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Abstract

Let G be a 4-connected planar graph on n vertices. Malkevitch conjectured that if G contains a cycle of length 4, then G
contains a cycle of length k for every k € {n,n — 1, ..., 3}. This conjecture is true forevery k € {n,n —1,...,n — 6} with k > 3.
In this paper, we prove that G also has a cycle of length n — 7 provided n > 10.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and notation

Whitney [10] proved that every 4-connected planar triangulation contains a Hamilton cycle. Tutte [8] extended
Whitney’s result to every 4-connected planar graph. Malkevitch [2] conjectured that every 4-connected planar n-
vertex graph contains a cycle of length k for every k € {n,n — 1, ..., 3} if it contains a 4-cycle. Note that the line
graph of a cyclically 4-edge-connected cubic planar graph with girth at least 5 contains no cycle of length 4.

Malkevitch’s conjecture for k = n — 1 follows from a theorem of Tutte as observed by Nelson, see [7]. The case
for k = n — 2 was proved by Thomas and Yu [6]. Sanders [5] showed that in any 4-connected planar graph with
at least six vertices there are three vertices whose deletion results in a Hamiltonian graph, establishing Malkevitch’s
conjecture for k = n — 3. Chen et al. [1] proved Malkevitch’s conjecture for k € {n —4,n —5,n — 6} withk > 3. In
this paper, we prove the following result.

Theorem 1.1. Let G be a 4-connected planar graph and let u € V(G). Then there is a set X C V(G) such that
u € X, |X|=6,and G — X has a Hamilton cycle when |V (G)| > 9.

We will show that Theorem 1.1 implies that G contains a cycle of length n—7 for all n > 10 (see Corollary 4.1). The
proof of Theorem 1.1 is similar to that in [1], in which the notion of Tutte paths and contractible subgraphs technique
are used. Let G be a graph and let H € G. We use G/H to denote the graph obtained from G by contracting H. If
H is induced by an edge e, then we write G /e instead of G/H. A subgraph H in a k-connected graph G is said to be
k-contractible (or contractible) if the graph G/H is also k-connected. A graph X is a minor of G (or G contains an
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X-minor) if X can be obtained from a subgraph of G by contracting edges. Note that a graph is planar iff it has no
Ks-minor or K3 3-minor.

Let X C E(G) (or X € V(G)). We use G — X to denote the graph obtained from G by deleting X (and the edges
of G incident with elements of X), and if X = {x} thenlet G —x := G —{x}. Let P be a path (cycle) in G. A P-bridge
of G is a subgraph of G which either (1) is induced by an edge of G — E(P) with both incident vertices in V (P) or
(2) is induced by the edges in a component D of G — V (P) and all edges between D and P. For a P-bridge B of G,
the vertices of B N P are the attachments of B on P. We say that P is a Tutte path (cycle) in G if every P-bridge of G
has at most three attachments on P. For any subgraph C of G, P is called a C-Tutte path (cycle) in G if P is a Tutte
path (cycle) in G and every P-bridge of G containing an edge of C has at most two attachments on P. Note that if P
is a Tutte path in a 4-connected graph and |V (P)| > 4, then P is in fact a Hamilton path.

We consider only simple graphs and use the notation and terminology in [1]. Let G be a graph and let X € V(G).
We use G[X] to denote the subgraph of G induced by X. Let Z be a set of 2-element subsets of V (G); then we use
G + Z to denote the graph with vertex set V(G) and edge set E(G)UZ, and if Z = {{x, y}} thenletG+xy =G+ Z.
Let Ng(X) .= {u € V(G) — X : u is adjacent to some vertex in X}, and if X = {x} then let Ng(x) := Ng({x}). For
any path P and x, y € V(P), we use x Py to denote the subpath of P between x and y. Given two distinct vertices
x and y on a cycle C in a plane graph, we use xCy to denote the path in C from x to y in clockwise order. It is well
known that every face of a 2-connected plane graph is bounded by a cycle.

2. Known results

In this section, we list several results about Tutte paths and contractible subgraphs. The following lemma is shown
in [4] and [6].

Lemma 2.1. Let G be a 2-connected plane graph with a facial cycle C. Let e, f, g € E(C), and assume that e, f, g
occur on C in clockwise order. Then G contains a C-Tutte cycle P throughe, f and g.

A block of a graph H is either (1) a maximal 2-connected subgraph of H or (2) a subgraph of H induced by an
edge of H not contained in any cycle. An end block of a graph H is a block of H containing at most one cut vertex of
H. We say that a connected graph H is a chain of blocks if H has at most two end blocks. A connected graph H is a
chain of blocks from x to y if one of the following holds: (1) H is 2-connected and x and y are distinct vertices of H;
or (2) H has exactly two end blocks, neither x nor y is a cut vertex of H, and x and y belong to different end blocks
of H. Note that if H is not a chain of blocks from x to y, then there exist an end block B of H and a cut vertex b of
H such thatb € V(B) and (V(B) — {b}) N {x, y} = 0.

Let G be a graph and {aj,...,a;} € V(G), where [ is a positive integer. We say that (G, ay, ..., a;) is planar
if G can be drawn in a closed disc with no pair of edges crossing such that ay, ..., a; occur on the boundary of the
disc in cyclic order. The graph G is called (4, {ay, ..., a;})-connected if |V (G)| > [ + 1 and for any T C V(G) with
|T| < 3, every component of G — T contains some element of {ay, ..., a;}. Note that if G is 4-connected, then G is
(4, S)-connected for all § € V(G) with § # V(G).

The following four lemmas are proved in [1], using Tutte paths technique.

Lemma 2.2. Let G be a graph and {a1, az, a3, as} < V(G) such that G is (4, {a1, az, a3, as})-connected. Then
G — {az, a4} is a chain of blocks from a; to as.

Lemma 2.3. Let H be a graph and {ay, ay,a3,a4} < V(H). Assume that (H,ay,a», a3, as) is planar, H is
4, {a1, az, a3, aa})-connected, and ay has at least two neighbors contained in V(H) — {ay, az, a3, as}. Then one
of the following holds:

(1) H — {ay, a3, a4} is 2-connected; or
(2) both H — {ay, a3, a4} and H — {ay, a», a3} are 2-connected.

Lemma 2.4. Let G be a graph and {ay, . ..,a;} C V(G), where 3 <1 < 5. Assume that (G, ay, ..., a) is planar, G
is (4,{a1, ...,a})-connected, and G — {as, ..., a;} is a chain of blocks from ay to ay. Then G — {as, ..., a;} has a
Hamilton path from ay to as.
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Fig. 1. |SNT| =2.

Lemma 2.5. Let H be a graph and {a1, az,a3,as} < V(H). Assume that (H, a1, ap, az, aq) is planar, H is
4, {a1, az, a3, as})-connected, and |V(H)| > 6. Then there is a vertex z € V(H) — {a1, a2, a3, a4} such that
H — {z, a3, a4} has a Hamilton path from a; to a>.

We now state some results on contractible subgraphs. Tutte [9] proved that K4 is the only 3-connected graph with
no 3-contractible edges. On the other hand, there are infinitely many 4-connected graphs with no 4-contractible edges.
Martinov [3] showed that if G is a 4-connected graph with no contractible edges, then G is either the square of a cycle
of length at least 4 or the line graph of a cyclically 4-edge-connected cubic graph. Chen et al. [1] proved the following
result which provides information about 4-contractible edges incident with a specific vertex in a 4-connected planar
graph.

Theorem 2.6. Let G be a 4-connected planar graph and let u € V(G). Then one of the following holds:

(1) G has a contractible edge incident with u; or
(2) there are two 4-cuts S and T of G suchthat 1 < |SNT| <2, S contains u and a neighbor of u, T contains u
and a neighbor of u, and G — S has a component consisting of only one vertex which is also contained in T.

Theorem 2.6 is used in [1] to prove the following result.

Theorem 2.7. Let G be a 4-connected planar graph and let u € V(G). Then for each |l € {1, ..., 5} there is a set
X; € V(G) such that u € Xy, |X;| =1, and G — X; has a Hamilton cycle when |V (G)| > 1 + 3.

3. A lemma

In this section, we prove the following special case of Theorem 1.1, which deals with a situation in (2) of
Theorem 2.6.

Lemma 3.1. Let G be a 4-connected planar graph and let u € V(G). Let S, T be two 4-cuts of G such that
ISNT| =2 u € SNT, S has a neighbor of u, and G — S has a component A consisting of only one vertex
which is also contained in T. Then there is a set X € V(G) such that u € X, |X| = 6, and G — X has a Hamilton
cycle when |V (G)| > 9.

Proof. Let a be the only vertex in V(A), and let B := G — ({a} U S). Let C be a component of G — T and let
D=G—- (VO UT). IfSNV(C)=0,then BN C = C # (Jis a component of G — (T — {a}), contradicting the
assumption that G is 4-connected. Similarly, if SNV (D) = # then BN D = D # (} is acomponent of G — (T — {a}),
a contradiction. Hence SNV (C) # @ # SN V(D). Therefore |[SN V(C)| =1 = |[SN V(D)|. By symmetry, we may
assume that |V(BN C)| < |V(B N D)|. Let v denote the vertex in (SN T) — {u}, let w denote the vertex in SNV (C),
let b denote the vertex in S N V (D), and let ¢ denote the vertex in V(B) N T, as shown in Fig. 1.

Let H := G[V(C)U{u, v, c}] and H := G[V (D) U{u, v, c}]. Since au, av € E(G), in any plane representation
of G, a and v are cofacial, and a and u are cofacial. As T is a cut set of G, we see that in any plane representation
of G, c and v are cofacial, and c and u are cofacial. Therefore, since a is adjacent to both b and w, (Hy, ¢, v, w, u) is
planar and (Ha, c, v, b, u) is planar. Since G is 4-connected, H; is (4, {c, v, w, u})-connected (if B N C # }) and H;
is (4, {c, v, b, u})-connected (if B N D # (). Therefore by Lemma 2.2, H; — {w, u} is a chain of blocks from c to v,
and H, — {b, u} is a chain of blocks from c to v.

Suppose |V(B N C)| > 2. Then by Lemma 2.5, there is a vertex x € V(B N C) such that H; — {x, w, u} has a
Hamilton path P from c to v. Similarly, since |V(B N D)| > |V(B N C)| > 2, there is a vertex y € V(B N D) such
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that H> — {y, b, u} has a Hamilton path Q from c to v. Let X := {a, b, u, w, x, y}; then P U Q is a Hamilton cycle in
G —X.

Now suppose |V(B N C)| = 1. Then |V (B N D)| > 2; otherwise, |[V(B N D)| = 1 and |V (G)| = 8, and there is
nothing to prove. Let z denote the only vertex in V(B N C).

We may assume that ¢ has at least two neighbors in V(B N D). Otherwise, since G is 4-connected, c is adjacent to
at least one element of {v, b, w}. If c is adjacent to v, then since |V (BN D)| > 2, it follows from Lemma 2.5 that there
isavertex y € V(BN D) such that H, — {y, b, u} has a Hamilton path Q from c to v. Let X := {a, b, u, w, y, z}; then
O + cv is a Hamilton cycle in G — X. If ¢ is adjacent to b, then by contracting ab, contracting wz, and contracting
B N D to a single vertex, we produce a minor of G containing K3 3, a contradiction. If ¢ is adjacent to w, then by
contracting aw, and contracting D to a single vertex, we produce a minor of G containing K3 3, again a contradiction.

Hence by Lemma 2.3, there is some x € {v, ¢} such that H, — ({v, b, u, ¢} — {x}) is 2-connected. Choose a vertex
x" of Hy — ({v, b, u, ¢} — {x}) such that xx’ is an edge and H; can be drawn in a closed disc so that xx’ lies on the
boundary and x, x’, {v, b, u, ¢} — {x} occur in cyclic order on the boundary of the disc. By applying Lemma 2.4, we
find a Hamilton path R from x to x". Let X := {a, b, u, w, z} U ({v, ¢} — {x}); then R + xx’ is a Hamilton cycle in
G —X.

Therefore we may assume that [V (BN C)| = 0. Then |V (BN D)| > 3; otherwise, |V (G)| < 8, and there is nothing
to prove. Since H; is (4, {c, v, b, u})-connected and (H3, c, v, b, u) is planar, B N D is connected. We consider two
cases according to the connectivity of B N D.

Case 1. B N D is connected but not 2-connected.

Let Ji, ..., Ju (m > 2) be the end blocks of B N D, and let v; be the cut vertex of B N D contained in V (J;).
We claim that m = 2. Otherwise, since H is (4, {c, v, b, u})-connected, at least three elements of {c, v, b, u} have
neighbors in V(J;) — {v;} (for each i), which contradicts the assumption that (H>, c, v, b, u) is planar.

Let By := J1—vj and By := (BN D)—V(Jy). Since H; is (4, {c, v, b, u})-connected and (H3, c, v, b, u) is planar,
either each element of {v, u} has neighbors in both V (B1) and V (B3) or each element of {c, b} has neighbors in both
V(B1) and V (B3). Moreover, exactly three elements of {c, v, b, u} have neighbors in each V (B;). We only consider
the case that each element of {v, u} has neighbors in both V (B1) and V (B;); the other case can be treated in a similar
way (by exchanging the roles of ¢ and v and by exchanging the roles of b and u). Then by planarity, those neighbors
of b in V(B N D) are contained in V (B7), and those neighbors of ¢ in V(B N D) are contained in V (B>).

Let Ly := G[V(B1) U{v,vi,u,b}] and let L, = G[V(B) U {v, v1, u, c}]. Note that (L, v, vi, u, b) and
(Lp,v,v1,u,c) are planar. Since Hp is (4, {c, v, b, u})-connected, Li is (4, {v, v, u, b})-connected and L; is
(4, {v, v1, u, c})-connected. Then by Lemma 2.2, L — {u, b} is a chain of blocks from v to vy, and Ly — {u, c}
is a chain of blocks from v to v;. By applying Lemma 2.4, L; — {u, b} has a Hamilton path R; from v to v;, and
L> — {u, c} has a Hamilton path R, from v to v;.

Suppose |V (B N D)| = 3. Then B N D is a path x1x2x3, where V(B1) = {x1}, V(B2) = {x3}, and x» = v;. Since
G is 4-connected and by planarity, x; is adjacent to each element of {v, u, b}, x2 is adjacent to both v and u, and x3 is
adjacent to each element of {v, u, c}. Let X := {a, b, ¢, u, w, x1}; then vxpx3v is a Hamilton cycle in G — X.

So we may assume that [V (B N D)| > 4. If |[V(B})| > 2, then by Lemma 2.5, there is a vertex z; € V(B1) such
that L1 — {z1, u, b} has a Hamilton path R/l from v to vy. Let X = {a, b, ¢, u, w, z1}; then R/1 U R; is a Hamilton
cyclein G — X. Otherwise, if |V (B3)| > 2, then there is a vertex zo € V(B») such that Ly — {z2, u, ¢} has a Hamilton
path Ré from v to vy. Let X :={a, b, c, u, w, zp}; then Ry U Ré is a Hamilton cycle in G — X.

Case 2. B N D is 2-connected.

Let F denote the outer cycle of B N D. Choose vi, v2, v3,v4 € V(F) such that v, vz, v3, v4 occur on F in
clockwise order, Ng(v) N V(F) C V(viFuvy), Ng(c) N V(F) C V(vuFv3), Ng(u) N V(F) € V(v3Fvy), and
Ng(b) NV (F) C V(v4Fvy).

By Lemma 2.1, we find an F-Tutte cycle H in BN D through three edges on F incident with vy, v3, v4, respectively.
If H is a Hamilton cycle in B N D, let X := {a, b, ¢, u, v, w}; then H is a Hamilton cycle in G — X. So we may
assume that A is not a Hamilton cycle in B N D. Then there is an H-bridge B; in B N D with v; € V(B; — H). Note
that |V (B1 N H)| = 2. Moreover, each element of {b, v} has a neighbor in V(B — H); otherwise, V(B; N H) U {v} or
V(BN H)U{b}isa3-cutin G, a contradiction. Let V(B1 N H) = {s1, t1} such that s, v, #{ occur on F in clockwise
order.

Similarly, by finding an F-Tutte cycle through three edges on F incident with vy, v3, v4, respectively, we may
assume that there exist a 2-cut {s», o} in B N D and an {s3, t2}-bridge B> in B N D with vy € V(B2) — {s2, 12} such
that each element of {v, ¢} has a neighbor in V (B3) — {s2, £2} and s7, v2, f, occur on F in clockwise order.
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By finding an F-Tutte cycle through three edges on F incident with vy, va, v4, respectively, we may assume that
there exist a 2-cut {s3, 73} in B N D and an {s3, #3}-bridge B3 in B N D with vz € V(B3) — {s3, 13} such that each
element of {c, u} has a neighbor in V(B3) — {s3, 3} and s3, v3, 3 occur on F in clockwise order.

By finding an F-Tutte cycle through three edges on F incident with vy, vz, v3, respectively, we may further assume
that there exist a 2-cut {s4, 4} in B N D and an {s4, t4}-bridge B4 in B N D with v4 € V(Bs) — {s4, 14} such that each
element of {u, b} has a neighbor in V (Bs) — {s4, t4} and s4, v4, 4 occur on F in clockwise order.

Therefore each element of {c, v, b, u} has at least two neighbors in V(B N D).

We claim that sq, 71, ..., $4, 4 occur on F in clockwise order. Otherwise, without loss of generality, we may
assume that s1, $2, 1, 2 occur on F in clockwise order, where 5o # 7. In this case, neither ¢ nor b has a neighbor
in V(saFt) — {s2, t1}. If V(spFt1) — {s2, 11} # @, then {s2, #, v} is a 3-cut in G, contradicting the assumption that
H; is (4, {c, v, b, u})-connected. Therefore V (s Ft1) = {s2, t1} and s»#; € E(G). But this implies that t; ¢ V(H), a
contradiction.

Let J := (BN D)— (V(B1) — {s1, 11}); then H is a Hamilton cycle in J and those neighbors of ¢ in V(B N D) are
contained in V (J). Hence J, J; := G[V(J) U {c}] + s1t1, and Jo := G[V (J) U {c}] are 2-connected. Let F denote
the outer cycle of Jy. Then c, v4, 51,11 € V(F1) and s1t; € E(F1). By Lemma 2.1, there exists an Fi-Tutte cycle
C1 in Jp through s1#; and two edges on F7 incident with ¢, v4, respectively. Then C;p is a Hamilton cycle in Jj. Let
L := G[V(B1) U {v, b}]; then (L, s1, t1, v, b) is planar. Since H> is (4, {c, v, b, u})-connected, L is (4, {s1, t1, v, b})-
connected. Therefore by Lemma 2.2, Bj is a chain of blocks from s to #;.

We may assume that V (B;) = {s;, t;, v; }, for 1 <i < 4. Otherwise, without loss of generality, we may assume that
V(B1) # {s1, t1, v1}. By applying Lemma 2.5, there is a vertex z € V(B1) — {s1, 1} such that B; — z has a Hamilton
path P from s1 to #1. Let X = {a, b, u, v, w, z}; then P U #;Cysy is a Hamilton cycle in G — X.

Let F, denote the outer cycle of Jp; then c, v4, 51,21 € V(F2). By Lemma 2.1, we find an F;-Tutte cycle
C> in Jp through three edges on F; incident with c, v4, t1, respectively. If C, is a Hamilton cycle in J;, let
X = {a,b,u,v, w,v1}; then Cy is a Hamilton cycle in G — X. So we may assume that C> is not a Hamilton
cycle in J;. Then there is a Co-bridge Bj in J; such that s; € V(B] — C2). Let V(B] N C2) = {s], 1{}.

Let B' := (BN D) — {v1, vz, v3, v4}. Then By € B’ and {s], 1} is a 2-cut in B'. Since H> is (4, {c, v, b, u})-
connected, b has a neighbor in V (B}) — {s{, 1{}.

Similarly, we may assume that there exist a 2-cut {s},#;} in B’ and an {s},#)}-bridge B} in B’ such that
s2 € V(B)) — {s).1;} and v has a neighbor in V(B}) — {s),#,}. We may further assume that there exist a 2-cut
{s5.#3} in B” and an {s}, t;}-bridge B} in B’ such that s3 € V(B}) — {s3, #;} and ¢ has a neighbor in V (B}) — {s3, #3}.

Then each element of {c, v, b} has at least three neighbors in V(B N D). Hence it is easy to see that G — {a, u, w}
is 3-connected. Therefore the triangle L induced by the vertices {a, u, w} is a contractible triangle in G. Let u* denote
the vertex of G/L resulting from the contraction of L. Now by Theorem 2.7, there is some X* C V(G/L) such that
u* € X*,|X*| =4, and G/L — X* has a Hamilton cycle when |V(G/L)| > 7. Let X := (X* — {u*}) U {a, u, w};
then G — X = G/L — X* has a Hamilton cycle. W

4. Proof of the main result

We now prove Theorem 1.1.

We may assume that G contains no contractible edge incident with u. Otherwise, let e = uv be a contractible edge
of G incident with u. Then G/e is also a 4-connected planar graph. Let u* denote the vertex of G/e resulting from
the contraction of e. By Theorem 2.7, there is a set X* C V(G/e) such that u™ € X*, |X*| = 5,and G/L — X* has a
Hamilton cycle when |V (G/L)| > 8. Let X := (X* — {u™}) U {u, v}; then G — X = G /e — X* has a Hamilton cycle.

Let F denote the set of 4-cuts of G containing # and a neighbor of u. Hence by Theorem 2.6, there are two 4-cuts
S, T € Fsuchthat ] < |SNT| < 2and G — S has a component A consisting of only one vertex which is also
contained in 7. Let a be the only vertex in V(A), and let B := G — ({a} U §). Let C be a component of G — T and
let D:=G—(V(C)UT).Hence SNV(C) #08 # SNV (D).Forit SNV(C) =@,then BNC =C #@isa
component of G — (T — {a}), contradicting the assumption that G is 4-connected. Similarly, if S N V(D) = ¢ then
BN D =D # (Jis acomponent of G — (T — {a}), a contradiction.

Then by Lemma 3.1, we may assume that

(%) SNT = {u} for all choices of S and T from F.
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w ==

Fig.2. [SNT| = 1.

We may choose C, D such that |[SNV(C)| =2and |SN V(D)| = 1. Let v, w denote the vertices in S N V(C), let
b denote the only vertex in S N V (D), and let ¢, d denote the vertices in V (B) N T, as shown in Fig. 2.

Let H .= G[V(C)U{u, c,d}] and let H, := G[V (D) U {u, ¢, d}]. Since a is adjacent to u and T is a 4-cut of G, ¢
and d are cofacial. Likewise, v and w are cofacial. Without loss of generality, we may assume that (Hy, ¢, d, u, v, w)
is planar. Then (H>, ¢, d, u, b) is planar. Since G is 4-connected, H; is (4, {c, d, u, v, w})-connected (if B N C # 0)
and H> is (4, {c, d, u, b})-connected (if B N D # ().

Case 1. BN D #@.

We claim that B N C # (. Suppose on the contrary that B N C = (4. Then one element of {v, w} is not adjacent
to some element of {c, d}; otherwise, by contracting G[V (D) U {u}] to a single vertex, we produce a minor of G
containing K3 3, a contradiction. If v is not adjacent to some element of {c, d}, then T’ := Ng(v) € F and |SNT'| = 2,
which contradicts our assumption (x). Similarly, if w is not adjacent to some element of {c, d}, then T’ := Ng(w) € F
and |S N T’| = 2, contradicting (x).

We claim that H; — {u, v, w} is a chain of blocks from c to d. Otherwise, let K be an end block of H; — {u, v, w}
and r be the cut vertex of H; — {u, v, w} contained in V(K) such that (V(K) — {r}) N {c,d} = @. As Hj is
(4, {c,d, u, v, w})-connected, each element of {u, v, w} has a neighbor in V(K) — {r}. Since (Hy,c,d, u, v, w) is
planar, T’ .= {a, r,u, w} € F and |S N T’'| = 2, contradicting our assumption ().

Since (Hj, ¢, d, u, v, w) is planar, by Lemma 2.4, there is a Hamilton path P in H; — {u, v, w} from c to d.

Suppose that |V (B N D)| > 2. Since H> is (4, {c, d, u, b})-connected and (H3, ¢, d, u, b) is planar, it follows from
Lemma 2.5 that there is a vertex y € V(B N D) such that H, — {y, u, b} has a Hamilton path Q from c to d. Let
X :={a,b,u,v,w, y}; then P U Q is a Hamilton cycle in G — X.

So we may assume that

(%x) |V(B N D)| = 1 for all choicesof S, T, A, B,C, D with |[SNV(C)|=2and |[SNV(D)| = 1.

Let z denote the only vertex in V(B N D). Then we may assume that ¢ is not adjacent to d; otherwise, P 4 cd is a
Hamilton cycle in G — X, where X := {a, b, u, v, w, z}.

We claim that H; —{c, d, u} is a chain of blocks from v to w. Otherwise, let K denote an end block of H| —{c, d, u}
and let r be the cut vertex of H; — {c, d, u} contained in V(K) such that (V(K) — {r}) N {v, w} = @. As H; is
4, {c,d, u, v, w})-connected, each element of {c, d, u} has a neighbor in V(K) — {r}. Since (Hj, c,d, u, v, w) is
planar, T’ := {a, ¢, r,u} € F. Let C’ be the component of G — T’ containing {v, w}, and let D’ := G — (V(C")UT").
Then |[SNV(C")| =2,|SNV (D) =1,and |V(B N D")| > 2, contradicting ().

Since (Hi, c,d, u, v, w) is planar, by Lemma 2.4, there is a Hamilton path R in H; —{c, d, u} from v to w. Then we
may assume that v is not adjacent to w; otherwise, R + vw is a Hamilton cycle in G — X, where X := {a, b, ¢, d, u, z}.

‘We may assume that d has at least two neighbors in V(B N C). Otherwise, assume that d has at most one neighbor
in V(B N C). As (H», c,d, u, b) is planar, d is not adjacent to b. Since (Hj, ¢, d, u, v, w) is planar and c is not
adjacent to d, d is adjacent to both # and v, u is adjacent to v, u has no neighbor in V(B N C), and d has exactly one
neighborin V(BN C). Let H := Hy —u. Then (H', d, v, w, ¢) is planar and H' is (4, {d, v, w, c¢})-connected (since
G is 4-connected). Hence by Lemma 2.2, H' — {w, ¢} is a chain of blocks from d to v. By Lemma 2.4, H' — {w, c}
contains a Hamilton path P’ from d to v. Let X := {a, b, ¢, u, w, z}; then P’ + dv is a Hamilton cycle in G — X.

Similarly, by exchanging the roles of d and v and by exchanging the roles of ¢ and w, we may further assume that
v has at least two neighbors in V(B N C).

We claim that H; — {c, u, w} is 2-connected. Otherwise, let Ji,...,J, (m > 2) denote the end blocks of
H; — {c, u, w}, and let v; be the cut vertex of H; — {c, u, w} contained in V (J;). Then for each 1 < i < m, either
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ve V() —{vi}ord € V(J;) — {v;}; otherwise, since H; is (4, {c, d, u, v, w})-connected, each element of {c, u, w}
has a neighbor in V (J;) — {v;}, which contradicts the assumption that (Hy, ¢, d, u, v, w) is planar. Hence m = 2,
and we may assume that v € V(J1) — {v1} and d € V(J2) — {v2}. As both d and v have at least two neighbors in
V(BNC),|V(J1)| =3 and |V (Jy)| = 3. Since H; is (4, {c,d, u, v, w})-connected and (H1, ¢, d, u, v, w) is planar,
only u, w of {c, u, w} have neighbors in V (J1) — {v1}; or only c, u of {c, u, w} have neighbors in V (J>) — {v2}. Hence
T = {a,u,vi,w} € ForT" .= {a,c,u,vz} € F.If T' € F, then |SN T’| = 2, contradicting our assumption
(%). So T” € F. Let C’ be the component of G — T” containing {v, w}, and let D' := G — (V(C’) U T"). Then
ISNV(C)H =2,1SNV(D)| =1,and |V(B N D")| > 2, contradicting ().

So let F' denote the outer cycle of Hy — {c, u, w}. Let y € V(vFd) such that v, y,d occur on F in clockwise
order, Ng(w) N V(F) € V(vFy), and Ng(c) N V(F) C V(yFd). By Lemma 2.1, we find an F-Tutte cycle H in
Hi —{c, u, w} through three edges on F incident with v, y, d, respectively. Since H; is (4, {c, d, u, v, w})-connected,
H is a Hamilton cycle in H; — {c, u, w}. Let X = {a, b, ¢, u, w, z}; then H is a Hamilton cycle in G — X.

Case2. BND = 4.

In this case, |V(BNC)| > 2. Otherwise, |V (G)| < 8, and there is nothing to prove. Since H; is (4, {c, d, u, v, w})-
connected and (Hy, ¢, d, u, v, w) is planar, BNC is connected. We consider two subcases according to the connectivity
of BNC.

Subcase 2.1. B N C is connected but not 2-connected.

Let Ji, ..., J, (m > 2) be the end blocks of B N C, and let v; be the cut vertex of B N C contained in V (J;). We
claim that m = 2. Otherwise, since H; is (4, {c, d, u, v, w})-connected, at least three elements of {c, d, u, v, w} have
neighbors in V (J;) — {v;} (for each i), contradicting the assumption that (Hy, ¢, d, u, v, w) is planar.

Let B; := J; — vy and By .= (BN C) — V(J;). We claim that there is some element x € {c, d, v, w} such that
x has neighbors in both V (B;) and V (B;). Otherwise, u must have neighbors in both V (B) and V (B,) (since G is
4-connected). Hence we may assume that only u, v, w of {c, d, u, v, w} have neighbors in V (B1), and only ¢, d, u of
{c,d, u, v, w} have neighbors in V(By). Since (Hi, ¢, d, u, v, w) is planar, T’ := {a, u, vi, w} € Fand [SNT'| = 2,
contradicting our assumption ().

By symmetry, we may assume that d has neighbors in both V(B;y) and V(B,). Since H is (4, {c,d, u, v, w})-
connected and (Hj, ¢, d, u, v, w) is planar, both u and v have neighbors in V (B}), both ¢ and w have neighbors in
V(B3), and at most one element of {v, w} has neighbors in both V(B;) and V (B;). Without loss of generality, we
may assume that v has no neighbor in V (B,); the other case can be treated in the same way.

Let Ly := G[V(By) U{d,vi,w,v,u}] and let L, := G[V(By) U {d, vi, w, c}]. Then (Ly,d, v, w, v, u) and
(Lo, d, v1, w, ¢) are planar. Since Hj is (4, {c, d, u, v, w})-connected, L1 is (4, {d, v, w, v, u})-connected and L is
4, {d, v1, w, c})-connected. Therefore L| — {w, v, u} is a chain of blocks from d to v, and L, — {w, c} is a chain of
blocks from d to v;. Hence by Lemma 2.4, L — {w, v, u} has a Hamilton path P; from d to v, and Ly — {w, ¢} has
a Hamilton path P, from d to vi. Now let X := {a, b, ¢, d, u, v}; then P; U P, is a Hamilton cycle in G — X.

Subcase 2.2. B N C is 2-connected.

Let F denote the outer cycle of B N C. Choose v1, va, v3, v4, v5 € V(F) such that vy, vz, v3, v4, 5 Occur on
F in clockwise order, Ng(c) N V(F) € V(v Fvy), Ng(d) N V(F) € V(vruFv3), Ng(u) N V(F) C V(v3Fuy),
Ng(w) NV (F) € V(v4Fvs),and Ng(w) N V(F) C V(vsFvp).

We may assume that v has at least two neighbors in V(B N C). Suppose on the contrary that v has at most one
neighbor in V(B N C). If u has no neighbor in V(B N C), then let H' :== H; — u. So (H', ¢, d, v, w) is planar and
H' is (4, {c,d, v, w})-connected (since G is 4-connected). Hence by Lemma 2.2, H' — {c, d} is a chain of blocks
from v to w, and H' — {c, w} is a chain of blocks from v to d. Since |V (B N C)| > 2, it follows from Lemma 2.5
that there is a vertex z; € V(B N C) such that H' — {z1, ¢, d} has a Hamilton path P; from v to w. Similarly, there
is a vertex zo € V(B N C) such that H' — {z, ¢, w} has a Hamilton path P, from v to d. If v is adjacent to w, let
X :={a,b,c,d,u,z1}; then P; + vw is a Hamilton cycle in G — X. If v is adjacent to d, let X = {a, b, ¢, u, w, z2};
then P, + vd is a Hamilton cycle in G — X. So assume that v is adjacent to neither w nor d. But this contradicts the
assumption that G is 4-connected. Therefore we may assume that  has a neighbor in V(B N C). If w has no neighbor
inV(BNC),then T’ .= {a, c,u, v} € F and |S N T'| = 2, contradicting our assumption (x). Hence we may further
assume that w has a neighbor in V(B NC). Since (Hy, ¢, d, u, v, w) is planar, v is adjacent to neither ¢ nor d. Since G
is 4-connected and by planarity, v is adjacent to both u and w. Then T’ := Ng(v) € F and [SNT’| = 2, contradicting
(%).
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Hence 77 := G[(V(BNC))U{v}] is 2-connected. Let D denote the outer cycle of 77. Thenv, v; € V(D)) (1 <i <
5). By Lemma 2.1, we find a Di-Tutte cycle H in T through three edges on D incident with v, vy, v3, respectively.
If H is a Hamilton cycle in T7, let X := {a, b, ¢, d, u, w}; then H is a Hamilton cycle in G — X. So we may assume
that H is not a Hamilton cycle in 77. Then there is an H-bridge B; in 77 such that v;i € V(B; — H). Note that
|[V(B1 N H)| = 2. Since B N C is 2-connected, B; € B N C. Moreover, each element of {w, c} has a neighbor in
V(B1— H); otherwise, V(BN H)U{w} or V(B1NH)U{c}is a 3-cutin G, a contradiction. Let V(BN H) = {s1, 11}
such that s1, vy, t; occur on D (also on F) in clockwise order.

Similarly, by finding a D;-Tutte cycle through three edges on D; incident with v, vy, v3, respectively, we may
assume that there exist a 2-cut {s;, 2} in BN C and an {s», t>}-bridge B, in BN C with v, € V(B3) —{s2, 2} such that
each element of {c, d} has a neighbor in V (By) — {s2, 1} and 52, vy, t2 occur on D; (also on F') in clockwise order.

By finding a D{-Tutte cycle through three edges on D; incident with v, vy, vp, respectively, we may assume that
there exist a 2-cut {s3, #3} in B N C and an {s3, t3}-bridge B3 in B N C with v3 € V(B3) — {s3, 13} such that each
element of {d, u} has a neighbor in V (B3) — {s3, 13} and s3, v3, 3 occur on D (also on F) in clockwise order.

So each element of {c, d} has at least two neighbors in V(BN C). Hence 7> := G[(V(BNC))U{c}] is 2-connected.
Let D, denote the outer cycle of 73. Then ¢, v; € V(D2)(1 <i <5). As before, by finding a D,-Tutte cycle through
three edges on D; incident with c, v3, vs, respectively, we may assume that there exist a 2-cut {s4,#4} in B N C
and an {s4, t4}-bridge B4 in B N C with v4 € V(Bs4) — {s4, t4} such that each element of {«, v} has a neighbor in
V(B4) — {s4, t4} and s4, v4, t4 occur on D, (also on F) in clockwise order.

By finding a D»-Tutte cycle through three edges on D> incident with ¢, v3, v4, respectively, we may further assume
that there exist a 2-cut {ss, #5} in B N C and an {ss, t5}-bridge Bs in B N C with vs € V(Bs) — {s5, t5} such that each
element of {v, w} has a neighbor in V (Bs) — {ss, t5} and ss, vs, 5 occur on D5 (also on F') in clockwise order.

Therefore each element of {c, d, u, v, w} has at least two neighbors in V(B N C).

We claim that sy, 1, ..., ss, 5 occur on F in clockwise order. Otherwise, without loss of generality, we may
assume that s1, 52, f1, £ occur on F in clockwise order, where s» # #;. Then neither w nor d has a neighbor in
V(soFt1) — {s2,11}. f V(s2Ft1) — {s2, t1} # @, then {s3, t1, ¢} is a 3-cut in G, which contradicts the assumption that
Hpis (4, {c,d, u, v, w})-connected. Therefore V (sp Ft1) = {s2, t1} and sot; € E(G). But this implies that#; ¢ V(H),
a contradiction.

Let J .= T — (V(B1) — {s1, t1}); then H is a Hamilton cycle in J and those neighbors of d in V (T7) are contained
in V(J). Hence J, J; = G[V(J) U {d}] + s1t1, and J» = G[V(J) U {d}] are 2-connected. Let F; denote the
outer cycle of Ji. Then d, v, s1,11 € V(F1) and 511 € E(F1). By applying Lemma 2.1, there exists an Fj-Tutte
cycle Cp in Jj through s;#; and two edges on Fj incident with d, v, respectively. Then C; is a Hamilton cycle in
Ji. Let L := G[V(By) U {c, w}]; then (L, s, t1, c, w) is planar. Since H; is (4, {c,d, u, v, w})-connected, L is
4, {s1, 11, c, w})-connected. Therefore by Lemma 2.2, B; is a chain of blocks from s; to #;.

We may assume that V(B;) = {s;, t;, v;}, for i = 1, 3, 4. Otherwise, without loss of generality, we may assume
that V (By) # {s1, t1, v1}. By Lemma 2.5, there is a vertex z € V(B) — {s1, #1} such that By — z has a Hamilton path
P from 57 to t1. Let X .= {a, b, c, u, w, z}; then P U t1Cys] is a Hamilton cycle in G — X.

Let F> denote the outer cycle of J,; then d,v,s;,t; € V(F2). By Lemma 2.1, we find an F;-Tutte cycle
C, in J, through three edges on F, incident with d, v, t], respectively. If C, is a Hamilton cycle in J,, let
X = {a,b,c,u, w,v1}; then C, is a Hamilton cycle in G — X. So we may assume that C» is not a Hamilton
cycle in J>. Then there is a Cy-bridge Bj in J> with s; € V(B — C2). Let V(B] N C2) = {5}, 1{}.

Let B :== (BN C) — (U_,(V(Bi) — {si.#;})). Then B € B’ and {s{, ]} is a 2-cut in B’. Since H; is
(4, {c.d,u, v, w})-connected, w has a neighbor in V (B) — {5}, 1{}.

Similarly, we may assume that there exist a 2-cut {s},#;} in B’ and an {s},#;}-bridge B} in B’ such that
n € V(B)) — {s5.1;} and ¢ has a neighbor in V(B}) — {s},1;}. We may assume that there exist a 2-cut {s}, ;}
in B” and an {s}, t;}-bridge B} in B’ such that s3 € V(B}) — {s}, t;} and d has a neighbor in V (B}) — {s}, ;}. We may
further assume that there exist a 2-cut {s, #,} in B” and an {s}, #,}-bridge B in B" such that#4 € V(B}) — {s;, #;} and
v has a neighbor in V(B)) — {s, 7;}.

Then each element of {c, d, v, w} has at least three neighbors in V(BN C). Hence it is easy to see that G —{a, b, u}
is 3-connected. Therefore the triangle L induced by the vertices {a, b, u} is a contractible triangle in G. Let u* denote
the vertex of G/L resulting from the contraction of L. Now by Theorem 2.7, there is some X* C V(G/L) such that
u* € X*,|X*| = 4, and G/L — X* has a Hamilton cycle when |V(G/L)| > 7. Let X := (X* — {u*}) U {a, b, u};
then G — X = G/L — X* has a Hamilton cycle. W
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We now use Theorem 1.1 to prove the following result.

Corollary 4.1. Let G be a 4-connected planar graph on n vertices. Then G contains a cycle of length n — 7 for all
n > 10.

Proof. Suppose this is not true and let G be a counter example. If G contains a contractible edge e, we consider G/e.
Let u be the vertex resulting from the contraction of e. By applying Theorem 1.1, there is some X C V(G/e) such
that u € X, |X| = 6, and G/e — X has a Hamilton cycle when |V (G/e)| > 9. Hence, if n > 10 then G has a cycle of
length n — 7, a contradiction.

So G contains no contractible edge. Then G is either the square of a cycle of length at least 4 or the line graph of
a cyclically 4-edge-connected cubic graph. It is not hard to see that if G is the square of a cycle, then G has cycles of
length k for all 3 < k < n. Since G is a counter example, G is the line graph of a cyclically 4-edge-connected cubic
graph. Therefore G is 4-regular, every vertex is contained in exactly two triangles, and no two triangles share an edge.
Using these properties and by planarity, we can see that every triangle 7' in G is contractible. Let u# denote the vertex
resulting from the contraction of 7. Now by Theorem 2.7, there is some X* C V(G/T) such thatu € X*, | X*| =5,
and G/T — X™* has a Hamilton cycle when |V (G/T)| > 8. Hence G has a cycle of length n — 7 for all n > 10, a
contradiction. W
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