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Abstract

The subject of this paper is the numerical simulation of the interaction between two-dimensional incompressible viscous flow and
a vibrating airfoil. A solid elastically supported airfoil with two degrees of freedom, which can rotate around the elastic axis and
oscillate in the vertical direction, is considered. The numerical simulation consists of the stabilized finite element solution of the
Reynolds averaged Navier–Stokes equations with algebraic models of turbulence, coupled with the system of ordinary differential
equations describing the airfoil motion. Since the computational domain is time dependent and the grid is moving, the Arbitrary
Lagrangian–Eulerian (ALE) method is used. The developed method was applied to the simulation of flow-induced airfoil vibrations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The interaction between fluid flow and elastic structures plays an important role in many technical disciplines—
airplane industry (e.g., wings vibrations), blade machines (oscillations of blades in turbines and compressors), civil
engineering (interaction of a strong wind with TV towers, cooling towers or bridges), etc. The research in aeroelasticity
or hydroelasticity focuses on the interaction between flowing fluids and vibrating structures (see, e.g., [5] and [10]).

In [15], the problem of the flow-induced airfoil vibrations is analyzed with the aid of the finite element method.
The finite element solution of the Navier–Stokes equations written in the arbitrary Lagrangian–Eulerian (ALE) form
is coupled with the numerical solution of the system of ordinary differential equations describing the airfoil motion.

Since the Reynolds number is rather high (105.107), it is necessary to take into account the effects caused by
turbulence. The present paper represents an extension of the methods and results obtained in [15] by including a model

� This research was supported by the Grant no. 201/05/0005 of the Grant Agency of the Czech Republic and the Grant no. IAA200760613 of
the Grant Agency of the Academy of Sciences of the Czech Republic. This research was also partly supported by the Research Projects MSM
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of turbulence in the simulation process. We apply and test here the algebraic models of turbulence designed by Baldwin
and Lomax [1] and by Rostand [12]. As a result we obtain a sufficiently accurate and robust method, which we apply
to the simulation of flow-induced airfoil vibrations.

2. Continuous problem

We assume that (0, T ) is a time interval and by �t ⊂ R2 we denote a bounded computational domain occupied by
the fluid at time t. The symbols u = u(x, t) and p = p(x, t), x ∈ �t , t ∈ (0, T ), denote the flow velocity and the
kinematic pressure (i.e., dynamic pressure divided by the density � of the fluid) and � denotes the kinematic viscosity.
We have u= (u1, u2), where u1 and u2 are the components of the velocity in the directions of the Cartesian coordinates
x1 and x2 of x.

The character of the flow depends on the magnitude of the Reynolds number Re = Uc/�, where U denotes the
characteristic velocity (in our case the magnitude of the far field velocity) and c is the characteristic length (here the
length of the airfoil chord). The flow with a sufficiently small Reynolds number is laminar. If the Reynolds number is
larger than some critical value, the flow becomes turbulent.

We use the models of turbulence based on the so-called Reynolds averaged equations and the Boussinesq hypothesis
[8,13], which yield the Reynolds averaged equations in the form

∇ · u = 0,

�ui

�t
+ (u · ∇)ui + �p

�xi

−
2∑

j=1

�

�xj

{
(� + �T)

(
�ui

�xj

+ �uj

�xi

)}
= 0, i = 1, 2. (2.1)

Here �T is the so-called turbulent viscosity. It is computed on the basis of various turbulence models.
System (2.1) is equipped with the initial condition

u(x, 0) = u0, x ∈ �0, (2.2)

and boundary conditions

(a) u|�D
= uD, (b) u|�Wt

= w|�Wt
,

(c) − (p − pref)ni + (� + �T)

2∑
j=1

(
�ui

�xj

+ �uj

�xi

)
nj = 0 on �O, i = 1, 2. (2.3)

Here n = (n1, n2) is the unit outer normal to the boundary ��t of the domain �t , �D represents the inlet (and, possibly,
fixed impermeable walls), �O is the outlet and �Wt is the boundary of the airfoil at time t. Condition (2.3), (b) represents
the assumption that the fluid adheres to the airfoil moving with the velocity w|�Wt

. By pref we denote a prescribed
reference (far field) pressure.

The vertical displacement H of the elastic axis xEO = (xEO1, xEO2) (oriented downwards) and the rotation � of the
airfoil around the elastic axis (oriented clockwise) are described by the system [15]

mḦ + S��̈ cos � + kHH H + dHH Ḣ − S��̇
2 sin � = −L(t),

S�Ḧ cos � + I��̈ + k��� + d���̇ = M(t), (2.4)

where m denotes the mass of the airfoil, S�, I� are the static moment and the inertia moment around the elastic axis, kHH ,
k�� denote the bending stiffness and the torsional stiffness, dHH , d�� are the structural dampings. The aerodynamic lift
force L(t) and the aerodynamic torsional moment M(t) are defined by the relations

L = −�

∫
�Wt

2∑
j=1

�2j nj dS, M = �

∫
�Wt

2∑
i,j=1

�ij nj r
ort
i dS,

�ij = �

[
−p�ij + �

(
�ui

�xj

+ �uj

�xi

)]
, rort

1 = −(x2 − xEO2), rort
2 = x1 − xEO1. (2.5)
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The symbol � denotes the depth of the airfoil. These relations determine the interaction between the moving fluid and
the airfoil.

3. Discrete problem

3.1. ALE method

In order to simulate flow in a moving domain, we employ the ALE method (cf. [11]), based on a one-to-one ALE
mapping

At : �ref → �t , X �→ x(X, t) = At (X) (3.1)

of the reference configuration �ref = �0 onto the current configuration �t , with the domain velocity w = �At /�t .
We suppose that the domain velocity at each point on the surface of the airfoil is equal to the velocity of its motion.
By DA/Dt we denote the ALE derivative—i.e., derivative with respect to the reference configuration. This means
that for a function f : {(x, t); x ∈ �t , t ∈ [0, T ]} → R and x = At (X), X ∈ �ref , we introduce the function
f̃ (X, t) = f (At (X), t) and define

DAf

Dt
(x, t) = �f̃

�t
(X, t). (3.2)

With the aid of the ALE method we rewrite system (2.1) in the form (see [14])

∇ · u = 0,

DA

Dt
ui + ((u − w) · ∇)ui + �p

�xi

−
2∑

j=1

�

�xj

{
(� + �T)

(
�ui

�xj

+ �uj

�xi

)}
= 0, i = 1, 2. (3.3)

3.2. Time discretization

We consider a partition 0 = t0 < t1 < · · · < T, tk = k� of the time interval [0, T ] with a time step � > 0 and use
the approximations u(tn) ≈ un and p(tn) ≈ pn of the exact solution and w(tn) ≈ wn of the domain velocity at
time tn. Using the second-order backward difference formula for the approximation of the ALE derivative and setting
ûk = uk ◦ Atk ◦ A−1

tn+1
(which is defined in �tn+1 ), we obtain the system

∇ · un+1 = 0, (3.4)

3un+1
i − 4ûn

i + ûn−1
i

2�
+ ((un+1 − wn+1) · ∇)un+1

i + �pn+1

�xi

−
2∑

j=1

�

�xj

{
(� + �T (un+1))

(
�un+1

i

�xj

+ �un+1
j

�xi

)}
= 0, i = 1, 2 in �tn+1 . (3.5)

3.3. Finite element space discretization

The starting point for the space discretization by the finite element method is the weak formulation. For simplicity
we set � = �tn+1 , u = un+1, p = pn+1. We define the function spaces W = (H 1(�))2, X = {v ∈ W ; v|�D∪�Wt

= 0},
Q = L2(�), where L2(�) is the Lebesgue space of square integrable functions over the domain � and H 1(�) = {v ∈
L2(�); �v/�xi ∈ L2(�), i = 1, 2} is the Sobolev space. By (·, ·)� we denote the L2(�)-scalar product.

The weak formulation is obtained in a standard way. Eq. (3.4) is multiplied by a test function q ∈ Q, and Eq. (3.5) is
multiplied by a test function v ∈ X, integrated over the domain �, Green’s theorem is applied, the boundary condition
(2.3), (c) is used and the resulting integral identities are summed. Under the notation U=(u, p), U∗=(u∗, p), V=(v, q)
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and

a(U∗, U, V) = 3

2�
(u, v)� + (((u∗ − wn+1) · ∇)u, v)� − (p, div v)�

+
2∑

i,j=1

∫
�

1

2
(� + �T)

(
�ui

�xj

+ �uj

�xi

)(
�vi

�xj

+ �vj

�xi

)
dx + (div u, q)�, (3.6)

f (V) = 1

2�
(4ûn − ûn−1, v)� −

∫
�O

pref n · v dS, (3.7)

we define a weak solution as a couple U = (u, p) ∈ W ×Q such that u satisfies the boundary conditions (2.3), (a)–(b),
and

a(U, U, V) = f (V) ∀V = (v, q) ∈ X × Q. (3.8)

On the basis of the weak formulation we introduce a finite element solution. We approximate the spaces W, X, Q

by subspaces Wh, Xh, Qh, h ∈ (0, h0), h0 > 0, where Xh =Wh ∩X. The approximate solution is defined as a couple
Uh = (uh, ph) ∈ Wh × Qh such that

a(Uh, Uh, Vh) = f (Vh), ∀Vh = (vh, qh) ∈ Xh × Qh (3.9)

and uh satisfies an approximation of the boundary conditions (2.3), (a)–(b).
The finite element spaces are constructed in the following way. Let � be a polygonal domain and Th its triangulation

formed by a finite number of closed triangles with standard properties from the finite element method. We use the well-
known Taylor–Hood P2/P1 elements:

p ≈ ph ∈ Qh = {q ∈ Q ∩ C(�̄); q|K ∈ P1(K), ∀K ∈ Th} (3.10)

and

u ≈ uh ∈ Wh = {v ∈ W ∩ (C(�̄))2; v|K ∈ (P2(K))2, ∀K ∈ Th}, Xh = Wh ∩ X. (3.11)

Here Pk(K) denotes the space of all polynomials on K ∈ Th of degree �k. The spaces Xh, Qh satisfy the
Babuška–Brezzi condition (cf. [7]).

3.4. Stabilized finite element method

For large Reynolds numbers our problem becomes singularly perturbed with dominating convection, and approximate
solutions can contain nonphysical spurious oscillations. In order to avoid them, we apply the stabilization by the
streamline–diffusion method combined with the pressure stabilization. We set w=u∗ −wn+1 and for U= (u, p), U∗ =
(u∗, p), V = (v, q), D(u) = ((�ui/�xj + �uj/�xi)/2))2

i,j=1, introduce the stabilization forms

Lh(U∗, U, V)

=
∑

K∈Th

�K

(
3

2�
u − ∇ · {2(� + �T )D(u)} + (w · ∇)u + ∇p, (w · ∇)v

)
K

, (3.12)

Fh(V) =
∑

K∈Th

�K

(
1

2�
(4ûn − ûn−1), (w · ∇)v

)
K

, (3.13)

and

Ph(U, V) =
∑

K∈Th

�K(∇ · u, ∇ · v)K . (3.14)

The symbol (·, ·)K denotes the scalar product in the space L2(K) and �K �0 and �K �0 are suitable parameters.
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The stabilized discrete problem is formulated in the following way. Find Uh = (uh, ph) ∈ Wh × Qh such that uh

satisfies an approximation of the boundary conditions (2.3), (a)–(b) and

a(Uh, Uh, Vh) + Lh(Uh, Uh, Vh) + Ph(Uh, Vh) = f (Vh) + Fh(Vh)

for all Vh = (vh, qh) ∈ Xh × Qh. (3.15)

Parameters �K and �K are chosen according to [6,9].
The discrete stabilized nonlinear problem (3.15) at time t = tn+1 is solved with the aid of the Oseen iterations

a(U(�)
h , U(�+1)

h , Vh) + Lh(U
(�)
h , U(�+1)

h , Vh) + Ph(U
(�+1)
h , Vh)

= f (Vh) + Fh(Vh) for all Vh = (vh, qh) ∈ Xh × Qh, � = 0, 1, . . . . (3.16)

The initial approximation U(0)
h is defined on the basis of the approximate solution on the previous time level tn. Problem

(3.16) is equivalent to a system of linear algebraic equations, which is solved by the direct solver UMFPACK [3], which
is efficient up to 105 unknowns. For larger problems suitable iterative method should be used.

The computation of the force L and the moment M at time t = tn+1 from the approximate solution is carried out with
aid of a weak reformulation similarly as in [14].

4. Algebraic models of turbulence

Now it remains to specify the evaluation of the turbulent viscosity �T. For this purpose we use algebraic models of
turbulence.

4.1. Cebeci–Smith (CS) model

A basis for the application of algebraic models of turbulence is the Cebeci–Smith (CS) model [2]. In this model, the
computational domain � is divided into an inner domain near the wall (airfoil), where the internal turbulent viscosity �Ti
is evaluated. In the outer part of the computational domain, the outer turbulence viscosity �To is computed. In practical
computations, both the viscosities are evaluated in the whole domain � and then the turbulent viscosity is defined as

�T = min(�Ti, �To). (4.1)

The turbulent viscosity is computed with the aid of a local coordinate system (X, Y ), where X is measured along the
airfoil or along the axis of the wake and the axis Y is orthogonal to X. Components of the velocity in the directions X
and Y are denoted by U and V ( Fig. 1). The inner turbulent viscosity is defined by

�Ti = �l2
∣∣∣∣�U

�Y

∣∣∣∣ , (4.2)

where � is the fluid density and l is the mixing length, which is determined by the relations

l = 	YF D, FD = 1 − exp

(
− 1

A+
u�Y

�

)
. (4.3)

airfoil
wake

Y

X

X

Y

X

Y

Fig. 1. Local coordinates X, Y .
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FD is the so-called van Driest function. The symbol Y = Y (x) denotes the orthogonal distance of a point x ∈ � from
the airfoil or the axis of the wake. The so-called shear velocity u� is defined by

u� =
(

�

∣∣∣∣�U

�Y

∣∣∣∣
)1/2

w

. (4.4)

The subscript w means the value for Y =0. The empirical constant A+=26 was determined for 	=0.4 from experimental
data obtained from the flow around a plate. In the wake we set �Ti = ∞.

The outer turbulent viscosity is defined by the Clauser relation

�To = ���∗
i UeFk, (4.5)

where � = 0.0168,

Fk =
[

1 + 5.5

(
Y

�

)6
]−1

, (4.6)

� is the shear layer thickness, Ue = U(�) represents the velocity of the outer flow and �∗
i is the kinematic displacement

thickness

�∗
i =

∫ �

0

(
1 − U

Ue

)
dY . (4.7)

The given algebraic model requires to know the quantities �, Ue�
∗
i and u�, which is not suitable for the solution of

our problem. Therefore, in the sequel we consider some modifications of the CS model.

4.2. Baldwin–Lomax (BL) model

Baldwin and Lomax [1] proposed the following modification of the CS model. The inner turbulent viscosity is
defined as

�Ti = �l2|
|, (4.8)

where


 = �U

�Y
− �V

�X
(4.9)

is the vorticity. The outer turbulent viscosity is determined by the relations

�To = ��CcpFwFk, (4.10)

Fw = min(Fw1 , Fw2), Fw1 = YmaxFmax, Fw2 = Cwk Ymax
(�U)2

Fmax
. (4.11)

The value Fmax is the maximum of the function F =Y |
|FD on the line X = const., Y �0, Ymax is the value, for which
F(Ymax)=Fmax and �U is the maximum variation of the velocity U along the line X=const., Y �0. For the Klebanoff
function Fk we have

Fk =
[

1 + 5.5

(
CKL

Y

Ymax

)6
]−1

. (4.12)

Further, the shear layer thickness � is expressed as � = Ymax/CKL. Baldwin and Lomax use the following constants
� = 0.0168, Ccp = 1.6, CKL = 0.3, Cwk = 0.25.

We also applied the Rostand model [12], which gives comparable results.
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5. Flow-induced airfoil vibrations

This section presents results of the numerical simulation of flow-induced vibrations obtained for the airfoil NACA
0012. The following quantities, used in [15], are considered: m = 0.086622 kg, S� = −0.000779673 kg m, I� =
0.000487291 kg m2, kHH = 105.109 N/m, k�� = 3.695582 N m/rad, �= 0.05 m, c = 0.3 m, �= 1.225 kg/m3, �= 1.5 ·
10−5 m/s2. The positions of the elastic axis and the center of gravity of the airfoil measured along the chord from the
leading edge are xEO1 = 0.4c = 0.12 m, and xT 1 = 0.37c = 0.111 m, respectively. The coefficients of the proportional
damping are considered in the form dHH = �kHH and d�� = �k��, where we choose � = 10−3.

The computational process for the solution of the nonstationary problem is based on the coupling of the fluid
flow problem in the discrete form (3.15) with the numerical solution of the nonlinear structural model (2.4) by the
fourth order Runge–Kutta method. It starts at time t = 0 by the solution of the flow, keeping the airfoil in a fixed
position given by the prescribed initial translation H0 = 10 mm and the angle of attack �0 = −7◦. Then, at time
�t > 0 the airfoil is released and we continue by the solution of a complete fluid–structure interaction problem with
H(�t) = H0, Ḣ (�t) = 0, �(�t) = �0, �̇(�t) = 0. The computational mesh was constructed in an adaptive way with
the aid of the package ANGENER [4].

The simulation of the airfoil motion due to the fluid–structure interaction in time domain is shown in Figs. 2–4 for
the far field velocity U∞ = 30, 35 and 40 m/s. The corresponding Reynolds number has the values Re = 6 · 105, 7 · 105

and 8 · 105.
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Fig. 2. Flow-induced airfoil vibrations for U∞ = 30 m/s.
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Fig. 3. Flow-induced airfoil vibrations for U∞ = 35 m/s.
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Fig. 4. Flow-induced airfoil vibrations for U∞ = 40 m/s.

For far field flow velocity (U∞ �35 m/s), the displacement H and the rotation angle � are dying in time. When
U∞ exceeds 30 m/s, then the damping of flow-induced vibrations becomes weaker and at about U∞ ≈ 40 m/s the
system becomes unstable by flutter, the vibrations amplitudes become very high and exceed more than 100 mm and
15◦ at a limit cycle oscillation (see Fig. 4). Such behaviour of the system is in general agreement with the pre-
vious numerical simulations carried out in [15], where no turbulence was considered, but a different airfoil type
was modeled.

6. Conclusion

In this paper the numerical method for the simulation of the interaction between viscous incompressible turbulent
flow and a vibrating airfoil is developed. The method contains several important ingredients:

• ALE method for the treatment of the time-dependent computational domain,
• time discretization using second-order backward difference formula,
• space discretization by the stabilized finite elements, satisfying the Babuška–Brezzi condition,
• the use of the Reynolds averaged system of equations and the application of algebraic models of turbulence.

The method was applied to the solution of the flow-induced vibrations of the profile NACA 0012. The results prove
that the developed method allows the simulation of the interaction of turbulent flow with large Reynolds numbers and
the airfoil vibrations with large deformations. The comparison of the described method with the laminar case shows
that the turbulent results give more accurate results. For example, in contrast to the turbulent case, in the laminar case,
the loss of stability of the system appears at an incorrect lower critical velocity.

The next step in the research will be a further investigation of turbulence models included in the described technique.
From the point of view of practical applications, it will be suitable to increase the speed of the computational process
by the use of the domain decomposition method and parallelization of the algorithm. A more detailed comparison of
the turbulent and laminar flow in the relation to the system behavior is needed.
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