Asymptotic distribution of the LR statistic for equality of the smallest eigenvalues in high-dimensional principal component analysis

Yasunori Fujikoshi, Takayuki Yamada*, Daisuke Watanabe, Takakazu Sugiyama

Department of Mathematics, Graduate School of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Received 23 May 2006
Available online 22 December 2006

Abstract

This paper deals with the distribution of the LR statistic for testing the hypothesis that the smallest eigenvalues of a covariance matrix are equal. We derive an asymptotic null distribution of the LR statistic when the dimension \(p \) and the sample size \(N \) approach infinity, while the ratio \(p/N \) converging on a finite nonzero limit \(c \in (0,1) \). Numerical simulations revealed that our approximation is more accurate than the classical chi-square-type approximation as \(p \) increases in value.

© 2006 Elsevier Inc. All rights reserved.

AMS 1991 subject classification: 62H10; 62E20

Keywords: Asymptotic distribution; High-dimensional principal component; LR statistic; Equality of the smallest eigenvalues

1. Introduction

Let \(x_1, \ldots, x_N \) be a sample of size \(N \) from a \(p \)-variate normal distribution with an unknown mean vector and an unknown covariance matrix \(\Sigma \). Let \(\lambda_1 \geq \cdots \geq \lambda_p > 0 \) be the eigenvalues of \(\Sigma \). We consider the problem of testing the hypothesis that the smallest \(m = p - q \) eigenvalues of \(\Sigma \) are equal; that is, we test the following hypothesis:

\[
H_0: \lambda_{q+1} = \cdots = \lambda_p (= \lambda, \text{unknown}).
\]

* Corresponding author.
E-mail address: yma@math.chuo-u.ac.jp (T. Yamada).
This problem is important, because in applications of principal component analysis, we are usually interested in the number of q for which the first q principal components include most of the information contained within the covariance matrix Σ and the remaining principal components have almost the same small variances.

Let

$$\bar{x} = \frac{1}{N} \sum_{j=1}^{N} x_i$$

and

$$S = \frac{1}{N-1} \sum_{j=1}^{N} (x_j - \bar{x})(x_j - \bar{x})'.$$

The likelihood ratio test rejects the hypothesis H_0 for small values of

$$V = \frac{\prod_{j=q+1}^{p} \phi_j(S)}{\left\{ \frac{1}{m} \sum_{j=q+1}^{p} \phi_j(S) \right\}^m},$$

where for any square matrix A the notation $\phi_j(A)$ denotes its jth largest eigenvalue (see e.g., [4, p. 406]). Note that the likelihood ratio statistic V is defined only for $N - 1 \geq p$. When we consider the null distribution of V, there is no loss of generality that Σ may be diagonal, because the eigenvalues of S are the same as those of $Q'SQ$ for any orthogonal matrix Q. Furthermore, V is invariant due to the multiplication of S by a positive scalar. Therefore, under H_0, we may assume that $\Sigma = \text{diag}(\lambda_1/\lambda, \ldots, \lambda_q/\lambda, 1, \ldots, 1)$. For notational simplicity, we write

$$\Sigma = \text{diag}(\lambda_1, \ldots, \lambda_q, 1, \ldots, 1).$$

(1)

Here, λ_i should read as $\tilde{\lambda}_i = \lambda_i/\lambda$.

In the special case $q = 0$, Wakaki [8] derived the limiting distribution. However, Schott [7] proposed a statistic that can be used for $n = N - q - 1 < p$ and derived the asymptotic null distribution of this statistic when p/n tends to some positive constant. By applying the aforementioned ideas to our case, we derive an asymptotic null distribution of the LR statistic in a high-dimensional framework such that

$A1 : q; \text{fix}, \ n \rightarrow \infty, \ m \rightarrow \infty, \ m/n \rightarrow c \in (0, 1)$.

$A2 : \lambda_j = O(m), \ j = 1, \ldots, q.$

We used numerical simulations to demonstrate that our approximation is more accurate than the classical chi-square-type approximation as p increases in value.

2. Main theorem

Let S be partitioned as

$$\begin{pmatrix}
S_{11} & S_{12} \\
S_{12}' & S_{22}
\end{pmatrix},$$

where S_{11}, S_{12} and S_{22} are $q \times q, q \times m$ and $m \times m$ matrices, respectively. First, we consider

$$\tilde{V} = \frac{\det (S_{22:1})}{\left\{ \frac{1}{m} \text{tr} (S_{22:1}) \right\}^m},$$
instead of V, where $S_{22,1} = S_{22} - S_{12}^{-1}S_{11}$. Without loss of generality from the invariance property of the statistic \tilde{V}, $S_{22,1}$ may be distributed as a central Wishart distribution $W_m(n, I_m)$. The characteristic function of log \tilde{V} is expressed as

$$m^{mit} \frac{\Gamma(mn/2) \Gamma_m(n/2)}{\Gamma(mn/2 + mit) \Gamma_m(n/2)}$$

where the function $\Gamma_m(\cdot)$ is the m-variate gamma function (see e.g., [4, pp. 342 and 62]) defined as

$$\Gamma_m(a) = \pi^{m(m-1)/4} \prod_{j=1}^m \Gamma(a - \frac{1}{2}(j-1)).$$

Therefore, the cumulant-generating function of log \tilde{V} is expanded as follows:

$$\log E[\exp(it \log \tilde{V})] = it \mu_{m,n} + \frac{1}{2}(it)^2 \sigma_{m,n}^2 + \frac{1}{6}(it)^3 \gamma_{3,m,n} + \cdots,$$

where

$$\mu_{m,n} = m \log m - m \psi\left(\frac{mn}{2}\right) + \psi_m\left(\frac{n}{2}\right),$$

$$\sigma_{m,n}^2 = \psi'\left(\frac{n}{2}\right) - m^2 \psi'\left(\frac{mn}{2}\right),$$

$$\gamma_{k,m,n} = \psi_m^{(k-1)}\left(\frac{n}{2}\right) - m^k \psi^{(k-1)}\left(\frac{mn}{2}\right)$$

for any integer $k \geq 3$. Here, $\psi(\cdot)$ is the digamma function defined by

$$\psi(a) = \frac{d}{da} \log \Gamma(a) = -C + \sum_{k=0}^{\infty} \left(\frac{1}{1 + k} - \frac{1}{a + k} \right) = O(\log a),$$

where C is the Euler constant, and

$$\psi_m(a) = \sum_{j=1}^m \psi\left(a - \frac{1}{2}(j-1)\right).$$

Noting that

$$\psi^{(s)}(a) = \sum_{k=0}^{\infty} \frac{-s(-1)^s}{(a+k)^{s+1}} = O(a^{-s}),$$

we can see that

$$\sigma_{m,n}^2 = O(1) \quad \text{and} \quad \gamma_{k,m,n} = O_p(n^{-(k-2)})$$

under the condition A1. Therefore, the characteristic function of $(\log \tilde{V} - \mu_{m,n})/\sigma_{m,n}$ can be expanded as

$$\exp \left\{ \frac{1}{2} (it)^2 \left[1 + \frac{1}{6\sigma_{m,n}^2} (it)^3 \gamma_{3,m,n} \right] + O(n^{-2}) \right\}.$$

Formally inverting this function leads to the following theorem.
Theorem 1. Under conditions (1) and A1, the distribution function of \(\log \tilde{V} \) can be expanded as

\[
\Pr \left(\frac{\log \tilde{V} - \mu_{m,n}}{\sigma_{m,n}} \leq x \right) = \Phi(x) - \frac{1}{6\sigma_{m,n}^3} \gamma_{3,m,n} \phi(x) (x^2 - 1) + O(n^{-2}),
\]

where \(\Phi(\cdot) \) and \(\phi(\cdot) \) are the distribution function of the standard normal distribution and its derivative. The constants \(\mu_{m,n}, \sigma_{m,n} \) and \(\gamma_{3,m,n} \) are defined by (2) with \(m = p - q \) and \(n = N - q - 1 \).

Note that Theorem 1 was essentially derived by Wakaki [8], since he has presented a similar asymptotic expansion of the null distribution of the LR criterion for testing \(\Sigma = \sigma^2 I_p \).

Next, we link \(\log V \) and \(\log \tilde{V} \), which is crucial for our derivation of an asymptotic distribution of \(\log V \).

Lemma 1. Under conditions (1), A1 and A2, \(\log V \) converges in probability to \(\log \tilde{V} \).

The proof of Lemma 1 is presented in Section 4. We can write

\[
\frac{\log V - \mu_{m,n}}{\sigma_{m,n}} = \frac{\log \tilde{V} - \mu_{m,n}}{\sigma_{m,n}} + \frac{\log V - \log \tilde{V}}{\sigma_{m,n}}.
\]

According to Theorem 1 and Lemma 1, the first term on the right-hand side of the above equation converges in distribution on \(N(0, 1) \), and the second term converges in probability to 0. Therefore, using Slutzky’s theorem (see e.g., [6]) we have the following main theorem (Theorem 2).

Theorem 2. Under conditions (1), A1 and A2, it holds that

\[
\frac{\log V - \mu_{m,n}}{\sigma_{m,n}} \overset{d}{\to} N(0, 1),
\]

where \(\overset{d}{\to} \) denotes convergence in distribution and the constants \(\mu_{m,n} \) and \(\sigma_{m,n} \) are defined by (2) with \(m = p - q \) and \(n = N - q - 1 \).

3. Simulation results

This section presents the results of numerical simulations to demonstrate the effectiveness of our theorem of the asymptotic normality of \(Z_{m,n} = (\log V - \mu_{m,n})/\sigma_{m,n} \) for some values of \(m \) and \(n \). In all our simulations, we took the common smallest eigenvalue to be 1 and we set \(\lambda_i = \rho_i m / (1 - \sum_{j=1}^q \rho_j) \), which is the same model as in Schott [7], for \(i = 1, \ldots, q \), \(N = 100 \), \(p = 10, 20, 30, 40, 50, 60, 70, 80 \) and 90, and \(q = 2 \). In Table 1, we list the estimated significance levels for \(Z_{m,n} \) calculated by using 1,000,000 repetitions for the case in which \(\rho_1 = 0.56 \) and \(\rho_2 = 0.24 \) with nominal significance levels of 0.01, 0.05, 0.50, 0.95, and 0.99.

To compare these results with the test based on the classical chi-square approximation (see e.g., [2]), we list the significance levels for \(-c_{m,n} \log \Lambda \) in Table 2 using the same setting as for the simulation presented in Table 1, where \(c_{m,n} = 1 - (2m^2 - m + 2)/(6mn) \) is Bartlett correction factor (see e.g., [2]).

Tables 1 and 2 illustrate that our new approximation is more accurate than the classical chi-square approximation, except when \(p = 10 \). Furthermore, the data in Table 2 indicate that the
chi-square approximation becomes increasingly inaccurate as the value of p increases for a fixed value of N.

4. Proof of Lemma 1

In this section, we prove Lemma 1 under conditions (1), A1 and A2. For this purpose, it is sufficient to show that

(i) $\log \det (S_{22,1}) - \log \left\{ \prod_{j=q+1}^{p} \phi_j(S) \right\} = o_p(1),$

(ii) $m \log \left\{ \frac{1}{m} \text{tr} S_{22,1} \right\} - m \log \left\{ \frac{1}{m} \sum_{j=q+1}^{p} \phi_j(S) \right\} = o_p(1).$

Previously, Schott [7] proved that

$$\frac{1}{m} \sum_{j=q+1}^{p} \phi_j(S) - \frac{1}{m} \text{tr} S_{22,1} = o_p(n^{-1}). \quad (3)$$

Note that S and $S_{22,1}$ are theoretically positive definite matrix under condition A1.

Let the inverse matrix of S can be expressed as

$$S^{-1} = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix},$$
where T_{22} is expressed as S_{22}^{-1}. Applying the Poincaré separation theorem (see e.g., [5]) to S^{-1}, we find that $\phi_j(T_{22}) \leq \phi_j(S^{-1})$ for $j = 1, \ldots, m$, and so that $\phi_{m-j+1}(T_{22}^{-1}) \leq \phi_{m-j+1}(S)$. Hence, it holds that

$$1 \leq \prod_{j=1}^m \frac{\phi_{m-j+1}(T_{22}^{-1})}{\phi_{p-j+1}(S)} = \frac{\det(S_{22}^{-1})}{\prod_{j=q+1}^p \phi_j(S)},$$

or equivalently

$$0 \leq \log \det(S_{22}^{-1}) - \log \left(\prod_{j=q+1}^p \phi_j(S) \right) = \sum_{j=1}^m \left(\log \phi_j(S_{22}^{-1}) - \log \phi_{q+j}(S) \right).$$

Let $F_j(t)$ be a real-valued function on $[0, 1]$ defined by

$$F_j(t) = \log \{(\phi_j(S_{22}^{-1}) + 1) - t\} - \log \{(\phi_{q+j}(S) + 1) - t\}.$$

It is found from Tayler’s theorem that there exists θ_j in $(0, 1)$ such that $F_j(1) = F_j(0) + F'_j(\theta_j)$, and hence

$$\log \phi_j(S_{22}^{-1}) - \log \phi_{q+j}(S) = \log (\phi_j(S_{22}^{-1}) + 1) - \log (\phi_{q+j}(S) + 1)$$

$$+ \frac{\phi_j(S_{22}^{-1}) - \phi_{q+j}(S)}{(\phi_j(S_{22}^{-1}) + 1 - \theta_j)(\phi_{q+j}(S) + 1 - \theta_j)}.$$

Since $\log (1 + x) - \log (1 + y) \leq \log (1 + x - y)$ for $0 < y < x$, it holds that

$$\log (\phi_j(S_{22}^{-1}) + 1) - \log (\phi_{q+j}(S) + 1)$$

$$\leq \log (1 + \phi_j(S_{22}^{-1}) - \phi_{q+j}(S))$$

$$\leq (\phi_j(S_{22}^{-1}) - \phi_{q+j}(S)),$$

for $j = 1, \ldots, m$, where the last inequality follows from the fact that $\log (1 + x) \leq x$ for $x \geq 0$. Furthermore, for $j = 1, \ldots, m$, we have

$$\frac{\phi_j(S_{22}^{-1}) - \phi_{q+j}(S)}{(\phi_j(S_{22}^{-1}) + 1 - \theta_j)(\phi_{q+j}(S) + 1 - \theta_j)} \leq \frac{\phi_j(S_{22}^{-1}) - \phi_{q+j}(S)}{(\phi_j(S_{22}^{-1}) + 1 - \theta_j)(\phi_{q+j}(S) + 1 - \theta_j)} \leq \frac{\phi_j^2(S)}{\phi_{q+j}^2(S)}.$$

Therefore, it holds that

$$0 \leq \sum_{j=1}^m \{ \log \phi_j(S_{22}^{-1}) - \log \phi_{q+j}(S) \}$$

$$\leq \left(1 + \frac{1}{\phi_p^2(S)} \right) \sum_{j=1}^m \{ \phi_j(S_{22}^{-1}) - \phi_{q+j}(S) \}.$$

It follows from Bai and Yin [1] that

$$\phi_p(S) \rightarrow (1 - c^{1/2})^2 \text{ a.s., since } p/n \rightarrow c \in (0, 1).$$

(5)
This implies that the right-hand side of the inequality (4) is \(o_p(1) \), since result (3) holds. Consequently, result (i) holds.

Otherwise, result (3) implies that
\[
1 \leq \frac{\text{tr}(S_{22,1})}{\sum_{j=q+1}^{p} \phi_j(S)} \leq 1 + o_p(n^{-1})
\]
since \(\sum_{j=q+1}^{p} \phi_j(S) \geq m \phi_p(S) \) and result (5). Therefore, we can find that
\[
0 \leq \log \{\text{tr}(S_{22,1})\} - \log \left\{ \sum_{j=q+1}^{p} \phi_j(S) \right\} = o_p(n^{-1}),
\]
which leads to the result (ii). From (i) and (ii), it is clear that \(\log V \) converges in probability to \(\log \tilde{V} \).

Note that Lemma 1 can be derived under the condition represented by a general subsequence for \(m \) and \(n \) as in Lodoit and Wolf [3] and Schott [7].

Acknowledgments

The authors would like to thank two referees for their useful comments and careful readings.

References