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Abstract

We introduce a class of robust estimates for multivariate linear models. The regression coefficients and the
covariance matrix of the errors are estimated simultaneously by minimizing the determinant of the covariance
matrix estimate, subject to a constraint on a robust scale of the Mahalanobis norms of the residuals. By
choosing a �-estimate as a robust scale, the resulting estimates combine good robustness properties and
asymptotic efficiency under Gaussian errors. These estimates are asymptotically normal and in the case
where the errors have an elliptical distribution, their asymptotic covariance matrix differs only by a scalar
factor from the one corresponding to the maximum likelihood estimate. We derive the influence curve and
prove that the breakdown point is close to 0.5. A Monte Carlo study shows that our estimates compare
favorably with respect to S-estimates.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let yi = (yi1, . . . , yiq)′ and xi = (xi1, . . . , xip)′, 1� i�n, be the response and predictor
vectors satisfying the multivariate linear model (MLM)

yi = B ′
0xi + ui, (1.1)
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where B0 is a p × q matrix and u1, . . . , un are i.i.d. q-dimensional vectors. The xi’s may be fixed
or random, and in the latter case we assume that they are i.i.d. and independent of the ui’s. If the
model includes an intercept, then xip = 1. We denote the distributions of ui and xi by F0 and by
M0, respectively.

Assuming that the errors ui’s have a multivariate normal distribution with mean 0 and covari-
ance matrix �0(Nq(0, �0)), the maximum likelihood estimator (MLE) of B0 can be obtained by
computing the least squares estimate (LSE) for each component of y separately, and the MLE of
�0 is the sample covariance matrix of the corresponding residuals. As it is well known, the LSE
is extremely sensitive to outliers. In fact, just one observation may have an unbounded effect on
this estimate.

The first proposal of a robust estimate for the MLM was given by Koenker and Portnoy [10].
They proposed to apply a regression M-estimator based on a convex �-function to each coordinate
of the response vector. This proposal has two disadvantages: lack of affine equivariance and a null
breakdown point. The second problem may be overcome by replacing the M-estimator by a high
breakdown point estimate, but we would still lack affine equivariance.

Recently, several robust equivariant estimates for the MLM have been proposed.
Rousseeuw et al. [15] proposed estimates for the MLM based on a robust estimate of the covari-
ance matrix of z = (x′, y′)′. A different approach based on extending estimates of multivariate
location and scatter was followed by Bilodeau and Duchesne [2] who extended the S-estimates
introduced by Davies [4], and by Agulló et al. [1] who extended the minimum covariance deter-
minant estimate introduced by Rousseeuw [13].

All these estimates have a high breakdown point and therefore a good robustness behavior.
However, they are not highly efficient when the errors are Gaussian and q is small. Agulló et
al. [1] improved the efficiency of their estimates, maintaining their high breakdown point, by
considering one-step reweighting and one-step Newton–Raphson GM-estimates.

In this paper we propose robust estimates for the MLM by extending the �-estimates of multivari-
ate location and scatter proposed by Lopuhaä [11]. We show that these estimates simultaneously
have a high breakdown point and a high efficiency under Gaussian errors.

In Section 2 we define �-estimates for MLM. In Section 3 we study their breakdown point
and in Section 4 we derive the influence curve. In Section 5 we study the asymptotic prop-
erties (consistency and asymptotic normality) of the �-estimates assuming random regressors
and errors with an elliptical unimodal distribution. In Section 6 we describe a computing al-
gorithm based on an iterative weighted MLE. In Section 7 we present the results of a Monte
Carlo study and a real example in Section 8. In the Appendix we derive some mathematical
results.

2. Estimates based on a robust scale for the MLM

Let (xi, yi), 1� i�n, satisfy the MLM (1.1), where the ui are i.i.d. random vectors. Let X be
the n × p matrix whose ith row is x′

i and Y the n × q matrix whose ith row is y′
i . In the rest of the

paper we will assume that the rank of X is p. For any p × q matrix B define the residuals ûi (B) as

ûi (B) = yi − B ′xi, 1� i�n. (2.1)
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The MLE of B0 and �0 when the distribution of the ui’s is multivariate normal with mean 0
and covariance matrix �0 are given by

B̂ = (X′X)−1X′Y,

and

�̂ = 1

n

n∑
i=1

ûi (B̂)̂u′
i (B̂). (2.2)

Let di(B, �) be the Mahalanobis norms of the residuals, given by

di(B, �) = (̂u′
i (B)�−1ûi (B))1/2, 1� i�n.

If the n × (p + q) matrix (X, Y ) has rank (p + q) then det(�̂) �= 0. In this case the MLE of B
and � also satisfy

(B̂, �̂) = arg min
B,�

det(�) (2.3)

subject to

1

n

n∑
i=1

d2
i (B, �) = q. (2.4)

This follows from two facts: (i) the MLE of (B0, �0) minimizes
(
n log |�| + ∑n

i=1 d2
i (B,

�)) and (ii) (2.2) implies that the MLE satisfies (2.4).
Given a sample v1, . . . , vn, let s(v1, . . . , vn) be the scale estimate defined as the square root of

the mean squared error (RMSE), that is

s(v1, . . . , vn) =
(

1

n

n∑
i=1

v2
i

)1/2

. (2.5)

Then constraint (2.4) can also be expressed as

s2(d1(B, �), . . . , dn(B, �)) = q. (2.6)

One way of defining robust estimates of B0 and of a scatter matrix �0 of the ui’s is by (2.3)
and (2.6), but replacing the scale s defined in (2.5) by a robust scale.

Huber [9] introduced the M-estimates of scale. For a sample v = (v1, . . . , vn), an M-estimate
of scale s(v1, . . . , vn) is defined by the value s satisfying

1

n

n∑
i=1

�

( |vi |
s

)
= �. (2.7)

When v1, . . . , vn is a random sample of any arbitrary distribution H, s(v1, . . . , vn) converges
to s0 defined by � = EH (� (|v|/s0)). If we wish to calibrate the M-scale so that s0 = 1, we
should take � = EH (� (|v|)).

The function � should satisfy the following properties:

(A1) �(0) = 0.
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(A2) 0�v�v∗ implies �(v)��(v∗).
(A3) � is continuous.
(A4) 0 < A = supv �(v) < ∞.
(A5) If �(u) < A and 0�u < v, then �(u) < �(v).

One measure of the degree of robustness of an estimate is the breakdown point introduced by
Hampel [6]. Roughly speaking, the breakdown point of an estimate is the smallest fraction of
outliers that is required to take the estimate to an extreme value. In the case of scale estimates,
the two possible extreme values are zero or infinity (“implosion” and “explosion” breakdown,
respectively). Huber [9] proved that the breakdown point to infinity of an M-estimate of scale is
�∗∞ = �/A and the breakdown point to zero is �∗0 = 1 − �/A. Then, the asymptotic breakdown
point of this scale estimate is �∗ = min (�/A, 1 − �/A), and taking �/A = 0.5 we obtain the
highest possible breakdown point, �∗ = 0.5.

Bilodeau and Duchesne [2] proposed a class of robust estimates, called S-estimates, for the
seemingly unrelated equations (SUE) model. The SUE model is more general than the MLM,
since it allows different regressor vectors for each of the equations. When applied to the MLM,
the S-estimates are defined by (2.3) and (2.6) where s is an M-estimate of scale.

Croux [3] proved that M-estimates of scale can combine a high breakdown point with high
efficiency under normality. However, Hossjer [8] showed that estimates of regression based on
an M-scale cannot combine both properties. To overcome this limitation, Yohai and Zamar [17]
proposed �-estimates of scale, defined as follows: consider two functions �1 and �2 satisfying
A1–A5 and an arbitrary distribution H , and put

�i = EH (�i (|v|)), i = 1, 2. (2.8)

Let s(v) be the M-estimate of scale defined in (2.7) with � = �1 and � = �1. Below we specify
which H will be used to define �1. The �-estimate of the scale of v = (v1, . . . , vn) is defined by

�2(v) = s2(v)
1

n

n∑
i=1

�2

( |vi |
s (v)

)
. (2.9)

The estimate �(v) converges to �2 when the vi are independent variables with distribution H.
Yohai and Zamar [17] defined �-estimates of univariate regression by the minimization of a

�-scale of the residuals. Put �i (v) = �′
i (v), i = 1, 2. To guarantee the Fisher consistency of the

�-estimates of regression, it is required that �2 satisfy the following condition:

(A6) �2 is continuously differentiable and 2�2(v) − �2(v)v > 0 for v > 0.

Yohai and Zamar [17] also showed that by properly choosing �1 and �2, the �-estimates of
regression combine breakdown point 0.5 with a high Gaussian asymptotic efficiency.

Here we extend �-estimates to the MLM model by defining(
B̃, �̃

) = arg min
B,�

det(�) (2.10)

subject to

�2(d1(B, �), . . . , dn(B, �)) = �2, (2.11)

where the scale � is defined in (2.9). The values of �1, �2 are chosen using (2.8) with H =
H00, the distribution of (u′

i�
−1
0 ui)

1/2 under a nominal distribution. Let H0 be the distribution of
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(u′
i�

−1
0 ui)

1/2. Since H0 is unknown, H00 may not coincide with H0. To prevent H00 from being
dependent on �0, the nominal model should be elliptical, for example the multivariate normal. In
this case H00 is the distribution of

√
v, where v has a chi-square distribution with q degrees of

freedom. We will see in Theorem 4 that if the true distribution F0 of ui is elliptical, the estimate
B̃ converges to B0 and �̃ to ��0, even if H00 �= H0. If H00 = H0, we have � = 1.

Let h be the maximum number of observations (xi, yi) lying in a hyperplane, i.e.,

h = max‖a‖+‖b‖>0
#{i: a′xi + b′yi = 0} (2.12)

and

� = �1

maxu �1(u)
. (2.13)

It can be shown that if �1 and �2 satisfy A1–A5 and h/n < 1 − �, then there exists a (B̃, �̃)

solution to the optimization problem defined by (2.10) and (2.11) with
∣∣�̃∣∣ > 0. The proof of this

is similar to the proofs of Lemmas 4 and 5 of the Appendix. As we will see in Section 3, to obtain
a high breakdown point �-estimate, � should be close to 0.5. If there are multiple solutions we
take any of them.

Comparing (2.10) and (2.11) with (2.3) and (2.6), we observe that the MLE may be considered
as a �-estimate corresponding to the unbounded function �2(v) = v2 and �2 = q.

It is easy to show that when there is only one regressor variable identically equal to one, the
�-estimates B̃ and �̃ defined here are the estimates of multivariate location and scatter introduced
by Lopuhaä [11]. When q = 1, they are the �-estimates of regression proposed by Yohai and
Zamar [17].

It can be verified that �-estimates are affine and regression equivariant.
In Theorem 1 we obtain the estimating equations of �-estimates. Define

d∗
i (B, �) = di(B, �)

s(d1(B, �), . . . , dn(B, �))

and let Cn = Cn(B, �), Dn = Dn(B, �), �∗
n = �∗

n,B,� and w∗
n be defined by

Cn = 1

n

n∑
i=1

(
2�2(d

∗
i (B, �)) − �2(d

∗
i (B, �))d∗

i (B, �)
)
,

Dn = 1

n

n∑
i=1

�1(d
∗
i (B, �))d∗

i (B, �),

�∗
n(v) = Cn�1(v) + Dn�2(v) (2.14)

and

w∗
n(v) = �∗

n(v)

v
. (2.15)

Theorem 1. Suppose that �1 and �2 are differentiable. Then the �-estimates satisfy the following
equations:

n∑
i=1

w∗
n(d

∗
i (B̃, �̃))̂ui(B̃)x′

i = 0 (2.16)
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and

�̃ = q
∑n

i=1 w∗
n(d

∗
i (B̃, �̃))̂ui(B̃)̂u′

i (B̃)

s̃2
∑n

i=1 �∗
n(d

∗
i (B̃, �̃))d∗

i (B̃, �̃)
, (2.17)

where ûi (B) is defined in (2.1) and s̃ = s(d1(B̃, �̃), . . . , dn(B̃, �̃)).

The proof of this theorem can be found in the Appendix.

Remark. Observe that according to (2.16), the jth column of B̃ is the weighted LSE corresponding
to the univariate regression whose dependent variable is the jth component of y, the vector of
independent variables is x and the observation i receives weight w∗

n(d
∗
i (B̃, �̃)). Besides, by (2.17),

�̃ is proportional to the weighted sample covariance of the residuals with the same weights. Since
these weights depend on the estimates B̃ and �̃, we cannot use these relationships to compute the
estimates, but they will be the base of the iterative algorithm described in Section 6.

3. Breakdown point

Donoho and Huber [5] introduced the concept of a finite sample breakdown point (FSBDP).
For the case of the MLM, let B̂ and �̂ be estimates of B and �. The FSBDP of B̂ is the smallest
fraction of outliers that makes this estimate unbounded, and the FSBDP of �̂ the smallest fraction
of outliers that makes this estimate unbounded or singular. To formalize this, let Z be a data set
of size n corresponding to an MLM, Z = {z1, . . . , zn}, zi = (x′

i , y
′
i )

′, xi ∈ Rp, yi ∈ Rq . Let Zm

be the set of all the samples Z∗ = {z∗
1, . . . , z

∗
n} such that #{i : zi = z∗

i }�n − m. Given estimates

B̂ and �̂, denote by �̂1 � · · · � �̂q the eigenvalues of �̂,

Sm(Z, B̂) = sup{‖B̂(Z∗)‖, Z∗ ∈ Zm},
where ‖ ‖ is the l2 norm, and let

S−
m(Z, �̂) = inf {̂�1(�̂(Z∗)), Z∗ ∈ Zm}

and

S+
m(Z, �̂) = sup{̂�q(�̂(Z∗)), Z∗ ∈ Zm}.

Definition. The finite sample breakdown point of B̂ is defined by ε∗(Z, B̂) = m∗/n where

m∗ = min
{
m : Sm(Z, B̂) = ∞

}
and the breakdown point of �̂ by ε∗(Z, �̂) = m∗/n where

m∗ = min

{
m : 1

S−
m(Z, �̂)

+ S+
m(Z, �̂) = ∞

}
.

The following theorem, whose proof can be found in the Appendix, gives a lower bound for
the breakdown point of �-estimates.

Theorem 2. Let Z = {z1, z2, . . . , zn} with zi = (x′
i , y

′
i )

′, h as defined in (2.12), and � as defined
in (2.13). Assume that �1 and �2 satisfy A1–A5; then a lower bound for ε∗(Z, �̃) and ε∗(Z, B̃) is
given by min((1 − �) − (h/n), �).
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The maximum breakdown point is (n − h)/(2n) and corresponds to � = (n − h)/(2n). The
minimum value of h is p+q −1. If h = p+q −1, we say that the points are in a general position.
If � = (n − h)/(2n) and h = p + q − 1, we obtain that ε∗(Z, �̃) and ε∗(Z, B̃) are larger than or
equal to 0.5 − ((p + q − 1)/(2n)), and then in this case the two breakdown points are close to
0.5 for large n.

4. Influence function

Consider a random variable z ∈ Rk with distribution G�, where � ∈ � ⊂ Rm. Let T be
an estimating functional of �, i.e., T is defined on a set of distributions G on Rk , including
the empirical distributions and the contamination neighborhoods of G�, and takes values on
�. Suppose that T is Fisher consistent, i.e. T (G�) = �. Given a sample z1, z2, . . . , zn of G�,
the estimate �̂ associated to T is defined as T (Gn), where Gn is the corresponding empirical
distribution. The influence function of T measures the effect on the functional of a small fraction
of point mass contamination ([7]). More precisely, let 	z be the point mass distribution at z and
G�,ε = (1 − ε)G� + �	z, then the influence function is defined by

IF(z, T , �) = lim
ε−→0

T (G�,ε) − T (G�)

ε
= �

�ε
T (G�,ε)

∣∣∣∣
ε=0

.

In our case, z = (x′, y′)′ and � = (B0, �0). The estimating functionals T1 and T2 corresponding
to the �-estimates B̃ and �̃ are given in the Appendix.

For the sake of simplicity we derive the influence function of �-estimates assuming that the
errors in (1.1) have an elliptical distribution with a unimodal density. Then, we need the following
assumption:

(A7) The distribution F0 of ui has a density of the form

f0(u) = f ∗
0 (u′�−1

0 u)

det(�0)1/2 , (4.1)

where f ∗
0 is nonincreasing and has at least one point of decrease in the interval where both

functions �1 and �2 are strictly increasing. Besides, �0 is a q × q positive-definite matrix.
An important family of unimodal elliptical distributions is the multivariate normal. In this case,

f ∗
0 (v) = (1/(2
)q/2) exp(−v/2).
Given an arbitrary distribution H on R, define s∗(H) by

EH

(
�1

(
v

s∗(H)

))
= �1. (4.2)

Observe that the M-estimate of scale s(v1, . . . , vn) = s∗(Hn), where Hn is the empirical
distribution of v1, . . . , vn. We denote

k0 = s∗(H0), (4.3)

where H0 is the true distribution of (u′�−1
0 u)1/2.
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To define the limit of the sequence of the functions �∗
n and w∗

n, given in (2.14) and (2.15), put

C = EH0

(
2�2

(
v

k0

)
− �2

(
v

k0

)(
v

k0

))
,

D = EH0

(
�1

(
v

k0

)(
v

k0

))
.

Then, define �∗(v) = C�1 (v) + D�2 (v) and w∗(v) = �∗(v)/v.
In the following we shall need some additional assumptions:

(A8) Thexi’s are random, their common distributionM0 has finite second moments andEM0(xx′)
is nonsingular.

(A9) �i is twice differentiable (i = 1, 2).

Theorem 3. Assume A1–A9. Then, the influence function for the estimating functional T1 corre-
sponding to the �-estimate B̃ is

IF(y0, x0, T1, B0, �0)

= c0 w∗
(

((y0 − B ′
0x0)

′�−1
0 (y0 − B ′

0x0))
1/2

k0

)
EM0(xx′)−1x0(y0 − B ′

0x0)
′, (4.4)

where

c0 = q

EH0((q − 1)w∗( v
k0

) + �∗ ′( v
k0

))
. (4.5)

The proof of this theorem is given in the Appendix.

5. Consistency and asymptotic normality

In this section we state the asymptotic properties of �-estimates for the MLM assuming that
the errors have an elliptical distribution. Theorems 4 and 5 establish, respectively, the consistency
and the asymptotic normality of B̃.

Let �0 = �0(�1, �2) be defined by

�2
0

�2
EH0

(
�2

(
v

k0

))
= 1, (5.1)

where k0 is given in (4.3). If H0 = H00 we have �0 = k0 = 1.

Theorem 4. Let (xi, yi), 1� i�n, be a random sample of an MLM with parameters B0 and �0,
where the xi’s are random. Suppose also that A1–A7 hold; then the �-estimates B̃n and �̃n satisfy

(a) limn→∞ B̃n = B0 a.s..
(b) limn→∞ �̃n = (k2

0/�2
0)�0 a.s.. In particular if H00 = H0, then k2

0/�2
0 = 1.

To prove the asymptotic normality of B̃n we need the following additional assumption:

(A10) There exist mi(i = 1, 2), such that �i (u) is constant for |u| > mi .
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Theorem 5. Let (xiyi), 1� i�n, be a random sample of an MLM with parameters B0 and �0.
Suppose also that A1–A10 hold; then n1/2vec(B̃n − B0) →D N(0, V ), where →D denotes
convergence in distribution and

V = c2
0k

2
0

q
EH0

(
�∗2

(
v

k0

))
� ⊗ EM0(xx′)−1, (5.2)

with k0 and c0 given in (4.3) and (4.5), respectively.

We do not have formal proofs of Theorems 4 and 5, but we think that they can be obtained
using arguments similar to those in Yohai and Zamar [16,17], and Lopuhaä [1]. Heuristic proofs
of both Theorems can be found in the Appendix, where we also give a rigorous proof of the Fisher
consistency of these estimates (Lemma 12).

Remark. Estimates of V can be obtained replacing in (5.2) H0 and Mo by the empirical distri-
bution of the residuals and of the x’s, respectively.

The MLE estimator B̂n corresponds to �2(u) = u2, and in this case c0 = 1/2, �∗(u) = 2u and
the asymptotic covariance matrix is given by (EH0(v

2)/q) � ⊗ EM0(xx′)−1 which differs from
the one of the �-estimate by a scalar factor. Then we obtain the following result:

Corollary. Under the assumptions of Theorem 5, the asymptotic relative efficiency (ARE) of the
�-estimate B̃ with respect to the MLE B̂ is

ARE(�1, �2, H0) = EH0(v
2)

c2
0 k2

0EH0

(
�∗2

(
v
k0

)) .

In order to obtain a �-estimate which is simultaneously highly robust and highly efficient under
normal errors we can choose �1 so that

�1/ max �1 = 0.5, (5.3)

which guarantees that the initial M-estimate of scale s has a breakdown point close to 0.5, and
choose as �2(v) a bounded function close enough to v2 to obtain the desired efficiency. This can
be achieved, for example, by taking �1 and �2 in Tukey’s bisquare family defined by

�B,c(v) =
{

v2

2

(
1 − v2

c2 + v4

3c4

)
if |v|�c

c2

6 if |v| > c,

where c is any positive number. Observe that when c increases, �B,c approaches v2. It is easy to
verify that the functions �B,c(v) satisfy A1–A6.

Table 1 gives the values of c1 and �1 such that �1 = �B,c1
satisfies (5.3) and the ARE of

S-estimates under Gaussian errors for different values of q. We observe that the efficiency of the
S-estimate is low for small values of q, but increases with q. It may be shown that this efficiency
converges to one when q → ∞. Table 2 gives the values of c2 and �2 to achieve different levels
of asymptotic efficiency (taking �1 = �B,c1

and �2 = �B,c2
).
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Table 1
Values of c1 and �1 for the bisquare function and asymptotic relative efficiency (ARE) under Gaussian errors of the
S-estimate with breakdown point 0.5

q 1 2 3 4 5 10

c1 1.55 2.66 3.45 4.10 4.65 6.77
�1 0.20 0.59 0.99 1.40 1.80 3.82
ARE 0.29 0.58 0.72 0.80 0.85 0.93

Table 2
Values of c2 and �2 for the bisquare function to attain given values of the asymptotic relative efficiency (ARE) under
Gaussian errors

ARE q

1 2 3 4 5 10

0.80 c2 3.98 3.94 4.02 4.10 4.17 4.28
�2 0.42 0.77 1.10 1.40 1.67 2.56

0.90 c2 4.97 4.97 5.10 5.25 5.39 5.98
�2 0.44 0.85 1.24 1.61 1.96 3.54

0.95 c2 6.04 6.06 6.24 6.42 6.60 7.50
�2 0.46 0.90 1.32 1.73 2.13 4.03

6. Computing algorithm

Based on the remark at the end of Section 2 we propose the following iterative algorithm to
compute B̃ and �̃.

1. Using initial values B̃0 and �̃0 satisfying (2.11), compute s̃0=s(d1(B̃0, �̃0), . . ., dn(B̃0,

�̃0)) and the weights w∗
n(di(B̃0, �̃0)/̃s0) for 1� i�n . These weights are used to compute

each column of B̃1 separately by WLS. Now compute s̃1=s(d1(B̃1, �̃0), . . ., dn(B̃1, �̃0)).
2. Compute the matrix

�̃
∗
1 =

q
∑n

i=1 w∗
n

(
di (B̃1,�̃0)

s̃1

)
ui(B̃1)u

′
i (B̃1)

s̃2
1

∑n
i=1 �∗

n

(
di (B̃1,�̃0)

s̃1

)
di (B̃1,�̃0)

s̃1

. (6.1)

3. Compute �̃1 = �(d1(B̃1, �̃
∗
1), . . . , dn(B̃1, �̃

∗
1)) and �̃1 = (̃�2

1/�2)�̃
∗
1. Then (B̃1, �̃1) satisfy

constraint (2.11).
4. Suppose now that we have already computed (B̃h, �̃h) satisfying constraint (2.11). Then

(B̃h+1, �̃h+1) is computed using steps 1–3, but starting from (B̃h, �̃h) instead of (B̃0, �̃0).
5. The procedure is stopped at step h if the relative absolute differences of all elements of the

matrices B̃h and B̃h−1 are smaller than a given value 	.
We have not proved that the reweighting step improves the value of the goal function. However

in the Monte Carlo study described in Section 7 this has always occurred.
We propose to compute the initial estimates B̃0 and �̃0 by subsampling elemental sets. For

this purpose we take N random subsamples of size r = p + q of the original sample. For the jth
subsample two values of (B, �) are obtained. The first (B

(1)
j , �(1)

j ) corresponds to the MLE of the
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subsample, and the second value (B
(2)
j , �(2)

j ) is the MLE of the [n/2]observations with the smallest

Mahalanobis distances di(B
(1)
j , �(1)

j ), 1� i�n. We now compute di(B
(2)
j , �(2)

j ), 1� i�n, and

sj = s0

(
d1(B

(2)
j , �(2)

j ), . . . , .dn(B
(2)
j , �(2)

j )
)

, where s0(u1, . . . , un) = median(|u|1, . . . , |u|n)
and standardize �(2)

j obtaining �(3)
j = s2

j �(2)
j . Then s2

0

(
d1(B

(2)
j , �(3)

j ), . . ., .dn(B
(2)
j , �(3)

j )
)

=1.

An approximation to the estimate that minimizes det(�) subject to s2
0 (d1(B, �), . . . , .dn

(B, �)) = 1 is given by (B
(2)
j0

, �(3)
j0

) where j0 = arg min1� j �N det(�(3)
j ).

We use the scale s0 instead of the scale � because it is faster to compute. This scale is inefficient,
but since it is used only to compute the initial estimate, it does not affect the efficiency of the final
estimate.

Finally, the initial estimate is obtained by restandardizing �(3)
j0

so that the �-scale of the Maha-
lanobis distances is

√
�2. For this purpose we compute

�j0 = �
(
d1(B

(2)
j0

, �(3)
j0

), . . . , .dn(B
(2)
j0

, �(3)
j0

)
)

and the initial estimates are B̃0 = B
(2)
j0

and �̃0 = (�2
j0

/�2)�
(3)
j0

.

The reason why we compute the second value (B
(2)
j , �(2)

j ) is that even if the jth sample does not

contain outliers, it may be badly conditioned and the corresponding fit B
(1)
j may be very far from

the true value. However, eliminating the sample half with largest di(B
(1)
j , �(1)

j )’s increases the

chance of obtaining a clean sample that produces a better value, B
(2)
j . This mechanism is similar

to the one proposed by Rousseeuw and Van Driessen [14].
One improvement suggested by a referee would be to proceed as in Rousseeuw andVan Driessen

[14] keeping the M solutions (B
(2)
j , �(3)

j ) with smallest |�(3)
j | (for example M = 10) and starting

the iterative process from each one of them. This gives M new values (B̃h, �̃h), 1�h�M , and
the final estimate is the one with the smallest |�̃h|.

7. Monte Carlo results

In order to assess the robustness and efficiency of the proposed estimates we performed a
Monte Carlo study. We consider the MLM given by (1.1) for two cases: p = 2, q = 2 and p = 2,
q = 5. Due to the equivariance of the estimators we take, without loss of generality, B0 = 0 and
�0 = Iq , where Iq denotes a q ×q identity matrix. The errors ui are generated from an Nq(0, Iq)

distribution and the regressors xi from an Np(0, Ip) distribution. The sample size is 100 and the
number of replications is 1000. We consider uncontaminated samples and samples that contain
10% of identical outliers of the form (x, y) with x′ = (x0, 0, . . . , 0) and y′ = (mx0, 0, . . . , 0).
The values of x0 considered are 1 (low leverage outliers) and 10 (high leverage outliers). We take
a grid of values of m, starting at 0. The last value of the grid was taken so that the maximum

mean square error (MSE) of all the robust estimates is attained. Suppose that B̂(k) =
(
B̂

(k)
ij

)
is

the estimate of B0 obtained in the kth replication. Then, since we are taking B0 = 0, the estimate
of the MSE is given by

MSE = 1

1000

⎛⎝1000∑
k=1

p∑
i=1

q∑
j=1

(
B̂

(k)
ij

)2

⎞⎠ .
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Table 3
Monte Carlo mean square error (MSE), standard error of the MSE (SE) and relative efficiency (REFF) of the estimates in
the noncontaminated case for n = 100 and p = 2

Estimate q = 2 q = 5

MSE SE REFF ARE MSE SE REFF ARE

MLE 0.064 0.001 1.00 1.00 0.157 0.002 1.00 1.00
S-estimate 0.120 0.002 0.53 0.58 0.190 0.002 0.83 0.85
�-estimate 0.072 0.001 0.89 0.90 0.176 0.002 0.89 0.90

ARE is the asymptotic relative efficiency.

m

M
S
E

0 2 4

0.5

0.4

0.3

0.2

0.1

0.0

MLE
S-estimate
Tau-estimate

1 3 5

Fig. 1. Mean square error for q = 2 and x0 = 1.

For each case, three estimates are computed: the MLE, an S-estimate and a �-estimate. The
S- and the �-estimates are based on �-functions in the bisquare family. The S-estimate is based
on the M-scale defined by �1 = �B,c1

, where c1 and �1 were chosen so that this estimate has a
breakdown point 0.5 (see Table 1). The �-estimate uses the same �1 and �1 as the S-estimate and
�2 = �B,c2

, where c2 and �2 were chosen so that the �-estimate had an ARE equal to 0.90 when
the errors are Gaussian (see Table 2). We compute the initial estimate using 2000 subsamples and
the value of 	 in step 5 of the computing algorithm is taken equal to 0.0001.

In Table 3 we present the MSE, its standard error (SE) and the relative efficiency (REFF) with
respect to the MLE for the uncontaminated case. The efficiency of the S-estimate is low when
q = 2 and increases for q = 5. We observe that the relative efficiencies of the S- and �-estimates
are close to their asymptotic values.

In Figs. 1 and 2 we show the MSE of the different estimates under contamination. In Fig. 1,
which corresponds to q = 2 and x0 = 1, we observe that the �-estimate has a smaller MSE than
the S-estimate except when m is (approximately) between 3 and 5, and the maximum MSE is
smaller for the �-estimate. As expected, the MSE of the MLE increases with m reaching very large
values. Fig. 2 shows the results for q = 2 and x0 = 10. S- and �-estimates behave similarly, with
a small advantage for the �-estimate. Since for q = 5 the behavior of S- and �-estimates is similar
to the one observed for q = 2, we do not report the results here.

As a general conclusion we can say that when there are no outliers, �-estimates are more efficient
than S-estimates, and under outlier contamination, �-estimates behave better than or similar to
S-estimates.
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Fig. 2. Mean square error for q = 2 and x0 = 10.

8. Example

Observational studies have suggested that low dietary intake or low plasma concentrations of
retinol, beta-carotene or other carotenoids might be associated with increased risk of developing
certain types of cancer. Nieremberg et al. [12] studied the determinants of plasma concentra-
tions of these micronutrients. In an unpublished study they have collected information on 14
variables that may be the determinants of the plasma levels of beta-carotene and retinol. The
number of observations was 315 and the variables considered were: Y1 BETAPLASMA: Plasma
beta-carotene (ng/ml), Y2 RETPLASMA: Plasma Retinol (ng/ml), X1 AGE (years), X2 SEX
(1 = Male, 2 = Female), X3 SMOKSTAT: Smoking status (1 = Never), X4 SMOKSTAT:
Smoking status (1 = Former), X5 QUETELET (weight/(height2)), X6 VITUSE: Vitamin Use
(1 = fairly often), X7 VITUSE: Vitamin Use (1 = not often), X8 CALORIES: Number of
calories consumed per day, X9 FAT: Grams of fat consumed per day, X10 FIBER: Grams of
fiber consumed per day, X11 ALCOHOL: Number of alcoholic drinks consumed per week, X12
CHOLESTEROL: Cholesterol consumed (mg/day), X13 BETADIET: Dietary beta-carotene con-
sumed (mcg per day), X14 RETDIET: Dietary retinol consumed (mcg/day). The data are available
at http://lib.stat.cmu.edu/datasets/Plasma_Retinol.

We compute two estimates of the regression coefficients: the multivariate �-estimate and the
MLE. The �-estimate uses �1 and �2 in the bisquare family with constants equal to those used
in the Monte Carlo study of Section 7. In Fig. 3 we show, for both estimates, the box-plot of

the Mahalanobis norms of the residuals di = ((yi − B̂xi )
′�̂−1

(yi − B̂xi ))
1/2, 1� i�315. If we

declare outliers those observations such that di >

√
�2

2,0.99, the �-estimate reveals 27 outliers while
the MLE reveals only 12. In Fig. 4 we present QQ-plots of the absolute values of the residuals
of the �-estimate against the absolute value of the residuals of the MLE, after eliminating the 27
outliers detected by the �-estimate. Fig. 4(a) shows that for the plasma beta-carotene the �-estimate
gives residuals smaller than the MLE. Instead, Fig. 4(b) shows that for the plasma retinol, the
distributions of both residuals are close.

In Table 4 we show the regression coefficients and their standard errors (SE) for three estimates:
the �-estimate, the MLE and the MLE after omitting the 27 outliers. We only show these values
for the variables that are statistically significant at level 0.05 for at least one estimate and one

http://lib.stat.cmu.edu/datasets/Plasmaprotect LY1	extunderscore Retinol
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Fig. 3. Box-plot of the Mahalanobis norms of the residuals.
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Fig. 4. QQ-plots of the absolute values of the residuals for both regressions (a) correspond to the plasma beta-carotene
and (b) to the plasma retinol.

equation. We also show the error variances corresponding to each regression in this table. The
estimated standard errors of the �-estimates were calculated as proposed in the Remark after
Theorem 5.

We can observe that when the MLE and �-estimates are computed using the complete dataset,
some regression coefficients and standard errors are quite different. Instead the results for the
�-estimate computed with all the observations are quite close to those of the MLE after deleting
the 27 outliers. This is what a robust estimate is expected to do.
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Table 4
Regression coefficients and standard errors for the �-estimates, the MLE and the MLE after omitting 27 outliers (MLE−27)

Equation 1 2

Estimate � MLE MLE−27 � MLE MLE−27

X1 0.15 0.14 0.18 0.27 0.21 0.26
SE 0.07 0.14 0.07 0.08 0.08 0.07
X2 −0.44 −0.37 −0.34 0.02 0.53 0.09
SE 0.19 0.35 0.18 0.21 0.20 0.18
X5 −0.18 −0.33 −0.20 0.02 0.02 0.02
SE 0.04 0.09 0.04 0.05 0.05 0.04
X6 0.15 0.89 0.36 0.02 0.15 0.10
SE 0.13 0.26 0.13 0.15 0.14 0.13
X10 0.21 0.33 0.16 −0.13 −0.09 −0.12
SE 0.07 0.14 0.07 0.08 0.08 0.07
X13 0.13 0.21 0.15 0.01 −0.01 −0.01
SE 0.05 0.10 0.05 0.06 0.05 0.05

Error variance 0.81 3.51 0.78 1.01 1.10 0.79
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Appendix

A.1. Theorem 1

Proof of Theorem 1. Put Q(B, �) = det(�) �2q(d1(B, �), . . . , dn(B, �)). It is easy to show
that for any real �, Q(B, ��) = Q(B, �), then the �-estimate (B̃, �̃) also minimizes Q(B, �)

without restrictions (observe that (B̃, ��̃) minimizes Q(B, �) too), or equivalently log (Q(B, �)).
Therefore they should satisfy the following equations:

� log(Q(B, �))

�B
= 0,

� log(Q(B, �))

��
= 0. (A.1)

From now on, and for the sake of simplicity, we will denote di=di(B, �), d∗
i =di(B, �)/s

(B, �) and s = s(B, �) = s(d1(B, �), . . . , dn(B, �)).
Differentiating log(Q(B, �)) with respect to B, after straightforward calculations, we obtain

� log(Q(B, �))

�(vec(B ′))′
= −2q

∑n
i=1 �1

(
d∗
i

) û′
i (B)

di
�−1 (x′

i ⊗ Iq

)∑n
i=1

(
�1

(
d∗
i

)
di

)
−q

∑n
i=1 �2

(
d∗
i

) û′
i (B)

di
�−1 (x′

i ⊗ Iq

)
s
∑n

i=1 �2
(
d∗
i

)
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+
q
∑n

i=1 d∗
i �2

(
d∗
i

)∑n
j=1 �1

(
d∗
j

)
û′

j (B)

dj
�−1

(
x′
j ⊗ Iq

)
∑n

i=1 �2
(
d∗
i

)∑n
j=1

(
�1

(
d∗
j

)
dj

) .

Then, equating this last expression to zero, we have∑n
i=1 �1

(
d∗
i

) û′
i (B)

di
�−1 (x′

i ⊗ Iq

) [−2
∑n

j=1 �2

(
d∗
j

)
+ ∑n

j=1 �2

(
d∗
j

)
d∗
j

]
∑n

i=1 �2
(
d∗
i

)∑n
j=1

(
�1

(
d∗
j

)
dj

)
−

1
s

∑n
i=1 �2

(
d∗
i

) û′
i (B)

di
�−1 (x′

i ⊗ Iq

)∑n
j=1 �1

(
d∗
j

)
dj∑n

i=1 �2
(
d∗
i

)∑n
j=1

(
�1

(
d∗
j

)
dj

) = 0,

or equivalently,∑n

i=1
w∗

n

(
d∗
i

)
û′

i (B)�−1 (x′
i ⊗ Iq

) = 0. (A.2)

Using that vec(�−1uix
′
i ) = (xi ⊗ Iq)�−1ui , we can show that expression (A.2) is equivalent

to (2.16).
Differentiating log(Q(B, �)) with respect to �, we obtain

� log(Q(B, �))

��
= � log(det(�))

��
+ 2q

s

�s

��
+ q∑n

i=1 �2
(
d∗
i

)
×

n∑
i=1

�
��

�2
(
d∗
i

)
. (A.3)

It is well known that for a symmetric matrix �,

� log(det(�))

��
= �−1. (A.4)

Then, using that

�s

��
= − 1

2s

�−1
(∑n

i=1 �1(d
∗
i )) s

di
ûi (B)̂u′

i (B)
)

�−1∑n
i=1 �1(d

∗
i )d∗

i

, (A.5)

and denoting wi(v) = �i (v)/v for i = 1, 2, we have

�d∗
i

��
= 1

2s
�−1

[
− 1

di

ûi(B)̂u′
i (B) + di

s2

∑n
j=1 w1(d

∗
j )̂uj (B)̂u′

j (B)∑n
j=1 �1(d

∗
j )d∗

j

]
�−1. (A.6)

Replacing (A.4), (A.5) and (A.6) in (A.3), and using the fact that the �-estimate satisfies (A.1),
we obtain

�−1 − q

s2

�−1 (∑n
i=1 w1(d

∗
i )̂ui(B)̂u′

i (B)
)
�−1∑n

i=1 �1(d
∗
i )d∗

i

−q
[∑n

i=1 w2(d
∗
i )�−1ûi (B)̂u′

i (B)�−1]
2s2

∑n
i=1 �2(d

∗
i )

+q
∑n

i=1 �2(d
∗
i )d∗

i

[
�−1 (∑n

k=1 w1(d
∗
k )̂uk(B)̂u′

k(B)
)
�−1]

2s2(
∑n

i=1 �2(d
∗
i ))(

∑n
i=1 �1(d

∗
i )d∗

i )
= 0.
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Solving for �, we obtain

� = q

s2

∑n
i=1 w∗

n(d
∗
i )̂ui(B)̂u′

i (B)∑n
k=1 �∗

n(d
∗
k )d∗

k

,

and this proves (2.17). �

A.2. Theorem 2

Lemmas A.1–A.5 are required to prove Theorem 2

Lemma A.1. Assume that �1 and �2 satisfy A1–A5. Given m < �n, there exists K such that for
any Z∗ = {z∗

1, . . . , z
∗
n} ∈ Zm, z∗

i = (x∗′
i , y∗′

i )′, we have �(‖y∗
1‖, . . . , ‖y∗

n‖) < K .

This lemma is proved in [16].

Lemma A.2. Assume that �1 and �2 satisfy A1–A5, and let �̃ be the �-estimate of �. Given
m < �n, there exist K∗ such that for any Z∗ = {z∗

1, . . . , z
∗
n} ∈ Zm, z∗

i = (x∗′
i , y∗′

i )′ we have
det(�̃(Z∗)) < K∗.

Proof. Take B = 0 and � = (�2(‖y∗
1‖, . . . , ‖y∗

n‖)/�2)Iq . Observe that
di(B, �) = √

�2‖y∗
i ‖/�(‖y∗

1‖, . . . , ‖y∗
n‖), and therefore �2(d1(B, �), . . . , dn(B, �)) = �2. By

Lemma A.1 there exists K such that

det(�) = (�2(‖y∗
1‖, . . . , ‖y∗

n‖)/�2)
q < (K2/�2)

q .

Then using the definition of (B̃, �̃) given in (2.10) and (2.11), the lemma follows with K∗ =
(K2/�2)

q . �

Lemma A.3. Assume that �1 and �2 satisfy A1–A5. Given K1 > 0 and r > n�, there exists K2
such that for any sample u1, . . . , un such that #{i : |ui | > K2} > r , we have �(u1, . . . , un) > K1.

This lemma is proved in [16].

Lemma A.4. Consider the same assumptions as in Theorem 2 and m < min((1 − �)n − h, n�).
Then (i) S−

m(Z, �̃) > 0, (ii) S+
m(Z, �̃) < ∞.

Proof. Suppose that S−
m(Z, �̃) = 0. Then there exist Z∗

j ∈ Zm such that �1(�̃(Z∗
j )) → 0. Put

�j = �̃(Z∗
j ), Bj = B̃(Z∗

j ) and �1j = �1(�̃(Z∗
j )). Let Uj be an orthogonal matrix of eigenvectors

of �j and �j the diagonal matrix with the corresponding eigenvalues. Let Z∗
j = {z∗

j1, . . . , z
∗
jn},

z∗
ji = (x∗′

ji , y
∗′
ji)

′; then

d∗2
ji = (y∗

ji − B ′
j x

∗
ji)

′�−1
j (y∗

ji − B ′
j x

∗
ji)

= (U ′
j y

∗
ji − U ′

jB
′
j x

∗
ji)

′�−1
j (U ′

j y
∗
ji − U ′

jB
′
j x

∗
ji)�(e′

j z
∗
ji)

2/�1j , (A.7)

where ej = (−vj1, uj1), and uj1 and vj1 are, respectively, the first rows of U ′
j and of Vj = U ′

jB
′
j .

Put 	 = inf‖a‖=1 sup1� j1<···<jh+1 �n{|a′zj1 |, . . . , |a′zjh+1 |}. Then by the definition of h, we
have that 	 > 0. Since ‖ej‖�1, there are at least n − m − h > �n values d∗

ji larger than or equal
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to 	/(�1j
)1/2. Therefore, from Lemma A.3 we obtain limj→∞ �(d∗

j1, . . . , d
∗
jn) = ∞, which

contradicts the definition of the �-estimates. Then part (i) of the lemma follows.
Part (ii) follows from part (i) and Lemma A.2. �

Lemma A.5. Consider the same assumptions as in Theorem 2. Then for any m < min
((1 − �)n − h, n�) we have Sm(Z, B̃) < ∞.

Proof. Assume that there exists Z∗
j ∈ Zm, such that ‖B̃(Z∗

j )‖ → ∞. Let Uj , �j , Vj and 	 be
as in Lemma A.4. Since ‖Vj‖ = ‖U ′

jB
′
j‖, we also have ‖Vj‖ → ∞. Without loss of generality

we can suppose that for some i0, ‖vji0‖ → ∞, where vji0 is the i0th row of Vj . According to
Lemma A.4 we can assume that �q(�̃(Zj )) < K . Let Z∗

j = {z∗
j1, . . . , z

∗
jn}, z∗

ji = (x∗′
ji , y

∗′
ji)

′,
then proceeding as in (A.7) we obtain d∗2

ji �(1/K)(e′
j z

∗
ji)

2, where ej = (−vji0 , uji0). Then there

are at least n − m − h > �n values d∗
ji larger than (	/K1/2)‖vji0‖. Therefore by Lemma A.3,

�(dj1, . . . , djn) → ∞, contradicting the definition of �-estimates. �

Proof of Theorem 2. It follows from Lemmas A.4 and A.5.

A.3. Theorem 3

To prove Theorem 3 we need to introduce some notation and Lemmas A.6 and A.7 below.
Define u(B) = u(B, x, y) = y − B ′x and

d(B, �) = d(B, �, x, y) = (u′(B)�−1u(B))1/2.

Let (T1, T2) be the estimating functional corresponding to the �-estimates (B̃, �̃). Then, ac-
cording to (2.16) and (2.17), given a distribution G of (x, y), (T1(G), T2(G)) are the values (B, �)

satisfying

EG

(
w∗(d∗(B, �, G))u(B)x′) = 0,

� = qEG

(
w∗(d∗(B, �, G))u(B)u′(B)

)
(k∗(B, �, G))2 EG

(
�∗(d∗(B, �, G))d∗(B, �, G)

) ,
where d∗(B, �, G) = d(B, �)/k∗(B, �, G), k∗(B, �, G) = s∗(H), H is the distribution of
d(B, �) under G and s∗(H) is defined in (4.2).

Lemma A.6. Suppose that we observe z ∈Rm with distribution function G�1,�2 , where �1 ∈ Rk1

and �2 ∈ Rk2 . Consider an M-estimating functional of � = (�1, �2), T (G) = (T1(G), T2(G))

such that

EG(h (z, T1(G), T2(G), k (T1(G), T2(G), G))) = 0,

where h : Rm+k1+k2+1 → Rk1 is a differentiable function and k : Rk1+k2 ×F → R, and F is the
space of distributions on Rk1+k2 . Suppose that T satisfies the following strong Fisher consistency
condition:

EG�1,�2
(h(z, �1, �2, k)) = 0 ∀k, (A.8)

and

EG�1,�2

(
h3(z, �1, �2, k(�1, �2, G�1,�2))

) = 0, (A.9)
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where hi, 1� i�4, is the derivative of h with respect to the ith argument. Suppose too that
EG�1,�2

(
h(z, �1, �2, k(�1, �2, G�1,�2))

)
can be differentiated inside the expectation. Then the

influence function of T1 is given by

IC(z0, T1, �1, �2) = −
(
EG�1,�2

(
h2(z, �1, �2, k(�1, �2, G�1,�2

))
))−1

×h(z0, �1, �2, k(�1, �2, G�1,�2)).

Proof. Let G� = (1 − �)G�1,�2 + �	z0 . Then T (G�) satisfies

(1 − �)EG�1,�2
(h(z, T1(G�), T2(G�), k (T1(G�), T2(G�), Gε)))

+�h(z0, T1(G�), T2(G�), k (T1(G�), T2(G�), Gε)) = 0.

The proof of this lemma follows inmediately differentiating this expression with respect to � at
� = 0 and using (A.8) and (A.9). �

Lemma A.7. Consider assumptions A1–A9 and suppose �0 = Iq . Then, if G is the distribution
of (x, y), we have

(a) EG

(
�(vec(w∗(d(B0, �0)/k)u(B0)x

′))
� (vec �)′

)
= 0 ∀k.

(b) EG

(
vec(w∗(d(B0, �0)/k)u(B0)x

′)
) = 0 ∀k.

Proof. (a) Straighforward computations lead to

EG

(
�(vec(w∗(d(B0, �0)/k)u(B0)x

′))
� (vec�)′

)
= − 1

2k
EG

((
xu′ ⊗ Iq

) (
vecIq ⊗ w∗′(‖u‖/k)

‖u‖ vec(uu′
)′)

.

Since the distribution of u is assumed to be elliptical with �0 = Iq , we have that for any
function h, EG(xjuiukulh(‖u‖)) = 0. Observe that all the elements of the right-hand side of the
last equation are of this form, and therefore part (a) of the lemma follows immediately.

(b) This is derived from the fact that EG(xjuih(‖u‖)) = 0. �

Proof of Theorem 3. Suppose that z = (x′, y′)′ follows MLM (1.1) and let G0 be its distribution
function. Consider first the case �0 = Iq ; then k∗(B0, Iq, G0) = k0 = s∗(H0), where H0 is the
distribution of ‖u‖. Using Lemma A.6 with �1 = vec(B ′

0), �2 = vec(�0), and k (T1, T2, G0) =
k∗(T1, T2, G0) and Lemma A.7 we obtain

IF(y0, x0, T1, B0, Iq) = −
(

�EG

(
vec(w∗(d(B0, Iq)/k0)u(B0)x

′)
)

�(vec(B ′))′

)−1

×vec

(
w∗

(
(y0 − B ′

0x0)
′(y0 − B ′

0x0))
1/2

k0

)
(y0 − B ′

0x0)x
′
0

)
.

As vec(ABC) = (C′ ⊗ A)vec(B), to prove (4.4), it will be enough to show that

�EG0

(
vec(w∗(d(B0, Iq)/k0)u(B0)x

′)
)

�(vec(B ′))′

=− 1

q
EG0

(
(q−1)w∗

(
d(B0, Iq)

k0

)
+�∗′

(
d(B0, Iq)

k0

)) (
EM0(xx′) ⊗ Iq

)
. (A.10)
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Using that d(B0, Iq) = ‖u‖ and u(B0) = u, we obtain

�EG0

(
vec(w∗(d(B0, Iq)/k0)u(B0)x

′)
)

�(vecB ′)′

= EG0

(
�
(
vec(w∗(d(B0, Iq)/k0)u(B0)x

′)
)

�(vecB ′)′

)

= EG0

[
−w∗

(‖u|
k0

|
)

(xx′ ⊗ Iq) + (xu′ ⊗ Iq)

×
{

vec(Iq) ⊗
[
−
(

C�′
1(‖u‖/k0)

‖u‖/k0
+ D�′

2(‖u‖/k0)

‖u‖/k0

−�∗(‖u‖/k0)

‖u‖2/k2
0

)
u′(x′ ⊗ Iq)

k0‖u‖

]}]
. (A.11)

Denoting

g(d) = −
[
C�′

1(d)

d
+ D�′

2(d)

d
− �∗(d)

d2

]
1

k0d

and using that EF0

[
uiujg(‖u‖/k0)

] = 0, if i �= j , we obtain

EG0

(
g

(‖u‖
k0

)
(xu′ ⊗ Iq)

{
vec(Iq) ⊗ [

u′(x′ ⊗ Iq)
]})

= EM0(xx′)EF0

[
u2

i g

(‖u‖
k0

)]
⊗ Iq

= EF0

[
u2

i g

(‖u‖
k0

)] (
EM0(xx′) ⊗ Iq

)
. (A.12)

We also have

EF0

[
u2

i g

(‖u‖
k0

)]
= 1

q
EF0

[
‖u‖2 g

(‖u‖
k0

)]
. (A.13)

Using (A.11), (A.12) and (A.13) we obtain (A.10), and then (4.4) holds for the case � = Iq .
Consider now the case of a general covariance matrix �. Take R such that � = RR′; then the

errors u∗
i of the transformed model

y∗
i = R−1yi = R−1B ′

0xi + R−1ui = B∗′
0 xi + u∗

i

have covariance matrix Iq . Then, (4.4) follows from the following relationship:

IF(y0, x0, T1, B0, �) = R
[
IF (R−1y0, x0, T1, B0, Iq)

]
. �

A.4. Theorem 4

Before proving Theorem 4 we need to introduce some notation and Lemmas A.8–A.12 below.
Define the scale-estimating functional �∗(H) by

�∗2(H) = s∗2(H)EH

(
�2

(
v

s∗(H)

))
,
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where the functional s∗(H) is defined as in (4.2). Observe that �(u1, . . . , un) = �∗(Hn), where Hn

is the empirical distribution of u1, . . . , un. Define for a > 0 rH (a) = a2EH

(
�2

(v/a)).

Lemma A.8. Suppose that �2 satisfies A1–A6. Then rH (a) is a nondecreasing function of a.

Proof. Follows from r ′
H (a) = a EH

[
2�2 (v/a) − �2 (v/a ) v/a

]
and A6. �

Lemma A.9. Suppose that � satisfies A1–A5 and that the distribution of u satisfies A7 with
� = �0. Let (, �) be such that det(�) = det(�0) and (, �) �= (0, �0). Then

E(�((u − )′�−1(u − ))1/2) > E(�(u′�−1
0 u)1/2).

This lemma follows immediately from Theorem 1 of [4].

Lemma A.10. Suppose that � satisfies A1–A5 and that the distribution of u satisfies A7 with
� = �0. Let (v, �) be such that v is a random variable independent of u, det(�) = det(�0) and
either (i) P(v �= 0) > 0 or (ii) � �= �0. Then

E(�(((u − v)′�−1(u − v))1/2) > E(�(u′�−1
0 u)1/2).

Proof. Suppose that (i) is true. Then, by Lemma A.9

E(�(((u − v)′�−1(u − v))1/2) | v = ) = E(�((u − )′�−1(u − ))1/2)

� E(�(u′�−1
0 u)1/2),

and the inequality is strict with probability larger than 0. Then the lemma follows. The proof is
similar when (ii) holds. �

Lemma A.11. Suppose that �1 and �2 satisfy A1–A6 and that the distribution of u satisfies A7
with � = �0. Let (v, �) be such that v is a random variable independent of u, det(�) = det(��0)

and either (i) P(v �= 0) > 0 or (ii) � �= ��0. Let H ∗ be the distribution of ((u−v)′�−1(u−v))1/2

and H the distribution of (u′�−1
0 u)1/2/�; then �∗2(H ∗) > �∗2(H).

Proof. Since det(�) = det(��0), by Lemma A.10, taking as �(v) = �1(v/(�s∗(H))), we obtain

E

(
�1

(
((u − v)′(�/�)−1(u − v))1/2

�s∗(H)

))
> E

(
�1

(
(u′�0

−1u)1/2

�s∗(H)

))
,

and therefore s∗(H ∗) > s∗(H).
Using Lemmas A.7 and A.9, and since det(�/�) = det(�0), we obtain

�∗2(H ∗) = s∗2(H ∗)E
(

�2

(
((u − v)′(�/�)−1(u − v))1/2

�s∗(H ∗)

))
� s∗2(H)E

(
�2

(
((u − v)′(�/�)−1(u − v))1/2

�s∗(H)

))
> s∗2(H)E

(
�2

(
(u′�−1

0 u)1/2

�s∗(H)

))
= �∗2(H).

This proves the lemma. �
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Let x and y be two arbitrary random vectors of dimension p and q, respectively, and let G be
any arbitrary joint distribution of (x, y). Given B and �, let HG,B,� be the distribution of d(B, �)

when (x, y) has distribution G and define �∗
G(B, �) = �∗(HG,B,�). Given observations (xi, yi),

1� i�n, let Gn be their empirical distribution. Then, the definition of the �-estimate (B̃, �̃) given
in Section 2 is equivalent to

(B̃, �̃) = arg min det(�) (A.14)

subject to

�∗2(HGn,B,�) = �2. (A.15)

The following lemma shows that, if we replace in (A.15) Gn for the true distribution, then the
minimum of det(�) is attained at (B0, (k2

0/�2
0)�0).

Lemma A.12. Suppose that the random vector (x, y) follows an MLM with parameters B0 and
�0 where the error u has a distribution satisfying A7. Suppose also that �k , k = 1, 2 satisfy A1–
A6 and let G0 be the joint distribution of (x, y). Then, the problem of finding (B, �) minimizing
det(�) subject to �∗2(HG0,B,�) = �2 has (B0, (k

2
0/�2)�0) as the unique solution.

Proof. Put �∗
0 = (k2

0/�2
0)�0. Since u(B0) = u, then d(B0, �∗

0) = (�0/k0)(u
′�−1

0 u)1/2. Because
of (4.2), we obtain s∗(HG0B0�∗

0
) = �0 and from (5.1), �∗2(HG0B0�∗

0
) = �2. Now, take (B, �) �=

(B0, �∗
0) such that �∗2(HG0B�) = �2. If B �= B0, then u(B) = u − (B ′

0 − B ′)x. Put � =
(det(�∗

0)/ det(�))1/q , and �∗ = ��. Then det(�∗) = det(�0), and since x is independent of u
and P((B ′

0 − B ′)x �= 0) > 0, by Lemma A.11 we have

�2 = �∗2(HG0B0�∗
0
) < �∗2(HG0B�∗) = �∗2(HG0B�)

�
= �2

�
.

Then � < 1 and det(�∗
0) < det(�), proving the lemma. �

Heuristic proof of Theorem 4. The theorem follows, using standard arguments, from (A.15),
(A.14), Lemma A.12 and the fact that the empirical distribution Gn converges a.s. to G0 (see
[11]).

A.5. Theorem 5

Let T (F ) be an estimating operator with values in Rm, and let Fn be the empirical distribution
based on a random sample of size n with an underlying distribution F . Then, under suitable
differentiability conditions n1/2(T (Fn)−T (F )) →D N(0, EF (IF(x, T , F )IF(x, T , F )′)), where
IF(x, T , F ) is the influence function of T at the point x and at the distribution F .

Heuristic proof of Theorem 5. Let us first consider the case �0 = Iq and EM0(xx′) = Ip. In
this case

IF(y, x, T1, B0, Iq) = c0w
∗
H0

(‖u‖
k0

)
xu′,
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where H0 is the distribution of ‖u‖ and we obtain

E(vec(IF(y, x, T1, B0, Iq))vec(IF(y, x, T1, B0, Iq))′)

= c2
0EF0

⎛⎝k2
0�∗2

H

( ‖u‖
k0

)
‖u‖2 uu

′
⎞⎠ ⊗ EM0(xx′).

As the distribution of u is assumed to be elliptical with �0 = Iq , for any function h, EF0

(h(‖u‖)uiuj ) = 0 if i �= j and EF0(h(‖u‖)u2
i ) = EF0(h(‖u‖) ‖u‖2)/q. Then

V = c2
0k

2
0EH0(�

∗2
H0

( v
k0

))

q
Iq ⊗ Ip.

For the general case, let R and T be matrices such that �0 = RR′ and EM0(xx′) = T T ′, and
consider the following transformation y∗ = R−1y and x∗ = T −1x. Then if B∗

0 = T ′B0R
′−1,

y∗ = B∗′
0 x∗ + u∗, with u∗ = R−1u. Since the distribution of u∗ is given by (4.1) with � = Iq

and E(x∗x∗′) = Iq , (5.2) follows from the equivariance of the �-estimates and the fact that

vec(B0) = vec((T −1)′B∗
0 R′) =

(
R ⊗

(
T −1

)′)
vec(B∗

0 ).
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