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ABSTRACT 

In the years since the appearance of Marshall and Olkin's masterful survey, the 
influence of this work has been so great that some comments (however incomplete 
and idiosyncratic) on subsequent developments will be of value (Figalre 1). An 
appendix lists minor errata to the first printing of the book. 

1. I N T R O D U C T I O N  

The appearance of  Marshall and Olkin's Inequalities in 1979 had great 
impact on the mathematical sciences. By showing how a single concept  
unif ied a s tagger ing a m o u n t  o f  mater ia l  f rom widely  diverse 
disciplines--probability, linear algebra, geometry, statistics, operations re- 
search, e tc . - - th is  work was a revelation to those of  us who had been each 
trying to make sense of  his own corner of  this material. 

The Science Citation Index gives the following statistics: the number  of  
citations to this book in 1982 was 26, by 1987 it grew to 39 citations in that 
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F~(;. 1. Ingrain Olldn (right) with coauthor A.W. Marshall (Stanford University, 
1 October 1993). 

year, and in 1992 it was 59. By Simpson's rule we get 570 citations; the 
growth rate is 8.5% per year. It is obviously impossible to do a complete 
survey of majorization since the publication of Marshall and Olkin. However, 
something of the sort is needed, because this book will remain the authority 
for the foreseeable future (for one thing, it is hard to imagine any authors 
with the courage and Sitzfleisch to attempt a project of this scale again). 
Hence, this paper has two goals: to give readers of Marshall and Olkin a start 
in pursuing some of the directions in which majorization theory has gone 
since publication of their book, and to pay tribute to Albert Marshall and 
Ingrain Olkin for their dedication and insights. 

2. COMMENTS 

In this section, theorems and displays referring to a given chapter of 
Marshall and Olkin are numbered with that chapter number to the left of the 
decimal point. 
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Section 1.B. Majorization as a Partial Ordering 
As remarked.on p. 13 of this section, the strong and weak majorizations 

are partial orderings on ~ = {z : z 1 ~> "- ~> zn}, but more than this, .~ is 
actually a complete lattice under the weak orderings. To be precise, any 
S c , ~  has a least upper bound x in ~ +  i.e., if s -<~, x for all s ~ S, and for 
any y in 2 one has s -< w Y for all s ~ S, then x -< w Y. Furthermore, x is 
the unique least upper bound in .~+. Similarly, S has a unique greatest lower 
bound in 2 + .  The same result holds for the weak majorization <w . See 
Bapat (1991), where this is proved for "<w in Lemma 3 and Corollary 4; the 
result for ,<w follows by the relation between the two weak majorizations. 
For strong majorization, the same result holds, provided S lies in the 
hyperplane E x i = const. 

Section 1.D. Generalizations of Majorization 
H. Joe has written extensively on a generalization to matrices. Whereas 

majorization applies to vectors with fixed totals, Joe's generalization applies to 
matrices with fixed row and column totals. An application is the ordering of 
contingency tables by degree of dependence of one variable on the other. A 
useful introduction is Joe (1993). A different form of multivariate majoriza- 
tion is found in Joe and Verducci (1993). 

Section 2.D. Doubly Superstochastic Matrices 
One of the open questions on p. 31 has been answered: yP ,<w y for all 

y ~ R~ does indeed imply that P is doubly superstochastic (Ando, 1989, 
Corollary 3.4). Ando's paper is recommended for its treatment of the relation 
between majorization and stochastic linear transformations, among many 
other things. Section 1 of this paper is also of interest, since it covers some 
material which supplements Marshall and Olkin's coverage of the basic theory 
of majorization (Chapters 1 and 2). 

Section 2.F 
Page 37: The van der Waerden permanent conjecture was proven to be 

true in 1981 by Egorychev. A self-contained treatment of Egorychev's proof is 
found in Section 5 of Ando (1989). 

Section 3. G. Muirhead's Theorem 
Here is an immediate consequence of Muirhead's theorem which appears 

not to have been widely noted: 
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COROLLARY 3.1. For  given real a, the  s y m m e t r i z e d  s u m  f ( y )  = ~. " "~ 7r Yrr(1 ) 

"'" Y~i,,) is log-Schur-convex  as a f i t~c t ion  o f  (Ya . . . . .  y , )  ~ _ ~ ,  i.e., i f  
x 1 >~ "" >~x,, >~0, y~ >1 ... >ty,, >~0, and  also 

k k 

1-I x, <~ F I  y, f o r  k = 1 . . . . .  ,,, (3.1)  
i = 1  i = 1  

wi th  equal i ty  f o r  k = n, therl f (  x ) <~ f (  y ). 

Proof.  Let u i = In Yi. Then 

f ( ! j )  = E e ' / l l , ~ (  . . . . .  C(l,,'drr{,,) 
77 

= E ( e a - ( I ) )  ''1 ...(ca.(,,)) ''''" 

Now, by Muirhead's theorem, this last expression is Schur-convex as a 
function of (u~ . . . . .  u,,); hence E~ in x i ~< Ea In Yi and E'~' In x i = El' In Yi 
[which is equivalent to (3.1)] implies f (x )  ~< f ( y ) .  

Section 3.J. Integral  Trans f imnat ions  Preserving Schur  Convex i t y  
See Shaked and Shanthi~nnar (1988) for new results and applications; 

also Liyanage and Shanthikumar (1993). These papers are also of interest in 
connection with several portions of chapters 11 and 12, in particular, section 
l l .E  (families of distributions parameterized to preserve Sehur-convexity). 

Section 5.A 
Page 116, Theorem A.l.e: Both majorizations in the displayed expression 

should be strong (" -< ") and not weak (" ,<w ,,). That is to say, 

if and only if g is linear. 
If the second displayed majorization in this theorem is " .<w ,, (as it is in 

the first printing), then this displayed condition holds if and only if g is 
concave [this follows from A.l(2) and A.2, Theorem (ii); note the erratum in 
the appendix for this part of A.2]. 

As a corollary of A.2, we get the useful formula 

~ w  .'1 ~ (e  ~', . . . .  c ~") ~ w ( e ~ ' ,  . . . .  e~',) .  ( 5 .1 )  
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Section 8.B. Inequalities for the Sides of a Triangle 
t If  al, a2, a 3 are the sides of a triangle with semiperimeter s = E(a I 4- a 2 

.~(a~ + a, 2 + a a) = 2s/3,  then + a a) and average side length a = 1 

(a,a,a) -< (a,,a2,a3) -< (s,s,O) for alltriangles, (8.1a) 

(a ,  a, a) -< (a , ,  a 2, a3) -< (s, s/2,  s /2)  for isosceles triangles, 

(8.1b) 

$ 
1 + ~ - (2' v~-' v/-~) "< (al 'a2'a3) "~ (S ,s ,O)  for obtuse triangles. 

(8.1e) 

Thus, if q~ is a continuous Sehur-convex function, we have 

~O(Tl,~l,~l) ~ ~P(al, a2,a3) < qg ( s , s , 0 )  

for all triangles (8.2a) 

~9(a, a, a) ,~ {P(al, a2, a3) < ~(s, s /2,  s /2)  

22 ¢gs ¢gs ) 
~P l + v ~ '  l + f 2 '  l + v ~  

for isosceles triangles, (8.2b) 

< ~p(a~,a2,a3) < ~o(s,s,O) 

for obtuse triangles, (8.2c) 

and these inequalities are best possible. For Schur-concave functions, the 
inequalities are reversed. The corresponding majorization for acute triangles 
is identical to (8.1a), so specializing to acute triangles gives the same 
inequality (8.2a) as one gets for all triangles. For right-angled triangles, the 
majorization is identical to (8.1c), yielding inequalities identical to the ones 
for obtuse triangles, namely (8.2c). 
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Let s~ = 2(s - ai), i = 1,2,3, then 

~(~, ~, ~) -~ (s,, ,~, ~0 "< (2< 0, 0) 

~(s, ~, ~) -~ (<,  s~,,~,~) -< (~, s,o) 

2s(~/2 - 1)(1, 1, v/2 - 1) -< (s  1 , s e, sa) -< (2s,  0, 0) 

JAMES V. BONDAR 

for all triangles, 

(8.3a) 

for isosceles triangles, 

(8.3b) 

for obtuse triangles. 

(s.a.) 

Regrettably, a slip in the first printing labelled the majorizations (8.1b) 
and (8.3b) as being for obtuse triangles, which means that on pp. 199-201 
the inequalities claimed for obtuse triangles are actually for isosceles trian- 
gles. As an example we look at Section 8.B.1, which should read as follows: 

B.1. The inequalities 

1 a~ + a~ + a~ 1 
(i) 3 ~ ((q + a2 + aa) 2 < 72 for all triangles, 

(ii)  "3 ~ ( a l  -1- a2 "]- (13) 2 < ~ 
for isosceles triangles, 

(iii) 

0.343146 
2 + a~ + a~ 1 2 a i 

~< - fbr obtuse triangles 
( 1 + ~ - ) 2  ( a , + a 2 + ~ 3 )  2 2 

follow from the Sehur-convexity of the middle term. Inequality (i) is G.I. 1.19 
and is attributed to Petrovid, 1916. 

Similar modifieations must be made to B.2, B.3, B.4, and B.5. The 
inequalities of B.6 and B.7 follow from the majorizations (3a) and (3b); in 
each ease the second inequality is for isosceles rather than obtuse triangles, 
and the obtuse triangle inequality comes directly from (3e). 
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Chapter 9. Matrix Theory 
A useful recent survey is Chapter 3 of Horn and Johnson (1986), on 

inequalities for singular values and also for norms. See also Ando (1989). 
Many of the majorization results for eigenvalues and singular values and their 
logarithms in sections l l .E  to 11.H generalize to compact operators in 
(complex) Hilbert space. There is also a discussion of functions which are 
increasing in the weak Schur ordering for infinite vectors. See Gohberg and 
Krein (1969) chapter 2 for details. 

Section 9.B 
An interesting generalization of Sehur's inequality, Theorem B.1, is in 

Andersson and Perlman (1988): if G is any group of matrices, and B is the 
center of gravity of the points {gAg -1 : g E G}, then A(B) -< A(A) by Fan's 
Theorem 9.G.1. This is used to derive inequalities for matrices with certain 
symmetries. If G is the group which reverses the signs of subsets of the 
coordinates in R", then we get Schur's inequality. 

Section 9.H.l.g 
The following note has been added in the second printing. "The authors 

are grateful to Prof. L. Mirsky for the following. The result (7) holds for any 
Hermitian matrices U and V. They need not be positive semidefinite, for we 
can replace U and V by U + zI and V + zI, respectively, with ~" sufficiently 
large. In the new version of (7), replacement of V by - V yields (8). Indeed, 
(7) and (8) are really identical results." 

Section 9.L Schur or Hadamard Products 
A great deal of work has recently been done on eigenvalue and singular 

value inequalities for Hadamard products of matrices; no small amount of this 
work was inspired by the conjectures proposed by Marshall and Olkin in this 
section of their book. A good survey is Sections 5.3 to 5.6 of Horn and 
Johnson (1986). The reader is warned that Horn and Johnson number 
eigenvalues A i and singular values ~r i in increasing order, the opposite of 
Marshall and Olkin. 

Marshall and Olkin's conjecture (15) on p. 258 has now been proved 
[Bapat and Sunder (1985), or see Horn and Johnson (1986, 5.3.3b)]. In fact, 
Bapat and Sunder prove even more than the conjecture: 

THEOREM 9.1. Let A and B be nonnegative definite (hence Hermitian) 
n × n matrices, and [3 be the vector of diagonal elements of B (arranged in 
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decreasing order). Then 

(a) 

(b) 

A(Ao B) <:w A(A) o~<:w A(A) oA(B), 

I - I  A~( Ao  B ) >~ I - I  A,( A ),I3 i, 1 <~ k <~ ,,. 
i = k  i = k  

The Schur product theorem (that A o B is also nonnegative definite) 
follows as a corollary of (b). If A is the identity, we get Schur's inequality 
(9.B.1), and Oppenheim's inequality is also a corollary of Theorem 9.1. 

Horn and Johnson (5.3.3.a) conjecture that 

f i  tl A,(AB) <~ I-I A,( A o B), k = 1 ..... n (9.1) 
i=k i=k 

for positive semidefinite A and B. (For k = 1 and n, this follows from 
Theorem 9.1.) 

The conjectures (17) and (18) on p. 259 of Marshall and Olkin appear to 
be as yet unresolved. 

Corresponding to Theorem 9.1a is a result for singular values: 

TtIEOREM 9.3. If  A and B are n X n matrices, then 

cr( Ao  B)  ~',v cr( A) ocr( B) .  (9.2) 

For a proof, see Bapat (1987, Corollary 4); the result is due to Horn and 
Johnson and to Okubo. If B is equal to the identity, we get a generalization 
of Sehur's inequality: (lalll . . . . .  la~,,I) -%, (r(A). 

From Theorem 9.1a, we get: 

COROLLARY 1. If a = [a 0] is a nonnegative definite n × n matrix, and f 
is any analytic function whose Taylor series has nonne~ative coefficients, then 

~-([f(au)]) <,v '~(f(A)). (9.3) 

(Proof: By Theorem 9.1a, A(A . . . . .  A) "<w A(A) . . . . .  A(A) = (A(A)) k 
= A(Ak). Now use the fact that weak majorization is closed under summa- 
tion, positive scalar multiplication, and limits.) As an example, if f is the 
exponential function and A is nonnegative definite, we get 

<,v A(eA). (9.4) 

A special Hadamard product is the relative gain array A o(Ar)  -~ used in 
engineering process control. If A is positive definite, then the eigenvalues of 
the relative gain array are all >/ 1 (Horn and Johnson, 1986, 5.4). 
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Section 14.B. G-Majorization 
Further theory o f  G-majorization and some statistical applications are 

given in Giovagnoli and Wynn (1985). The excellent surveys of Eaton (1982, 
1987) contain generalizations of Theorem B.2. This theory has been greatly 
developed since 1979. 

From a group-theoretic point of view, G-majorization is the natural 
generalization of majorization, and it has already been of great use in 
statistics. We use the definition of G-ordering on p. 422, and call a nonnega- 
tive function f on R n G-decreasing iff f ( x )  <~f(y) whenever y -<c x. If G 
is the group of coordinate permutations, then these are precisely the Schur- 
concave positive functions. The convolution theorem 3.J.1 was strengthened 
for finite reflection groups by Eaton and Perlman (1977): 

THEOREM 14.1. Let G be a finite reflection group, and f~ and f2 be 
G-decreasing. Then the convolution f l  ~ f2 defined by 

. -- O - x )  d x  

is a G-decreasing function on R n (whenever the integral exists). 

For further discussion and applications, see Eaton (1982, 1987). Suren 
Fernando (to be published) has recently shown the converse: if f l  ~ f2 is 
G-decreasing for every pair of G-decreasing functions, then G must be a 
finite reflection group (also known as a Coxeter group). 

Chapter 15. Much work has recently been done on forms of multivariate 
majorization. See Karlin and Rinott (1983) and a series of important papers 
by these authors, studying the version of majorization defined by doubly 
stochastic matrices (Marshall and Olkin, Definition 15.A.2). An important 
question is the nonequivalence of the definition of multivariatefmajorization 
using T-transforms (Definition 15.A.1) and that using doul~ly stochastic 
matrices S: if every S is a limit of products of T-transforms (i.e. if the 
products of the T-transforms are a dense subset of the doubly stochastic 
matrices), then the class of continuous functions which is increasing in one 
majorization order will be increasing in the other. This is now known to be 
false (Berg, 1984, p. 251); hence the ordering using products of T-transforms 
is strictly stronger than the order using doubly stochastic matrices. 

A new version of multivariate majorization, designed for studying resource 
allocation problems, is Joe and Verducci (1993). In this work, X-< Y if 
x 'X -< x 'Y for all positive vectors x. If  each row is considered as a distribu- 
tion of a resource over different organizations (a different row corresponds to 
and a different resource), then x is a vector of costs. The authors study 
convexity properties and an algorithm for determining when a given matrix 
majorizes another. 
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Sections 16.E7 and 16.E8 
Pages 468-473: Several of the comments on matrix convexity of powers in 

these sections have been rendered obsolete by Ando (1979); this is Ando's 
Corollary 4.1 on p. 215: 

THEOREM 16.1. The function ~o(A) = A p on the positive definite sym- 
metric matrices is convex if 1 <~ p <~ 2 or - 1  <~ p <<.0, and concave if 
0 ~ < p ~ < l .  

By Shorrock and Rizvi's paper (referenced in Marshall and Olkin), ~0 is 
neither concave nor convex for other values of p. A more readable treatment 
of this theorem than Ando's is that of R. Farrell (1985, Theorem 14.5.16 and 
the rest of Section 14.5). A survey of related questions is Kwong (1989). 

Chapter 18. Total Positivity 
A recent survey is Ando (1987). 

3. COMPLEMENTS 

The dominant eigenvalue of nonnegative matrices. I f  A is an n × n 
nonnegative matrix (i.e., aij >~ 0 for all i, j ) ,  then it is well known that the 
eigenvalue of maximum modulus is real and nonnegative; it is called the 
dominant or Perron eigenvalue or spectral radius r(A).  Now consider a 
function from some domain in R" into the class of n × n nonnegative 
matrices, which function we shall denote x -~ A(x). Each entry a~j(x)can be 
considered as a positive real valued function of x. The following is more or 
less found in Kingman (1961): 

TttEOnEM 1. Let S be a class of positive real valued functions, closed 
under addition, multiplication, raising to any positive power, and the taking 
of pointwise limsups of countable subsequences. I f  x -* A(x)  is a matrix 
valued function whose entries x ~ a~j( x ) are functions in S, then the spectral 
radius function x -4 r( A(x)) is also a member of S. 

Kingman's proof is stunningly neat. Let fp(X) = [tr AP(x)] 1/p. Then by 
our hypotheses, x - ~ f , ( x )  is also in S, p = 1,2 . . . . .  Furthermore fp(x)  is 
the lp norm of A(A(x~); hence r (A(x) )  = 112t(A(x))L[~ = lim supp fp(x) l ies  
in S. Three corollaries come immediately to mind: 

COnOLLARY 1. I f  the functions x --* a~j(x) are nonnegative increasing 
functions from R m to R, then r (A(x) )  is an increasing function of x. 

COROLLARY 2. I f  the functions x -~ a(j(x) are log-convex or identically 
zero, then so is r( A(x)). 
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That these functions satisfy the hypotheses of the theorem is proven in 
Kingman (1961). 

CortoL~ay 3. I f  the functions x --* a~j(x) are nonnegative and Schur- 
convex, then r( A( x )) is Schur-convex. 

That the hypotheses hold for these functions is easily checked. 
Corollary 1 is classical, but Corollary 3 appears to be new. 
An example of Corollary 2 at work is the following (Horn and Johnson, 

1986, 5.7.7): Let A~ be a nonnegative matrix, i = 1 . . . . .  k, and suppose that 
a i >~0, i = 1 . . . . .  k, satisfya 1 + . . .  +a  k ~> 1. Then 

r(  A~a,) . . . . .  A?k)) <~ r( A1) a' ... r(  Ak) a', (1) 

where A (a) is the matrix whose/j  entry is (a~j) ~. 
What is the real nature of majorization, and why is it so important? 

Kemperman (1981) discussed this question at length from the point of view 
of cone orderings: these are important objects, and majorization is the 
ordering defined by the cone of convex functions (which are themselves 
important). In a nice argument, Kemperman shows that the equivalence of 
the cone ordering definition of majorization and the doubly stochastic matrix 
definition follows from a theorem of Cartier in potential theory (in potential 
theory cone orderings are called sweeping orderings or balayage orderings). It 
is clear that a monograph setting majorization in the context of cone order- 
ings would be of great value. A first step to such a theory is Marshall and 
Olkin's Section 14.C. Further material on cone orderings is in Dellacherie 
and Meyer (1988) chapter X, section 2. 

Thompson (1983) focuses on the relation with group representation 
theory. A fascinating survey by Hazewinkel and Martin (1983) brings together 
a lot of connections with group representations, multilinear algebra, physics, 
etc. and is highly recommended. Hazewinkel calls majorization "the special- 
ization order" and seems unaware of the classical literature in inequalities. 
More connections with group representations can be glimpsed in Eaton and 
Perlman (1977), Zobin and Zobina (1993), and Kostant (1973). A survey of 
these connections would be of great value to the profession. Anyone want to 
volunteer? 

While we are at it, there are connections with control theory [Rosenbock 
(1970, p. 190) or Dickson (1974)]. Alberti and Uhlmann (1982) apply ma- 
jorization to physics and physical chemistry. In their terminology, a -< b is 
read "a is more chaotic than b," and the ordering is generalized to dual 
spaces of C* algebras to study solutions of evolution equations (e.g. the 
Boltzman equation) in state spaces. Warning: the inequality which Marshall 
and Olkin write as a >- b is reversed to read b -< a Alberti and Uhlmann. 
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4. APPENDIX: ERRATA 

JAMES V. BONDAR 

These errata are for the first printing, which can be identified by the 
bottom line of the back of the title page, which reads "79808182 
9 8 7 6 5 4 3 2 1." Many of these errata were corrected in the second printing. 
The later printings (which have a "2" or a "3" at the end of the bottom line of 
the back of the title page) still have errata on the following pages: 49, 79, 139 
(in A.l.a), 141, 196, 216, 240, 242, 243, 246, 249, 273, 293, 305, 357, 373, 
377, 485, 510, 566. 

The authors have taken pains to ensure that all printings have the same 
pagination, so the page numbers are the same in all copies. (Negative line 
numbers are counted from the bottom.) 

An anonymous FTP has been set up to record the latest list of errata to 
the book, and will be periodically updated. Contributions are welcomed by 
the author (Bondar). To get the errata file from this FTP by e-mail, send: "ftp 
alfred.ccs.carleton.ca". When asked for name, send "anonymous". When 
asked for password, send your e-mail address (e.g., mine is 
jbondar@carleton.ca), then change directories at the ftp prompt with 
"cd /pub /ma th /o lk in  get errata.tex". At the end, "quit". 

P. 15, line 9: Read 14.B for 14.G. 
P. 16, line above display (2): add ",j'" before equals sign. 
p. 17, top display: Multiply ~]~b(y~) by 1/n.  
p. 49, Theorem 1.2. Replace the p's by r's. 
P. 73, 4 lines above section E: product in denominator is over j ~ i, 

which is n - 1 factors and not n. 
P. 74, second display: left hand side is ~b(r). 
P. 79, line 1: Use (10) of A.4, not (12). 

P. 86, display (5): For (~), read . 

P. 87, G.2.g: If Yi ~> 1, then (7)holds if a ~w b, but not in general for 
a .<w b. The statement given for Yi ~< 1 is correct. 

P. 91, 3 lines above section H: seeond inequality should be "x >- 
( 1 / n  . . . . .  l /n )" .  

P. 116, A.2, Theorem (ii): both majorizations are weak supermajorizations, 
i.e., they are both ,<w . 

P. 117, A.2.c: change ~'++ to ~'+. In last display, the last part should be 
changed to "k = 1 . . . . .  n." 

P. 121, last line of display in A.4.e: change -< to --< w. 
P. 139, statement of Proposition A.I: The second inequality should read 

~,n ix( i )  .~ ~'.m x(i) 
i = i=1 ,~" 

P. 139, Proposition A.l.a: The condition "'provided all integrals are finite" 
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should be added to the statement. Both integrals in the display are with 
respect to ~ ( d a ) ,  and not Ix(dx). The first line of the proof should be 
changed to: "Let  7r be a permutation-valued function of a (to avoid complex 

~(~) is formulae, we will write this as 7 ,  and not ~'~,) such that for each a,  ~ ( j )  
decreasing in j = 1 . . . . .  n." In the first integral of the display, remove the 
subscript 7r(j) (but leave this subscript in the second integral). 

P. 141, A.3.a: Display (2a) holds only under some conditions on the signs 
of the ai's and b/s. This is shown by taking (a 1,a 2 ) = ( - 3 , - 2 )  and 
(bl, b 2) = (2, 1). It is sufficient to require that all a i and b i be >/0. A more 
complicated argument shows it is sufficient for the number of negative a's to 
equal to the number of negative b's. 

P. 196, beginning of section on "The Cosine Function": The function 
logcos kx is strictly concave in (0, ~/2k ) ,  not in (0, 7r) nor in (0, k'n'/2). 

P. 197, sentence after top display: change (i) and (ii) to (i) to (iv). Next 
sentence: change (iii) to (v). Second last line of A.13: insert sin c~ 3 in 
numerator of formula. 

P. 216, line 2 of A.l.a: The product at the end of the line should be "'BA" 
not "AB." 

P. 216, line -12 :  instead of "For  an n × n matrix H," read "For an 
n X n Hermitian matrix H.'" Also, if some eigenvalues of H are negative, 
then the o'i(H) may be in a different order from the IAi(n)l, so the vector 
o ' (H)  is equal to ]A(H)] only up to rearrangement. An example is 

0) " ( 0  
P. 226, line 5: change 0H12 to 0H21. 
P. 232, section E.l.b: change -< to -< w. 
P. 238, line - 5 :  change the first a i to co i. 
P. 240, display (5) is incorrect. I A((A + A*)/2)I need not be 

counterexample is 

0) 
A =  1 0 " 

~< o-(a);  a 

However, F.4.a is true, and the proof in G.l.f. is correct. 
P. 242, statement of Theorem G.l.b: The inequality (5) must be reversed. 

The last two lines of the proof should be changed to: " . . . i . e . ,  A(A*A) = 
()t(AA*), 0). Using C.1, 

(A(G) ,  A ( H ) )  = (A(XX*),  A(YY*)) -< A(A*A) = (A(AA*) ,0)  

= + u ) , o ) . ' "  
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P. 243, G.1.3: This result is false; a counterexample is A = - B = identity 
matrix. 

P. 246, G.4.b: This result is false; same counterexample as for p. 243. The 
problem with the proof is that min R tr U B V  * can be as low as - Y~o;,~_/+ ~(B). 
Thus, the inequality may be repaired by replacing the plus sign on the right 
hand of display (10) by a minus sign. 

P. 249, proof of HA.i: The last inequality is an application of (8), not (9). 
P. 250, last two lines of display: change U,, to U whenever it appears. 
P. 252, statement of Theorem H.4.a: For < ,  read <w • The strong 

majorization ( < )  holds only if A and B commute, as is clear from H.4.b. 
P. 269: The third equality in display (13) should read (AA+) * = AA +. 
P. 270, top display: the norm on the right side of the inequality has an 

E-norm, not an I-norm. 
P. 9.73, line 17: Change (6) to (7). 
P. 290, first display: insert "q~" after " E "  in the right side. 
P. 293, Theorem C.3 is incorrect. Rolski (1985) shows convexity of O fails 

if ~b is the max function. The argument in the proof fails to hold in an integer 
lattice. 

P. 297, line below display (2): The function is 4) and not 0. 
P. 300, second last line of E.5.C: change "chi -square '"  to "non-central 

chi-square". 
P. 302, second display: change E J  to E A 4a 
P. 305, last display: P(1)  = Po{K <~ 1 - 1}. 
P. 357, line - 5 :  In the right-hand side of the display, o'~(A i) and g,(Ai) 

should be replaced by ~r~(EA i) and cr, ,(EAi) .  
P. 373, Theorem J.l: The proof for n = 2 is correct; however, the proof 

given for n >~ 3 won't work for t < 0. The proof in Proschan (1965) can be 
used instead. 

P. 377, statement of Theorem K.3: Book et al. (1987) point out that this is 
stated incorrectly. The error may be repaired by interchanging "convex" and 
"concave," hence S-convex for srrmll t ,  and S-concave for large t.  The reader 
is referred to Book et al. (1987), where Theorem K.3 is generalized to 
Gamma( a , /3  ) densities, done for Weibull densities, and partially extended to 
sums of more than two gamma variables. 

P. 468, Proposition E.6.a, statement (ii): Change "' f l" to "B'" in the 
equation g ( a )  = ~ ( a A  + -~f l ) .  

P. 485, third line of Proposition C.I: j goes from 2 to n, not n - 1. 
P. 510, display at bottom: The subscript on the right of the inequality 

should be "'n - i + 1,'" not "l - i + 1." 
P. 566: The page reference for "Norm, matrix, consistent with vector 

norm" should be 274, not 276. The reference for "Norm, unitarily invariant" 
should be 263, not 236. 
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P. 568: The  page reference for "Symmetr ic  gauge function and unitarily 
invariant norms"  should be  263, not 236. 

I wish to thank Chandler Davis, Morris Eaton, Harry Joe, A. W. Mar- 
shall, and Y. L. Tong for assistance. Photography by George Styan. Michael 
Perlman has made many valuable comments. 
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