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SUMMARY

b site amyloid precursor protein (APP)-cleaving
enzyme 1 (BACE1) is the major b secretase for
generating b-amyloid (Ab) peptides. The acidic
environment of endosomes is optimal for b secre-
tase activity. However, the mechanisms regulating
BACE1 traffic from endosomes to lysosomes for
degradation are largely unknown. Here, using sna-
pin-deficient mice combined with gene rescue
experiments, we reveal that Snapin, as a dynein
motor adaptor for late endosomes, mediates
BACE1 retrograde transport. hAPP mutant live
neurons and mouse brains exhibited BACE1 accu-
mulation within the altered late endocytic organelles
and defective lysosomal targeting due to reduced
Snapin-dynein coupling. Deleting snapin or disrupt-
ing Snapin-dynein coupling reduces BACE1 trans-
port to lysosomes for degradation, thus enhancing
APP processing. Overexpressing Snapin in hAPP
neurons reduces b site cleavage of APP by
enhancing BACE1 turnover. Altogether, our study
provides mechanistic insights into the complex
regulation of BACE1 level and activity and turnover
through retrograde transport, thus controlling Ab
generation in neurons.
INTRODUCTION

Alzheimer’s disease (AD) is characterized by the formation of

senile plaques in patient brains (Hardy and Selkoe, 2002). The

primary constituent of the senile plaques is b-amyloid (Ab)

peptide, which is generated by sequential proteolysis of amyloid

precursor protein (APP) by b and g secretases. b secretase is

considered the initial and rate-limiting enzyme during this pro-

cess (Vassar et al., 2009). b site APP-cleaving enzyme 1

(BACE1) is the major neuronal b secretase for Ab generation

(Vassar et al., 2009). The BACE1 level/activity increases with

age (Fukumoto et al., 2004) and is elevated in AD patient brains
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(Yang et al., 2003), making BACE1 a prime target for therapeutic

intervention. BACE1 is a single-membrane spanning protease

and delivered to the cell surface from the trans-Golgi network

(TGN). The trafficking of BACE1 to endosomes is thought to

occur via internalization from the plasma membrane, or directly

from the TGN (Huse et al., 2000; Sannerud et al., 2011; Kang

et al., 2012; Prabhu et al., 2012). Late endosomes or multivesic-

ular bodies (MVBs) provide an acidic environment necessary for

optimal b secretase activity (Huse et al., 2000; Tesco et al., 2007;

Sannerud et al., 2011; Wu et al., 2011). BACE1 ultimately

undergoes degradation in lysosomes (Tesco et al., 2007; Lefort

et al., 2012). Thus, the BACE1 traffic route from endosomes to

lysosomes is critical to control its level and activity. However,

the mechanism regulating the delivery of BACE1 to lysosomes

in neurons remains largely unknown.

Alterations in the endosome-lysosome trafficking and Ab

accumulation within endosomes are among the earliest findings

in AD brains (Nixon, 2005; Ginsberg et al., 2010). Late endo-

somes containing Ab42 are clustered in distal processes and

synaptic terminals in mutant hAPP transgenic (Tg) mice (Takaha-

shi et al., 2002, 2004). The amount of pathogenic Ab in the brain

depends on the BACE1 level and its b secretase activity. Amyloi-

dogenic processing of APP appears to occur preferentially in

endosomes (Haass et al., 1992; Koo and Squazzo, 1994; Taka-

hashi et al., 2004; Wu et al., 2011), raising a fundamental

question: can the altered endosomal-lysosomal system in AD

neurons contribute to Ab accumulation by changing BACE1 level

and its b secretase activity? In current study, we reveal that hAPP

mutant live neurons and mouse brains exhibited an aberrant

BACE1 accumulation within the altered late endocytic organelles

due to its defective lysosomal targeting. These phenotypes are

attributable to a reduced coupling of dynein motor to its adaptor

Snapin for driving retrograde transport of BACE1-cargo late

endosomes. Deleting snapin or disrupting Snapin-dynein

coupling reduces BACE1 transport to lysosomes for degrada-

tion, thus enhancing APP processing. Overexpressing Snapin

in hAPP neurons reduces b site cleavage of APP by enhancing

BACE1 turnover. Thus, our study reveals a cellular pathway

that dynamically regulates the balance between BACE1 trans-

port/turnover and APP processing, thereby advancing our

knowledge that may be essential for controlling Ab generation

relevant to AD pathogenesis.
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Figure 1. Accumulation of APP and BACE1

within Late Endosomes in Mutant hAPP

Neurons

(A and B) Representative blots (A) and quanti-

tative analysis (B) showing accumulation of

BACE1 along the altered late endocytic pathway

in the brain of hAPP mutant Tg mice. A total of

20 mg of brain homogenates from WT and hAPP

Tg mice was sequentially detected on the same

membrane. Relative protein levels were normal-

ized by p115 and to that of WT littermates. Data

were analyzed from five pairs of mice for each

genotype and expressed as mean ± SEM with

Student’s t test: ***p < 0.001; **p < 0.01; *p <

0.05.

(C) Representative images showing distribution

patterns of Rab7-labeled late endosomes in

cultured cortical neurons from WT and hAPP

mutant Tg (J20) mice. Neurons were transfected with YFP-Rab7 at 6 DIV and imaged at 9 DIV. Note that late endosomes in hAPP mutant neurons appear

as large clusters along neuronal processes, particularly in distal regions.

(D) Representative axonal images showing late endosomal targeting of APP or its cleaved products (C99 and Ab) in APPmutant neurons with colocalized puncta.

Neurons were transfected at 6 DIV and coimmunostained with MAP2 and 6E10 antibodies at 16 DIV. MAP2-negative axons were selected for imaging.

Scale bars represent 10 mm (C and D). See also Figure S1.
RESULTS

Accumulation of APP and BACE1 within Late
Endosomes in Mutant hAPP Neurons
We first performed sequential immunoblots of brain cortex

homogenates from wild-type (WT) and hAPP Tg mice harboring

the human AD Swedish and Indiana mutations (CaMKIIa-tTA

X tet-APPswe/ind) (Jankowsky et al., 2005) (Figure 1A).

Increased intensity of lysosomal-associated membrane protein

1 (LAMP-1), LAMP-2, Rab7, and BACE1 was consistently

observed in hAPP mutant Tg mouse brains, whereas the Golgi

marker p115 level exhibited no detectable change (Figure 1B).

These results indicate an altered late endocytic system accom-

panied with an increased BACE1 level in hAPP Tg mice. BACE1

mRNA levels show no significant increase in hAPP Tg mouse

cortices (Figures S1A and S1B), suggesting that the observed

change in BACE1 steady-state levels is likely attributed to its

slower turnover rate, rather than elevated BACE1 expression.

We next compared the distribution patterns of late endosomes

labeled by YFP-Rab7 in cortical neurons cultured from WT and

hAPP Tg mice harboring the human AD Swedish and Indiana

mutations (J20) (Mucke et al., 2000). In WT neurons, late endo-

somes appeared as small and fine vesicular structures uniformly

distributed along neuronal processes. Surprisingly, late endo-

somes in hAPP Tg neurons were clustered as larger puncta at

distal processes (Figure 1C), suggesting an impaired late endo-

cytic trafficking. Coimmunostaining assay showed that a major-

ity of C99/Ab or APP, detected by a b amyloid (6E10) antibody,

was colocalized with late endosomes along MAP2-negative

distal axons in mutant hAPP neurons (Figure 1D). Consistently,

late endosomes in neurons expressing hAPPswe appeared to

be clustered at distal processes (Figure S1C). Although hAPP

can be readily detected within late endocytic organelles, ex-

pressing hAPPswe increased retention of APP or its cleaved

products within late endosomes by�3.4-fold (p < 0.001) (Figures

S1D and S1E). BACE1 and APP were largely colocalized as
vesicular structures within axons (Figure S1H). Our data suggest

that hAPP mutant expression in neurons induces defects in

late endocytic trafficking, which further increases APP pro-

cessing by reducing BACE1 turnover.

Impaired BACE1 Retrograde Transport in hAPP Tg
Neurons
We next asked whether BACE1 associates with Rab7-labeled

late endosomes moving along axons of mature neurons. Time-

lapse imaging in live neurons showed that a majority of BACE1

was targeted to late endosomes, some of which comigrated

from the distal axon toward the soma (Figure 2A), supporting a

hypothesis that BACE1 utilizes late endosomes as cargo carrier

for its traffic to mature lysosomes in the soma (Cai et al., 2010;

Lee et al., 2011). Dynein is the major motor driving late endo-

somes for retrograde transport. We next examined the associa-

tion of dynein motors with late endosomes by immunoisolation

using Dyna magnetic beads coated with a Rab7 antibody.

When equal amounts of late endocytic organelles were loaded

as reflected by Rab7 levels, normalized intensity of the dynein

intermediate chain (DIC) in hAPP mutant Tg mouse brains was

significantly reduced to 27% in comparison with that of WT litter-

mates (p < 0.001) (red box in Figures 2B and 2C), indicating a

reduced loading of the dynein motors onto late endosomes.

Snapin, as an adaptor, recruits dynein motors to late endosomes

through Snapin-DIC coupling (Cai et al., 2010). Although Snapin

levels display no detectable change (p = 0.238), reciprocal

coimmunoprecipitation assays showed reduced Snapin-DIC

coupling in hAPP Tg mouse brains. It suggests an impaired

recruitment of dynein motors onto late endosomes. Snapin

associated with Ab, but not with mutant hAPP (Figure S2A; see

the Supplemental Results).

Purified late endocytic organelles from hAPP Tg brains re-

tained increased BACE1 (p < 0.05) relative to that fromWT litter-

mates (green box in Figure 2B). Moreover, hAPPmutant neurons

exhibited reduced retrograde transport of late endosomes,
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Figure 2. Impaired BACE1 Retrograde Transport in hAPP Tg Neurons

(A) Representative kymograph (upper) and time-lapse imaging (lower) showing colocalization (yellow) and comigration (white arrows) of BACE1 (green) and Rab7

(red) from the distal axon toward the soma of WT cortical neurons during a 200 s recording period. Neurons were transfected at 6 DIV, followed by time-lapse

imaging at 11 DIV. The axon image was taken �100 mm away from the cell body.

(B and C) Immunoisolation showing reduced dynein attachment to its cargo: late endosomes (in red box) containing robustly increased BACE1 (in green box)

along with aberrant accumulation of APP, C99, and Ab in hAPP Tgmouse brains. Rab7-associated organelles were immunoisolated with anti-Rab7-coated Dyna

magnetic beads, followed by sequential immunoblotting on the same membranes after stripping between each antibody application. Data were quantified from

three repeats.

(D and E) Quantitative analysis (D) and representative kymographs (E) showing impaired axonal retrograde transport of BACE1-GFP in hAPP mutant neurons

(10–12DIV), which is rescued by expressing Snapin, but not its L99Kmutant defective in dynein DIC binding. Vertical lines represent stationary organelles, oblique

lines or curves to the right (negative slope) represent anterograde movements, and lines to the left (positive slope) indicate retrograde transport. As an internal

control, anterograde transport was not significantly altered along the same axons of APP mutant neurons. Data were quantified from a total number of axonal

BACE1 vesicles (V) from a total number of neurons (N) in more than three experiments, as indicated in parentheses.

Scale bars represent 10 mm (A). Error bars represent SEM. Student’s t test: ***p < 0.001; **p < 0.01; *p < 0.05. See also Figure S2 and Movies S1, S2, S3, and S4.
which can be rescued by overexpressing Snapin, but not its

DIC-binding defective mutant (Figures S2B and S2C; see the

Supplemental Results). We next examined whether retrograde

transport of BACE1 is impaired in live hAPP mutant neurons.

Similar to a previous report by Wang et al. (2012), BACE1 dis-

played dynamic bidirectional movement in WT neurons (antero-

grade, 22.66% ± 1.63%; retrograde, 41.81% ± 1.73%) (Figures

2D and 2E; Movie S1). In contrast, BACE1 in hAPP mutant

cortical neurons showed selective defects in retrograde, but

not anterograde, transport, thus increasing their stationary
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pool (anterograde, 25.00% ± 1.44%; retrograde, 25.01% ±

1.40%; p < 0.001) (Figures 2D and 2E; Movie S2). Expressing

Snapin, but not its L99K mutant defective in DIC binding in

hAPP mutant neurons, rescued BACE1 retrograde transport

(Snapin, 40.33% ± 1.28%; Snapin-L99K, 21.3% ± 2.58%) (Fig-

ures 2D and 2E; Movies S3 and S4).

Snapin-DIC Interaction Regulates APP Processing
We next asked whether a defective Snapin-DIC coupling causes

an altered BACE1 distribution and motility, thus contributing to



the phenotypes observed in hAPP Tg neurons. In control

neurons, BACE1 appeared as small and fine vesicular structures

in dynamic and bidirectional movement (motility, 64.22% ±

3.63%; in which 25.50% ± 2.11% for anterograde and

38.72% ± 2.94% for retrograde) (Figures 3A and 3B; Movie

S5). In contrast, snapin mutant cortical neurons from the snapin

flox mice display reduced BACE1 retrograde transport

(21.60% ± 1.98%; p < 0.001) with unaltered anterograde trans-

port (Movie S6), resulting in larger clustering of BACE1 along

distal processes. Reintroducing HA-Snapin into snapin-deficient

neurons selectively recruited more stationary BACE1 vesicles

into the retrograde motile pool (47.48% ± 1.54%; p = 0.0037)

(Movie S7), highlighting a critical role for Snapin in mediating

BACE1 retrograde transport in neurons. In addition, Snapin-

DIC interaction is necessary for dynein-driven retrograde

transport of BACE1 in neurons (Figures S3A and S3B; see the

Supplemental Results).

We hypothesized that BACE1 retrograde transport is one

of the important traffic pathways for its degradation in mature

lysosomes in soma. It is supported by reduced colocalization

mean intensity of BACE1-GFP with LAMP-1-mRFP in snapin-

deficient neurons relative to WT controls (p < 0.001) (Figures

3C and 3D). Snapin deficiency robustly increased BACE1 re-

tention within late endocytic organelles in snapin(�/�) mouse

embryonic fibroblasts (MEFs) (p < 0.0001) (Figures S3C and

S3D); a phenotype could be reversed by expressing Snapin,

but not its mutant Snapin-L99K. We next asked whether defec-

tive BACE1 transport in snapin mutant cells affects BACE1

degradation, thus enhancing APP processing. Deleting the

snapin gene in mice displayed increased levels of endogenous

BACE1 and APP-processing product CTFs in brain homo-

geneous (BACE1, p < 0.05; C99, p < 0.01; C89, p < 0.01; C83,

p < 0.01) relative to their WT littermates (Figures 3E and 3F).

Increased BACE1 and CTFs were consistently found in

snapin(�/�) MEFs (Figure 3E). ELISAs in 1-month-old conditional

snapin-deficient mice show dramatically increased Ab in

cerebral cortex and hippocampus (cortex: 188.96% ± 12.23%,

p = 0.0054; hippocampus: 226.31% ± 15.2%, p = 0.0036)

comparedwith their littermate controls (Figure 3G). These results

indicate that Snapin-dynein-mediated endocytic transport

controls Ab production by enhancing BACE1 trafficking to lyso-

somes for turnover.

Snapin Reduces APP Processing in hAPP Tg Neurons
We next examined the distribution pattern of BACE1 in the

hippocampal CA3 regions of the hAPP Tg mouse brains. In WT

mice, whereas BACE1 signals appeared as vesicular structures

in the soma-enriched areas, these signals were much weaker in

the process-enriched areas. Conversely, distribution of BACE1

in hAPP Tg mouse brains is opposite: less BACE1 vesicular

structures were found in the soma, and more BACE1 structures

clustered and accumulated in distal processes. Averaged

number of BACE1 clusters per section was substantially

increased relative to WT controls (WT, 18.22 ± 3.50; hAPP Tg,

75.08 ± 7.80; p < 0.001) (Figure 4A). Amajority of BACE1 clusters

were colabeled by the 6E10 antibody, which detects both APP

and its cleaved products C99 and Ab deposits, accompanied

by swollen/dystrophic neurites (Figure 4B).
To explore amechanistic link between defects in BACE1 trans-

port and its turnover through lysosomes, we examined lysosomal

targeting of BACE1. BACE1 targeting to lysosomes was reduced

by50.29%±7.9% (p=0.005) in hippocampalCA3 regionof hAPP

Tgmice in comparisonwithWTcontrols (Figure 4C).Consistently,

BACE1 lysosomal targeting in cultured hAPP Tg neurons was

similarly reduced to 55.26% ± 6.56% (Figure 4D). Our previous

study demonstrates that elevated Snapin expression in neurons

enhances late endocytic trafficking and lysosomal function (Cai

et al., 2010). Thus, Snapin provides a potential molecular tool

for accelerating BACE1 turnover and thereby reduces b site

cleavage of APP. Overexpressing Snapin in COS7 cells reduces

BACE1 and suppresses APP processing reflected by reduced

APP-CTFs (Figure S4C). Consistently, elevated Snapin expres-

sion in hAPP Tg neurons by infection with Lenti-Snapin reduces

both BACE1 and C99 to 70.04% ± 7.37% (p = 0.027) and

62.89% ± 2.26% (p = 0.004), respectively (Figures 4E and 4F).

Furthermore, Snapin overexpression in snapin(�/�) MEFs effec-

tively reduces BACE1 level, whereas disrupting Snapin-DIC

coupling by expressing Snapin-L99K mutant increases BACE1

level (FiguresS4AandS4B, see theSupplementalResults). These

results suggest that Snapin-mediated retrograde transport facil-

itates BACE1 trafficking to lysosomes for degradation. Defects

in BACE1 retrograde transport would retain BACE1 in the endo-

cytic pathway within neurites, rather than being delivered to

somatic mature lysosomes for degradation, thereby increasing

APP processing and Ab generation.

DISCUSSION

The amount of pathogenic Ab peptide generated in the brain

depends on the BACE1 level and its b secretase activity.

Although the amyloidogenic processing of APP appears to

preferentially occur in endosomes, BACE1 is degraded within

lysosomal organelles (Tesco et al., 2007; Lefort et al., 2012)

(Figure S4A). Thus, the traffic route for BACE1 from endosomes

to lysosomes is critical to limiting its level and activity. Better

understanding of the mechanisms regulating APP processing

and BACE1 trafficking is crucial to dissecting the AD-associated

pathological events.

Retrograde transport of late endosomes is crucial for the

delivery of internalized proteins and target materials from distal

processes to the soma where mature lysosomes are predomi-

nantly located (Cai et al., 2010; Lee et al., 2011). The mecha-

nisms by which BACE1 is transported to lysosomes are not

understood. Our current study provides mechanistic insights

into the motor-adaptor machinery that drives BACE1 retrograde

transport. Such a mechanism is critical for the regulation of

BACE1 level and activity, thus controlling APP processing. We

showed that hAPP Tg neurons and mouse brains exhibit defec-

tive BACE1 retrograde transport due to reduced Snapin-DIC

coupling and impaired dynein motor loading onto late endo-

somes, thus leading to the aberrant accumulation of BACE1

and enhanced APP processing within late endosomal compart-

ments along neuronal processes. We further demonstrated that

Snapin acts as an adaptor selectively recruiting dynein motors to

the BACE1-associated late endosomes. Snapin-mediated and

dynein-driven retrograde transport is essential for the delivery
Cell Reports 6, 24–31, January 16, 2014 ª2014 The Authors 27



Figure 3. Snapin-DIC Interaction Regulates APP Processing

(A and B) Representative images and kymographs (A) and quantitative analysis (B) showing relative distribution and motility of BACE1 in cortical neurons (12–13

DIV) from homozygous snapin flox mice, or expressed with Cre, or rescued snapin-deficient neurons. antero, anterograde; retro, retrograde.

(C and D) Representative images (C) and quantitative analysis (D) showing reduced lysosomal targeting of BACE1 in snapin-deficient neurons. Cortical neurons

cultured from snapin flox mice were cotransfected with BACE1-GFP and LAMP-1-mRFP, or with Cre at 6 DIV and imaged at 12–13 DIV. Bottom panels (C) are

close-up views of the boxed areas. Arrows point to vesicular structures containing both BACE1 and LAMP-1, whereas arrowheads mark BACE1 puncta

unlabeled by LAMP-1. Normalized mean intensity for colocalization reflects relative BACE1 targeting to lysosomes in soma.

(E and F) Representative blots (E) and quantitative analysis (F) showing enhanced APP processing by deleting snapin in mouse brains andMEFs. A total of 20 mg of

brain homogenates (BH) and MEF lysates was sequentially detected on the same membrane with antibodies as indicated. Change in protein levels from BH was

normalized by p115. Data were collected from four independent repeats. mat, mature; imat, immature.

(G) Increased mouse Ab levels in the cerebral cortex and hippocampus of 1-month-old conditional snapin-deficient mice compared with their littermate controls.

Cerebral cortex and hippocampus were homogenized with guanidine HCl extraction buffer, and the homogenates were analyzed by ELISA for mouse Ab40 levels

(n = 4 for each of the genotypes).

Data were quantified from a total number of axonal BACE1 cargos (V) from a total number of neurons (N) as indicated in parentheses (B) or from a total number of

neurons (N) indicated on the top of bars (D) in more than three experiments. Scale bars represent 10 mm. Error bars represent SEM. Student’s t test: ***p < 0.001;

**p < 0.01; *p < 0.05. See also Figure S3 and Movies S5, S6, and S7.
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Figure 4. Snapin Reduces APP Processing

(A) BACE1 clustering (arrows) in distal processes of hippocampal CA3 regions in hAPP Tg mice. The number of BACE1 clusters per section (3203 320 mm) was

quantified. Avg., average.

(B) Increased association of BACE1 with 6E10-labeled APP, C99, and Ab deposits within swollen/dystrophic neurites in the hippocampal regions of hAPP

Tg mice.

(C) Impaired BACE1 targeting to lysosomes in the soma of hippocampal CA3 regions in hAPP Tg mice.

(D) Impaired lysosomal targeting of BACE1 in the soma of hAPP Tg neurons coexpressing BACE1-GFP and LAMP-1-mRFP, which was rescued by Snapin

overexpression.

(E and F) Overexpressing Snapin decreased the levels of BACE1 and APP-C99 in hAPP mutant neurons. Neurons were infected with Lenti-Snapin at 6–7 DIV,

followed by collection of cell lysates at 11–12 DIV. A total of 40 mg of lysates was sequentially detected on the same membrane with antibodies as indicated.

Changes in protein levels were normalized by b-tubulin and to those of noninfected hAPP mutant neurons. Data were collected from four independent

repeats.

Scale bars represent 25 mm (A and B) and 10 mm (C andD). Data were quantified from a total number of imaging slice sections (A), imaging fields (C), or neurons (D)

indicated on the top of bars frommore than three experiments. Error bars represent SEM. Student’s t test: ***p < 0.001; **p < 0.01; *p < 0.05. See also Figure S4.
of BACE1 from distal processes to the somatic lysosomes for

degradation. In snapin-deficient neurons, BACE1 retrograde

transport was selectively impaired (Figure 3), resulting in the
following major cellular defects: (1) BACE1 was clustered along

distal neuronal processes (Figure 3A); (2) BACE1 was retained

within late endocytic organelles rather than being delivered to
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lysosomes for degradation (Figures 3 and S3); (3) BACE1 and

APP-CTFs were increased in neurons and MEFs (Figure 3); and

(4) Ab levels were increased in the cerebral cortex and hippo-

campus of snapin-deficient mouse brains (Figure 3G). These

phenotypes could be rescued by reintroducing snapin trans-

genes, but not its L99K mutant defective in DIC binding (Figures

3, S3, and S4). Furthermore, elevated Snapin expression in hAPP

mutant neurons reverses the defects in BACE1 retrograde trans-

port and lysosomal degradation, thus reducing APP amyloido-

genic processing (Figures 2, 4, and S2). Therefore, Snapin-DIC

interaction is one of the primary pathwaysmediating BACE1 traf-

ficking and turnover in neurons.

Efficient intracellular transport is critical for neuronal function

and survival because main synthetic and degradative com-

partments are located in the soma. Dynein-driven retrograde

transport is essential for delivering late endosomal cargo from

the cell periphery and distal processes to the soma for lysosomal

degradation. A large body of evidence implicates defective

axonal transport in AD (Stokin and Goldstein, 2006). The deficits

in retrograde transport of BDNF-TrkB signaling endosomes have

been recently reported in APP mutant neurons (Poon et al.,

2013). Because signaling endosomes are specialized late

endocytic organelles (Zhou et al., 2012), it is consistent with

our observations of impaired retrograde transport of late

endosomes. Our study provides evidence that impaired

BACE1 retrograde transport in hAPP mutant cortical neurons

compromises its lysosomal degradation, thus enhancing its b

secretase activity and Ab generation.

Recent work by Das et al. (2013) demonstrated that APP and

BACE1 are sorted into distinct neuronal organelles in resting

states. Synaptic activity induces convergence of APP and

BACE1 along the endocytic pathway, thus triggering amyloido-

genesis. Our study provided further evidence that APP, C99,

and Ab were accumulated together with BACE1 within late

endosomes in dystrophic neurites of hAPP Tg neurons. Given

that the amyloidogenic processing of APP occurs preferential

in endosomes, our findings provide mechanistic insights into

the cellular mechanism underlying the retention of APP and

BACE1 within the endocytic system for Ab generation. Alto-

gether, these results allow us to propose a model in which

Snapin-dynein mediates the delivery of BACE1 to lysosomes in

the soma for controlling its b secretase activity. Future therapeu-

tic approaches aimed at modulating the Snapin-dynein coupling

may help rescue defective BACE1 transport found in AD and

thus restrict Ab production in neurons.
EXPERIMENTAL PROCEDURES

Mouse cortical neuron cultures were prepared from E18–E19 mouse embryos

or P0 mouse pups as described (Cai et al., 2010, 2012). Neuron images were

acquired on an Olympus FV1000 confocal microscope with a 603 oil-immer-

sion objective by sequential acquisition. For morphological analysis, z stack

(eight to ten optical sections) images were acquired by using the same settings

below saturation at a resolution of 1,024 3 1,024 pixels (eight bit), and bright-

est point projections were made. Colocalization and morphometric measure-

ments were performed using NIH ImageJ. Neurons for time-lapse imaging

were plated at 1 3 105/cm2. BACE1-GFP or YFP-Rab7 and LAMP-1-mRFP

were cotransfected at 6–9 DIV and incubated for an additional 72–96 hr. Neu-

rons were incubated in a heated confocal living-cell incubator for at least 6 min
30 Cell Reports 6, 24–31, January 16, 2014 ª2014 The Authors
before imaging with a 603 oil-immersion objective lens (N.A. 1.3) on an

Olympus FV1000 confocal microscope. Due to distinct microtubule organiza-

tion in axons and dendrites, only axonal processes were selected for motility

analysis.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, Supplemental

Discussion, Supplemental Experimental Procedures, four figures, and seven

movies and can be found with this article online at http://dx.doi.org/10.1016/

j.celrep.2013.12.008.
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