (t − B),

where t is selected so that A ∩ B ′ = ∅. (This may be impossible if the group is finite; we can
embed it into a larger group, which does not affect the final results.) If a ∼ b in G with a ∈ A,
b ∈ B , we connect a and t − b in G′.

We have clearly

V ′ G′
− V ′ = (

A
G+ B

) − t ⊂ (
V

G+ V
) − t.

Thus an application of Theorem 4.1 to G′ yields

|V ′ − V ′| � f (λ,α/2)n.

As

V ′ − V ′ = (A − A) ∪ (B − B) ∪ (A + B − t),

this implies

|A − A| � f (λ,α/2)n, |B − B| � f (λ,α/2)n, (5.4)

|A + B| � f (λ,α/2)n. (5.5)

To the inequalities in (5.4) we apply (5.2) and (5.3) to obtain

|A + A| � 3f (λ,α/2)2

α
n (5.6)

and similarly

|B + B| � 3f (λ,α/2)2

α
n. (5.7)

As

V + V = (A + A) ∪ (B + B) ∪ (A + B),

on summing (5.5)–(5.7) we obtain a bound for |V + V | in the desired form.
Finally, to deduce case +−, we apply (5.1) with V in the place of A to the result of case

++. �
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Remark 5.3. (5.1) holds for non-commutative groups (the proof in [16] does not rely on com-
mutativity). We now show that (5.2) may miserably fail in a non-commutative situation. This
will be more comfortably told with multiplicative notation. We will find a set A with |A| = m,
|AA−1| + |A−1A| < 4m and |AA| = m2. To do this, let a,g be the generators of a free group
and consider

A = {
agi : 1 � i � m

}
.

This also shows that the −+ case cannot be extended to the non-commutative case, not even for
the complete graph.

Variants of this example will show that cases ++ and +− cannot be extended to non-
commutative groups either. In these cases we will consider the complete bipartite graph with
parts A and B , having m = n/2 elements each. For both cases put

A = {
agj : 1 � j � m

}
, B = {

gja−1: 1 � j � m
}
.

Here the products along the graph are the elements of AB ∪ BA, that is, elements of the form
agi+j a−1 and gi+j , altogether 4m − 2 < 2n. On the other hand, the sets V V = AB ∪ BA,
V V −1 = AB−1 ∪BA−1 and V −1V = A−1B∪B−1A are immediately seen to have 2m2 elements
each.

Theorem 5.4. Let G = (V ,E) be an arbitrary graph, |V | = n. Assume that V is a subset of a
commutative group and

∣∣V G+ V
∣∣ � λn

or
∣∣V G− V

∣∣ � λn.

Further let an α ∈ (0,1) be given. Then we can find disjoint subsets of the vertices, say
V1, . . . , Vk , such that |Vi | � αn (hence k � 1/α), together they contain all but at most αn2 edges
of G, and

|Vi + Vi | � f4(λ,α)n

and

|Vi − Vi | � f4(λ,α)n

with a function of the form

f4(λ,α) = (
c7λ/α2)c8/α.

Furthermore, the degree of each vertex in a spanned subgraph G|Vi
is at least α(|Vi |−1) 	 α2n.

Proof. The proof of this theorem goes exactly as that of Theorem 4.4, using Theorem 5.1 in the
place of Theorem 4.1. �
Theorem 5.5. Let G = (V ,E) be an arbitrary graph, |V | = n. Assume that V is a subset of a
commutative group and

∣∣V G+ V
∣∣ � λn
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or ∣∣V G− V
∣∣ � λn.

Further assume that the degree of each point is � βn with some β > 0. Let α ∈ (0, β) arbitrary.
There is a decomposition of the set of vertices into disjoint subsets, say V = V1 ∪ · · · ∪ Vk , such
that

|Vi | � β − α

1 − α
n

(hence k � (1 − α)/(β − α)), together they contain all but at most αn2 edges of G, and

|Vi + Vi | � f4(λ,α)n

and

|Vi − Vi | � f4(λ,α)n

with a function of the form

f4(λ,α) = (
c7λ/α2)c8/α.

In particular, if α � β/2, then we have the bounds |Vi | � βn/2 and k � 2/β . Furthermore, in
this case, the degree of each vertex in a spanned subgraph G|Vi

is at least α(|Vi | − 1) 	 αβn.

Proof. The proof of this theorem goes exactly as that of Theorem 4.6, using Theorem 5.1 in the
place of Theorem 4.1. �
Part III. Applications

6. An outline of the forthcoming results

In this part we give some applications to Combinatorial Algebra and Erdős Geometry.
In each section, our goal will be to unify certain old results by stating (and proving) a common

generalization—just as we did for sumsets.
The results to be presented follow a common pattern, similar to that of the aforementioned

structure theorems on sumsets. First, they all involve graphs whose vertices are algebraic or geo-
metric objects. Along the edges of these graphs we perform certain bivariate operations (which
may or may not arise from a group) and assume that among the results of these operations not too
many are distinct. Then we usually conclude that certain structures (which depend on the type of
the operations performed) must contain the vertices of the graph, or a large proportion of them,
depending on the type of the graph in the assumption.

The four main types of graphs and the corresponding conclusions are listed in Table 1.
According to the pattern depicted, each theorem will consist of four cases (A) through (D). Of

these, typically (A) and (D) will be old while (B) and (C) new. Moreover, (B) will usually imply
the rest. On the one hand, it will be stronger than (A) since the same conclusion will be drawn
from a weaker assumption—though to prove (B) we shall typically use the corresponding “old”
part (A). On the other hand, the implications (B) ⇒ (C) ⇒ (D) will also follow from purely
graph-theoretic observations.

To sum up what facts we are going to use about sumsets—and to demonstrate the logical
structure between types (A)–(D)—we recall the results mentioned in Parts I and II as follows, in
terms of generalized arithmetic progressions defined in the Introduction.
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Table 1
The four types of results (see also Theorem 6.1)

Graph in assumption Conclusion for vertex set Principal result for sumsets

(A) Complete Contained in one structure
(or in some “cosets”)

Freiman [13], Ruzsa [20], Bilu [2],
Chang [3]

(B) α-dense-connected Same Theorem 5.1 with (A)
(C) Large degrees All vertices and almost all edges in a

bounded number of structures
Theorem 5.5 with (A)

(D) Dense (many edges) Large portion with many edges in one
structure

Balog and Szemerédi [1],
Laczkovich and Ruzsa [15]

Unlike for the constants fi in Parts I and II, we do not attempt finding best (or nearly best)
bounds for the forthcoming constants C1,C2, . . . etc. The reason for this is that, in Freiman’s
theorem (see Parts (A) in Table 1 and in Theorem 6.1), the right order of magnitude of C1(λ) and
C2(λ) is unknown (though Chang’s work recently substantially reduced the gap between known
and conjectured bounds) and the proof of all other results will rely upon that theorem.

Theorem 6.1. Let A and B be sets of reals (or complex numbers or vectors) with |A|, |B| � n

and G a bipartite graph on them as vertex sets. Assume that

∣∣A G+ B
∣∣ � λn or

∣∣A G− B
∣∣ � λn.

(A) If G is a complete bipartite graph then A ∪ B is contained in a generalized arithmetic
progression of “dimension” at most C1(λ) and “size” not exceeding C2(λ)n.

(B) If, for an α > 0, the graph G is α-dense-connected, then, again, A ∪ B is contained in
a generalized arithmetic progression whose “dimension” is at most C3(λ,α) and whose
“size” does not exceed C4(λ,α)n.

(C) If, for a β > 0, each vertex of the graph G is incident upon at least βn edges, then A ∪ B

is contained in the union of at most C5(λ,β) generalized arithmetic progressions, each of
“dimension” at most C6(λ,β) and “size” not exceeding C7(λ,β)n.

(D) If, for a γ ∈ (0,1/2) and a C > 1, the graph G has at least γ n2 edges while |A|, |B| � Cn,
then there are subsets A0 ⊂ A, B0 ⊂ B such that A0 ∪ B0 is contained in a general-
ized arithmetic progression of “dimension” at most C8(C,λ, γ ) and “size” not exceeding
C9(C,λ, γ )n; moreover, G has at least C10(C,λ, γ )n2 edges between A0 and B0.
(Consequently, |A0|, |B0| � C11(C,λ, γ )n.)

The implication (B) ⇒ (C) follows from Theorem 2.5. Also, (C) ⇒ (D) can be demonstrated
by observing that a graph with N vertices and at least δN2 edges always contains a subgraph
with all degrees � δN/2. (To see this, just keep on deleting those vertices of degree less than
that; you cannot delete everything. The resulting subgraph will satisfy the requirement.)

Beyond sumsets, we shall also frequently consider product sets like

A · B = {a · b: a ∈ A, b ∈ B} and A
G· B = {a · b: a ∈ A, b ∈ B, a ∼ b},

for A, B subsets of the non-zero complex numbers and G a graph on A and B as vertex sets.
Naturally, small product sets will be closely related to multiplicative versions of generalized
arithmetic progressions which we call generalized geometric progressions.
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Theorem 6.2. Let A and B be sets of non-zero complex numbers with n � |A|, |B| � Cn and G

a bipartite graph G(A,B,E) on them as vertex sets and E its edge set. Assume that
∣∣A G· B

∣∣ � λn.

Then the four conclusions (A)–(D) of Theorem 6.1 hold with generalized geometric progressions

P = {
b · qx1

1 · . . . · qxk

k : 0 � xi � li − 1
}
,

in place of generalized arithmetic progressions. However, the constants Ci found here may be
different from (usually larger than) those in Theorem 6.1. Also, the same conclusions hold for
similarly defined quotient sets—provided that their size does not exceed λn.

Proof. Though the multiplicative group of the non-zero complex numbers is not torsion-free, it is
not difficult to reduce this statement to the additive one. Indeed, represent each vertex (uniquely)

as eu+iv with u a real number and v ∈ [0,2π). Moreover, express each element of A
G· B two

such different ways—once with v ∈ [0,2π) and also with v ∈ [2π,4π). If A1 and B1 denote the

sets of exponents which occur in the representation of A and B , respectively, then A1
G+ B1 is

contained in the set of exponents assigned to A
G· B whence

∣∣A1
G+ B1

∣∣ � 2
∣∣A G· B

∣∣ � 2λn.

Thus we have reduced the problem to Theorem 6.1. �
7. Small composition sets of projective mappings

The aim of this section is to generalize—to a non-Abelian setting—all the aforementioned
results. In particular, the forthcoming Theorem 7.3 will contain as special cases both the additive
and the multiplicative results mentioned in Theorems 6.1 and 6.2, respectively.

If a—not necessarily Abelian—group contains a large torsion-free commutative subgroup,
say S, then one can find examples of sets with small sumsets by selecting generalized arith-
metic progressions from within S. In what follows we shall see that e.g. in the one-dimensional
projective group no essentially different examples exist.

Generalizations of Freiman’s theorem to non-Abelian settings were initiated in [5,6,9]. The
group considered there was that of the (non-constant) affine mappings in one dimension. Still in
one dimension, the group of (non-constant) projective mappings was studied in [10] where it was
shown that small composition sets are closely related to Abelian subgroups. For a more precise
statement we shall use the following notations.

Let P = R∪{∞} or P = C∪{∞} denote the real or complex projective line and P the group of
non-degenerate projective mappings of P, i.e., the set of non-constant linear fractions z → az+b

cz+d
(where ad − bc �= 0).

The group operation on P is the composition φ ◦ ψ : z → φ(ψ(z)). (We do not use additive
or multiplicative notation within this group in order to avoid confusions with addition or multi-
plication of φ and ψ as functions.)

For any (usually finite) subsets Φ,Ψ ⊂ P , and G a bipartite graph whose vertex sets are
disjoint copies of Φ and Ψ , we write

Φ ◦ Ψ
def= {φ ◦ ψ; φ ∈ Φ, ψ ∈ Ψ } and Φ

G◦ Ψ
def= {φ ◦ ψ; φ ∈ Φ, ψ ∈ Ψ, φ ∼ ψ},

and call them composition sets.
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Theorem 7.1. Let Φ,Ψ ⊂ P with |Φ|, |Ψ | � n and G a bipartite graph on them as vertex sets.
Assume that∣∣Φ G◦ Ψ −1

∣∣ � λn.

(A) If G is a complete bipartite graph then there exists an Abelian subgroup S ⊂ P such that
Φ and Ψ are contained in a bounded number of left cosets of S. In other words, there is a
C1(λ) > 0, independent of n, together with some ζ1, ζ2, . . . , ζC1 ∈ P for which

Φ ∪ Ψ ⊂
C1⋃
i=1

ζi ◦ S.

(B) If, for an α > 0, the graph G is α-dense-connected, then again the same conclusion holds
for a suitable number C2(λ,α) of cosets.

(C) If, for a β > 0, each vertex of the graph G is incident upon at least βn edges, then there
exists a bounded number, say C3(λ,β), of Abelian subgroups Si ⊂ P (some of which may
coincide) such that Φ and Ψ are contained in left cosets of the Si . In other words, there are
some ζ1, ζ2, . . . , ζC3 ∈ P for which

Φ ∪ Ψ ⊂
C3⋃
i=1

ζi ◦ Si.

(D) If, for a γ ∈ (0,1/2) and a C > 1, the graph G has at least γ n2 edges while |Φ|, |Ψ | � Cn,
then there are subsets Φ0 ⊂ Φ , Ψ0 ⊂ Ψ and an Abelian subgroup S ⊂ P such that Φ0 ∪ Ψ0
is contained in a left coset of S; moreover, G has at least C4(C,λ, γ )n2 edges between Φ0
and Ψ0.
(Consequently, |Φ0|, |Ψ0| � C5(C,λ, γ )n.)

Proof. (A) see [10], Theorem 2 and the footnote to Remark 36.
(B) follows from Theorem 4.1 with V = Φ ∪ Ψ and (A).
(C) and (D) are standard consequences as in Theorem 6.1. �

Remark 7.2. Abelian subgroups of P are not difficult to characterize. As it was mentioned
in [10], each such group is isomorphic to (actually, is a conjugate of) a subgroup of one of

(a) S+ = {x → x + t; t ∈ C};
(b) S• = {x → t · x; t ∈ C}.

If we insist on formally real mappings then we must also allow the subgroup of functions of type

(c) {x → (x + t)/(1 − tx); t ∈ R},

but this is isomorphic to (is a special case of) the complex version (b).
In each Abelian subgroup of P we can define relatives of generalized arithmetic progressions

which we shall call generalized composition progressions:{
φ ◦ ψ

x1
1 ◦ ψ

x2
2 ◦ · · · ◦ ψ

xk

k ; 0 � xi � li − 1
}
,

where ψx = ψ ◦ ψ ◦ · · · ◦ ψ is a composition of x terms (x ∈ N). Though such sets could also be
considered in more general settings, they are of little use for us as long as the ψi do not commute.
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Remark 7.3. According to the two main types of Abelian subgroups (see (a)–(b) in the previous
Remark 7.2) there are two corresponding types of generalized composition progressions:

{x → t + x; t ∈ H } or {x → t · x; t ∈ H },
for H a generalized arithmetic or geometric progression, respectively. We shall call these “gen-
eralized composition progressions based upon H .”

If L is such a generalized composition progression in an Abelian subgroup S and ζ ◦ S is a
left coset (with a ζ ∈ P) then we can “copy” L into this coset and call ζ ◦ L = {ζ ◦ x; x ∈ L} a
“left coset of L” (with a slight abuse of this notion).

Theorem 7.4. Let Φ,Ψ ⊂ P with |Φ|, |Ψ | � n and G a bipartite graph on them as vertex sets.
Assume that∣∣Φ G◦ Ψ −1

∣∣ � λn.

(A) If G is a complete bipartite graph then, in a suitable Abelian subgroup S ⊂ P , there exists a
generalized composition progression L of dimension at most C1(λ) and size not exceeding
C2(λ) · n such that Φ and Ψ are contained in a bounded number of “left cosets of L.” In
other words, there is a C3(λ) > 0, independent of n, together with some ζ1, ζ2, . . . , ζC3 ∈ P
for which

Φ ∪ Ψ ⊂
C3⋃
i=1

ζi ◦ L.

(B) If, for an α > 0, the graph G is α-dense-connected, then again the same conclusion holds
for a suitable number C4(λ,α) of cosets.

(C) If, for a β > 0, each vertex of the graph G is incident upon at least βn edges, then there
exists a bounded number, say C5(λ,β), of Abelian subgroups Si ⊂ P (some of which may
coincide) and generalized composition progressions Li ⊂ Si (which, again, may coincide),
each of dimension at most C6(λ,β) and size not exceeding C7(λ,β) · n such that Φ and Ψ

are contained in “left cosets of the Li .” In other words, there are some ζ1, ζ2, . . . , ζC5 ∈ P
for which

Φ ∪ Ψ ⊂
C5⋃
i=1

ζi ◦ Li.

(D) If, for a γ ∈ (0,1/2) and a C > 1, the graph G has at least γ n2 edges while
|Φ|, |Ψ | � Cn, then there are subsets Φ0 ⊂ Φ , Ψ0 ⊂ Ψ contained in a “left coset of a gen-
eralized composition progression L”, of dimension at most C8(λ, γ ) and size not exceeding
C9(λ, γ ) · n. Moreover, G has at least C10(C,λ, γ )n2 edges between Φ0 and Ψ0.
(Consequently, |Φ0|, |Ψ0| � C10(C,λ, γ )n.)

This theorem can be considered as a common generalization, to a non-Abelian setting, of the
two versions of Freiman’s theorem—mentioned in Theorems 6.1(A) and 6.2(A)—as well as the
corresponding versions (B)–(C)–(D) in the following sense: if G is a complete bipartite graph
and Φ = Ψ consists of functions of type x → x + t then we get the additive form while those of
type x → tx give the multiplicative one.



1494 Gy. Elekes, I.Z. Ruzsa / Journal of Combinatorial Theory, Series A 113 (2006) 1476–1500
Proof. (A) As it was shown in [10], applying Theorem 7.1 and then using Remark 7.2 combined
with Theorems 6.1(A) and 6.2(A) does the trick.

(B) (the hard part) We shall reduce the statement of part (B) to that of part (A).
Define a new graph G1 on V1 = Φ ∪Ψ by identifying equal elements. More precisely, connect

φ and ψ by an edge if φ �= ψ and they were connected in G. (This way we do not create loops.)
Since each such edge comes from at most two original edges of G, the new G1 is α/2-dense-
connected on V1.

Also, we can apply Theorem 7.1 to G1 and find an Abelian subgroup S, together with some
ζ1, ζ2, . . . , ζK (K � C2(λ,α)) such that

V1 = Φ ∪ Ψ ⊆
K⋃

i=1

ζi ◦ S.

Then the portions of V1 contained in different cosets are pulled back to S by letting

V2
def=

K⋃
i=1

ζ−1
i ◦ (

(ζi ◦ S) ∩ V1
) = S ∩

K⋃
i=1

ζ−1
i ◦ V1.

Obviously, |V2| � |V1|/K � n/K . We define yet another graph G2 on V2 by connecting two
distinct vertices if some of their pre-images were connected in G1. This G2 still induces small
doubling since

∣∣V2
G2◦ V −1

2

∣∣ �
∣∣V1

G1◦ V −1
1

∣∣ � λ|V1| � Kλ|V2|.
Moreover, G2 is α/(2K2)-dense-connected since each of its edges comes from at most K2 pairs
of pre-images. Hence—using Theorem 4.1—we have∣∣V2 ◦ V −1

2

∣∣ � f
(
Kλ,α/

(
2K2)) · |V2| = λ∗|V2|.

Thus we have reduced part (B) to part (A) with another λ∗ = f (Kλ,α/(2K2)) in place of λ.
(C) and (D) are standard consequences as in Theorem 6.1. �

Problem 7.5. In the corresponding symmetric question, when we want |Φ ◦ Φ| to be small, how
should the ζi be related to each other and to L, in order to have |Φ ◦ Φ| � λn?

8. Image sets

For Φ ⊂ P and H ⊂ C we define Φ(H) = {φ(h); φ ∈ Φ, h ∈ H }. Moreover, for a bipartite
graph G on vertex sets Φ and H , we write ΦG(H) = {φ(h); φ ∈ Φ, h ∈ H, φ ∼ h} and call
them image sets.

For the special case of linear functions φi ∈ Φ of type φi(x) = aix + bi (i.e., not fractions)
the structure of small image sets was described in [5,6]. Linear fractions were the topic of [10].
The main result of this section is a common generalization of these. Before stating it, we give
two examples of small image sets:

Let H be a generalized arithmetic or geometric progression of dimension d . Define

Φ = {x → x + t; t ∈ H }
if H is a generalized arithmetic progression or

Φ = {x → x · t; t ∈ H }
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if H is a generalized geometric progression. Then, in either case,∣∣Φ(H)
∣∣ � 2d |H |.

Definition 8.1. We shall call these two constructions generalized image structures, based upon a
generalized arithmetic or geometric progression, respectively.

Actually, such a structure consists of a generalized arithmetic or geometric progression H and
a generalized composition progression Φ based upon H (see Remark 7.3).

If (Φ,H) is a generalized image structure as above and ζ ∈P arbitrary, then, for Φ ′ = ζ ◦ Φ ,
we still have |Φ ′(H)| = |Φ(H)| � 2d |H |. Extending our habit of calling Φ ′ a “left coset” of Φ ,
we shall even call the structure (Φ ′,H) a “left coset of (Φ,H).”

Theorem 8.2. Let Φ ⊂ P , H ⊂ C of size |Φ|, |H | � n and G a bipartite graph on vertex sets Φ

and H . Assume that∣∣ΦG(H)
∣∣ � λn.

(A) If G is a complete bipartite graph then Φ and H are contained in at most C1(λ) left cosets of
a generalized image structure, based upon a generalized arithmetic or geometric progression
of dimension at most C2(λ) and size not exceeding C3(λ) · n.

(B) If, for an α ∈ (0,1/2), the graph G is α-dense-connected, then the same conclusion holds
with constants Ci(λ,α) (i = 4,5,6) in place of those above.

(C) If, for a β > 0, each vertex of the graph G is incident upon at least βn edges, then Φ and
H are contained in left cosets of a bounded number, say C7(λ,β), of generalized image
structures, based upon generalized arithmetic or geometric progressions (some of which
may coincide), each of dimension at most C8(λ,β) and size not exceeding C9(λ,β) · n.

(D) If, for a γ ∈ (0,1/2) and a C > 1, the graph G has at least γ n2 edges while |Φ|, |H | � Cn,
then there exist Φ0 ⊂ Φ and H0 ⊂ H such that Φ0 and H0 are contained in a generalized
image structure, based upon a generalized arithmetic or geometric progression of dimen-
sion at most C10(C,λ, γ ) and size not exceeding C11(C,λ, γ ) · n. Moreover, G has at least
C12(C,λ, γ ) edges between Φ0 and H0.
(Consequently, |Φ0|, |H0| � C13(C,λ, γ ) · n.)

For the proof we need a bound on the number of incidences between points and certain curves
of the Euclidean or complex planes R2 and C2. The following lemma concerns graphs of func-
tions φ ∈ P that contain many points of a Cartesian product X × Y = {(x, y); x ∈ X, y ∈ Y }.

Lemma 8.3. Let X,Y ⊂ R or ⊂ C with |X|, |Y | � N and c ∈ (0,1) arbitrary. Then the number
of (real or complex) linear fractions in P whose graph passes through at least cN points of
X × Y cannot exceed

C(c) · N,

for a constant C(c) independent of N .

Proof. The real version was shown in [10] using a result of Pach–Sharir while the complex
version is proven (for arbitrary algebraic curves of bounded degree) in [12]. �
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Proof of Theorem 8.2. (A) is mentioned as Corollary 37 in [10]—though this time we shall not
use it for proving part (B).

(B) (as usual, this is the hard part). Assume that |ΦG(H)| � λn for an α-dense-connected
bipartite graph G on vertex sets Φ and H with |Φ|, |H | � n. For β = α2, define a new graph Gβ

on Φ by connecting two vertices if they have at least β|H | common neighbors in H . According
to Lemma 2.6, applied to U = Φ , V = H and the foregoing β , the new Gβ will be β-dense-con-
nected on Φ .

Note that if φ1, φ2 ∈ Φ are connected by an edge in Gβ then φ1 ◦ φ−1
2 maps at least β|H |

points of ΦG(H) to ΦG(H); namely, φ2(h) is mapped to φ1(h), for each common neighbor
h ∈ H of φ1 and φ2. Hence, by Lemma 8.3, the number of such distinct functions φ1 ◦ φ−1

2
(φ1 ∼ φ2 in Gβ ) cannot exceed C(λ,β) · N . In other words,

∣∣Φ Gβ◦ Φ−1
∣∣ � C(λ,β) · N � C(λ,β) · |Φ|.

Therefore, we can apply Theorem 7.1(B) and find an Abelian subgroup S, which, according to
Remark 7.2, is either S+ or a conjugate of S•, such that Φ is contained in a bounded number of
left cosets of S. More specifically, there is a K = K(λ,β), independent of n, together with some
ζ1, ζ2, . . . , ζK ∈ P , for which

Φ ⊂
K⋃

i=1

ζi ◦ S.

The rest of the proof follows that of Theorem 7.4(B). We pull back Φ to S by letting

Φ ′ def=
K⋃

i=1

ζ−1
i ◦ (

(ζi ◦ S) ∩ Φ
) = S ∩

K⋃
i=1

ζ−1
i ◦ Φ.

Obviously, |Φ ′| � |Φ|/K � n/K .
By pulling back elements of Φ , as a by-product, also the edges of G are altered: for each

edge, one vertex in Φ moves to S (while the other one in H does not change).
Denote the new graph by G′. Since each new edge originates from � K old ones, G′ will

be (α/K)-dense-connected on Φ ′ ∪ H . Depending on the additive or multiplicative nature of S,
we use Theorem 6.1(B) or 6.2(B) to find a generalized arithmetic or geometric progression H

and, based upon it, a generalized image structure which contains Φ ′ ∪ H . Finally, Φ ∪ H will be
contained in those cosets of this structure which correspond to the ζi .

(C) and (D) are standard consequences as in Theorem 6.1. �
9. Few directions

Definition 9.1. For a finite point set A ⊂ R2, we write

D(A)
def= #{directions of segments A1A2 | A1,A2 ∈A, A1 �= A2}.

We do not distinguish segments A1A2 and A2A1; thus two segments have equal directions if they
are parallel.

The study of sets which determine few distinct directions was initiated by Scott [22]. He
conjectured that, for any non-collinear planar point set, D(A) � |A| − 1. This was settled in the
affirmative by Ungar [23].
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However, the structure of the extremal configurations has not been described completely—let
alone that of the nearly extremal ones, i.e., of those for which |D(A)| � λ|A| for a constant λ > 1
and |A| large. Some examples of the latter are the following.

(a) n equidistant points on a circle (or, as their affine image, on an ellipse—even appropriate
points on a hyperbola or parabola will do);

(b) a
√

n × √
n square lattice also determines few directions;

(c) copies of a generalized arithmetic progression on each of C parallel lines;
(d) copies of a generalized geometric progression on each of C concurrent lines, with 0 at the

common point of intersection.

It was shown in [9] that if A contains � c|A| points on a line, together with � c|A| not on
that line, and D(A) � λ|A|, then A must be contained in one of the structures in the foregoing
(c) or (d). Now we extend this to a more general setting.

If G is a graph on vertex set A then we can also consider the set of directions determined by
pairs of points connected by an edge in G. Moreover, if A = A1 ∪A2 is a disjoint decomposition
and G is a bipartite graph on vertex sets A1,A2 then we write

DG(A1,A2)
def= #{directions of segments A1A2; Ai ∈ Ai , A1 ∼ A2}.

Theorem 9.2. Let A = A1 ∪A2 ⊂ R2 with |A1|, |A2| � c|A| and let A1 lie on a straight line l

while l ∩A2 = ∅. Assume that, for a bipartite graph G on vertex sets A1,A2, we have

DG(A1,A2) � λ|A|.

(A) If G is a complete bipartite graph then A is contained in a structure of type (c) or (d) above,
located on at most C1(c, λ) straight lines, based upon a generalized arithmetic or geometric
progression of dimension at most C2(c, λ) and size not exceeding C3(c, λ) · |A|.

(B) If, for an α ∈ (0,1/2), the graph G is α-dense-connected, then the same conclusion holds
with constants Ci(c,λ,α) (i = 4,5,6) in place of those above.

(C) If, for a β > 0, each vertex of the graph G is incident upon at least β|A| edges, then A is
contained in at most C7(c, λ,β) structures of type (c) or (d) above, each located on at most
C8(c, λ,β) straight lines, based upon generalized arithmetic or geometric progressions of
dimension at most C9(c, λ,β) and size not exceeding C10(c, λ,β) · |A|.

(D) If, for a γ ∈ (0,1/2), the graph G has at least γ |A|2 edges, then there exists an A∗ ⊂ A
contained in a structure of type (c) or (d) above, located on at most C11(c, λ, γ ) straight
lines, based upon a generalized arithmetic or geometric progression of dimension at most
C12(c, λ, γ ) and size not exceeding C13(c, λ, γ ) · |A|. Moreover, G has at least C14(c, λ, γ ) ·
|A|2 edges between A∗ ∩A1 and A∗ ∩A2.
(Consequently, |A∗ ∩A1|, |A∗ ∩A2| � C15(c, λ, γ ) · |A|.)

Proof. (A) is Theorem 2 in [9].
(B) can be reduced to Theorem 8.2 as follows. First, without loss of generality, assume that

A1 is located on the x-axis of a Cartesian coordinate system. Apply a polarity

(a, b, c) ↔ cx + by + az = 0

of the projective plane, where the point with projective coordinates (a, b, c) will correspond to
the line on the right and vice versa. (This mapping is known to be incidence preserving.) Then
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(i) points of the x-axis correspond to vertical lines; specifically so do points of A1;
(ii) points on the line at infinity correspond to horizontal lines; specifically so do the directions

counted in DG(A1,A2);
(iii) points of A2 correspond to neither vertical nor horizontal lines, i.e., to graphs of non-

constant linear functions.

Thus we have reduced the statement to Theorem 8.2.
(C) and (D) are standard consequences as in Theorem 6.1. �

10. Polynomials and rational functions

The results of this section (and those of the next one) follow much easier from those on
sumsets, than the theorems in the previous sections did.

Let F ∈ C[x, y] or F ∈ C(x, y) be a bivariate complex polynomial or rational function,
X,Y ⊂ C and G a bipartite graph whose vertex sets are disjoint copies of X and Y . G ⊂ X × Y

can be considered as a point set in C2 and so we shall write

F(G)
def= {

F(x, y); (x, y) ∈ G
}
.

During this section we shall be interested in functions F and large graphs (i.e., point sets) G ⊂
X × Y for which F(G) is not too much larger than the size of X and Y . The study of such
structures was initiated in [7,11].

Let F , X, Y , and G be as above, with |X| = |Y | = n. We say that F is λ-restricted on G ⊂
X × Y if |F(G)| � λn.

Examples of such functions are F(x, y) = x + y or F(x, y) = xy with λ = 2, for X = Y

an arithmetic or geometric progression, respectively, and G = X × Y . Also such generalized
progressions work well, possibly with higher values of λ. Moreover, compositions of univariate
polynomials f,g,h ∈ C[t] or rational functions ∈ C(t) of type

F(x, y) = f
(
g(x) + h(y)

)
or F(x, y) = f

(
g(x) · h(y)

)
will also have a small F(X,Y ), provided that g(X) and h(Y ) are in an appropriate progression.

Proposition 10.1. If F , X, Y are as above with |X| = |Y | = n, |F(G)| � λn for a G ⊂ X × Y

with |G| � γ n2, then there exist rational functions in one (complex) variable f,g,h ∈ C(t) such
that F(x, y) = f (g(x) + h(y)) or F(x, y) = f (g(x) · h(y))—provided that |X| = |Y | = n >

n0(β,λ,degF). Moreover, if F ∈ C[x, y] is a polynomial, then we can find such polynomials in
one (complex) variable f,g,h ∈ C[t].
Proof. See [11], Theorem 4 and a note added in proof, ibid. �

We can even describe the structure of X and Y —actually that of g(X) and h(Y )—if F does
not degenerate to a function of just x or y.

Definition 10.2. We say that F is degenerate if F(x, y) = f (x) or F(x, y) = g(y), independently
from the other variable. Otherwise it is non-degenerate.

Theorem 10.3. If, in Proposition 10.1, F ∈ C(x, y) is non-degenerate and any of the assumptions
(A)–(D) in Theorem 6.1 holds for G (considered as a bipartite graph on vertex sets X,Y ) then
the corresponding conclusion also holds for the sets A = g(X), B = g(Y ).
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Proof. Of course, we shall use Proposition 10.1 and then Theorem 6.1. However, there are some
technical details to consider.

Since any of the assumptions (A)–(D) imply |G| � γ n2, we can really use Proposition 10.1 to
find appropriate functions f , g and h. None of these can be a constant since F is non-degenerate.
Therefore, they take each value at most degF times, whence

min
{∣∣g(X)

∣∣, ∣∣h(Y )
∣∣} � n

degF

def= N.

Define a new graph G1 on vertex sets which are disjoint copies of g(X) and h(Y ) by connecting
g(x) to h(y) if (x, y) ∈ G. Then each new edge comes from not more than (degF)2 old ones;
thus all four graph properties (A)–(D) are maintained—perhaps with smaller values of α, β

and γ . Moreover,

∣∣g(X)
G1+ h(Y )

∣∣ � degF · ∣∣f (
g(X)

G1+ h(Y )
)∣∣ � degF · ∣∣F(G)

∣∣ � λdegF · n
= λ(degF)2N.

This way we have really reduced the statement to Theorem 6.1, with N in place of n and
λ(degF)2 in place of λ. �
11. Few distances

Let s and t be two straight lines in the Euclidean plane, while U and V two collinear sets of n

points each, located on s and t , respectively. Is it possible that, among the n2 distances d(Ui,Vj )

(for Ui ∈ U , Vj ∈ V), only some λn are distinct? The answer is in the affirmative, e.g.,

(a) if the two lines are parallel and U , V form suitable arithmetic progressions;
(b) or the two lines are orthogonal, say they are the axes of a Cartesian coordinate system, and

the distances from the origin to the points of U and V are the square roots of an arithmetic
progression.

It used to be a problem of Purdy (solved in [11]) that no example exists with the lines neither
parallel nor orthogonal, provided that n > n0(λ).

Let G be a graph on vertex sets U and V . In what follows we shall also consider smaller sets
of distances like

DG(U,V)
def= {

dist(U,V ); U ∈ U, V ∈ V, U ∼ V
}

and, even if just this set is small, we shall characterize the point sets U and V .

Theorem 11.1. Let s, t , U and V be as above with |U |, |V| � n and assume that |DG(U,V)| � λn

for a bipartite graph G on vertex sets U,V . If any of the assumptions (A)–(D) in Theorem 6.1
holds for G then

(i) either s and t are parallel (say both are horizontal in a Cartesian coordinate system) and
the sets of their x-coordinates satisfy the conclusion of the corresponding part (A)–(D) in
Theorem 6.1;

(ii) or s and t are orthogonal (say they are the horizontal and vertical axes, respectively, of a
Cartesian coordinate system) and the sets of the squares of the x-coordinates of the points
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in U and of the squares of the y-coordinates of the points in V satisfy the conclusion of the
corresponding part (A)–(D) in Theorem 6.1.

Proof. If s and t do intersect then our assumption, by the cosine theorem, is equivalent to the
condition that the polynomial F(x, y) = x2 + 2μxy + y2 satisfies |F(G)| � λn. Hence, by
Proposition 10.1, F must be of one of the forms f (g(x) + h(y)) or f (g(x) · h(y)), for some
polynomials f,g,h ∈ C[t]. It is not difficult to show (it was also done in [11, Theorem 3]) that
this is only possible if μ = 0 or ±1.

Thus we have eliminated pairs of lines which are neither parallel nor orthogonal. In the re-
maining two cases we use Theorem 6.1 either directly or through the Pythagorean theorem. �
Remark 11.2. An interesting situation occurs here. It was shown in [8] that even if the number of
distinct distances only obeys the much weaker upper bound of n5/4, then the two lines must still
be parallel or orthogonal. However, no result in Additive Number Theory is known that could
help characterizing the structure of the point sets under this weak assumption.
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