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Abstract The Dirac equation with shifted Hulthen potential in the presence of the Yukawa-like
tensor (YLT) and generalized tensor (GLT) interactions using supersymmetric quantum mechanics
(SUSYQM) is presented. The bound state energy spectra and the radial wave functions have been
approximately obtained in the case of spin and pseudospin symmetries. We have also reported some
numerical results and figures to show the effect of the tensor interactions. Furthermore, scattering
state solution under the generalized tensor (GLT) interaction is reported.
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1. Introduction

It is known that the concept of spin and pseudospin symme-
tries of the Dirac equation in nuclear and hadronic spectrosco-
pies have been great attention (Hassanabadi and Yazarloo,
2013) However, in order to investigate nuclear shell model,
the study of spin and pseudospin symmetries of the Dirac
equation has become an important area of research in nuclear
physics (Ginocchio, 2005). These symmetries have been intro-
duced many years ago in nuclear theory (Ginocchio, 2005,
Ginocchio, 2004) and have been used successfully to explain
the feature of deformed nuclei (Bohr et al., 1982)and superde-
formation (Dudek et al., 1987) and establish an effective shell-
model coupling scheme (Troltenier et al., 1995). Within the
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framework of the Dirac theory, spin symmetry arises if the
magnitude of the spherical attractive scalar potential S(r)
and repulsive vector potential V(r) is nearly equal, i.e.,
S(r) = V(r) [2-3]. On the other hand, the jargon pseudospin
symmetry refers to the case where the magnitude of the attrac-
tive Lorentz scalar potential S(r) and the repulsive vector
potential V(r) is equal but opposite in sign, i.e., S(r) = —V(r)
(Ginocchio, 2005, 2004). In recent times many authors have
investigated the Dirac equation with various potential models
(Ikot, 2012; Hassanabadi et al., 2014; Wei and Dong, 2010a;
Setare and Nazari, 2009; Ikot et al., 2013; Oyewumi and
Akoshile, 2010). The spin symmetry in nuclear theory is usu-
ally referred to as a quasi-degeneracy of the single nucleon
doublets and can be characterized with the non-relativistic
quantum numbers (n,/,j=1+1) and (n,/,j=1-1), where
n, and j are the single —nucleon radial, orbital and total
angular momentum quantum numbers for a single particle
respectively. Also, the pseudospin symmetry implies that
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(n,l.j=1+1) and (n—1,/+2,j=1+3) states are degener-
ates. It had been shown that tensor interaction removes the
degeneracy between two states in the pseudospin and spin dou-
blets. However, due to the mathematical structure of the prob-
lem, different authors have devoted their investigation of the
Dirac equation with the as Coulomb-like (Wei and Dong,
2010b,c; Aydogdu and Sever, 2010) or Cornell interaction as
tensor interactions. Recently, Hassanabadi et al. (2012) first
introduced the Yukawa tensor interaction and studied the
Dirac equation for Yukawa potential within spin and pseudo-
spin symmetries’ limits. In the present study, our aim is to
obtain the approximate analytical solutions of the Dirac equa-
tion for the scalar and vector shifted Hulthen potential
together with the YLT and GTI (combined Coulomb-like
and Yukawa-like) within the framework of spin and pseudo-
spin symmetries’ limits.

The Hulthén potential plays a significant role in atom and
molecular physics (Bahar and Yasuk, 2013). It has also been
used to explain the electronic properties of some alkali halides
(Luetal.,2012). Moreover, as it resembles the Coulomb interac-
tion in structure, it has also been investigated within the frame-
work of Dirac theory (Akcay, 2009). In this paper, we will
study the Dirac equation with shifted Hulthén potential with
spin-orbit coupling term quantum number x for spin and
pseudospin symmetries’ limit using SUSYQM (Cooper et al.,
1995). The paper is organized as follows. In Section 2, the Dirac
theory within the framework of spin and pseudospin symme-
tries’ limits is presented. Bound state solutions for YLT are pre-
sented in Section 3. Section 4 is devoted to the bound state
solutions with GLT. Discussions of the Numerical results are
given in Section 5. Finally, we give a brief conclusion in Section 6.

2. Theory of Dirac equation for spin and pseudospin symmetries

In the relativistic units (h = ¢ = 1), the Dirac equation both
scalar S(r) and vector V(r) potentials read,

o p+ B(M + S(r))l(r) = [E = V(") (r), (1)

where E is the relativistic energy, M is the mass of a single par-
ticle, p momentum operator, « and f§ defined as,

5= iV - 0 g; - 1 0 2
”*_l’“*(a,- 0)’“(0 —1)’ )

where / is the unit matrix and o; is the Pauli matrix. The total
angular momentum J and K = —f(a.L + 1) of a particle com-
mute with the Dirac Hamiltonian in a central field, where L is
orbital angular momentum. The eigenvalues of the K are
k= —(j+1) for aligned spin and x = +(j+1) for unaligned
spin to a given total angular momentum j. The wave function
can then be classified according to the angular momentum j
and the spin-orbit quantum number x as follows:

F,.(r Y’m 0, q
l//nk(rvev(/))_l< () j( p))7

r

3)

iG"K(r) Y][-)“(H’ QD)
where F,,(r) and G,,(r) are the upper and the lower compo-
nents of the wave function, Y;m(ﬁ, @) and Yj.m(ﬁ, @) represent
the spherical harmonics, n is the radial quantum number, m
is the projection of the angular momentum on the z-axis and
I(14+1) = k(x+ 1),[(I+ 1) = k(x — 1), where [ is the orbital
angular momentum spin quantum number and / is the orbital

angular momentum pseudospin quantum number respectively.
The substitution of Eq. (3) into Eq. (1) yields two couple Dirac
equations as follows:

(S5 U0 ) ) = W+ B = AN, 4
(% — ; + U(r)) Goe(r) = [M = Epe + Z(r)|Foe(r), ©)

where A(r) = V(r) — S(r) and 2(r) = V(r) + S(r). By eliminat-
ing G,(r) in Eq. (4) and F,.(r) in Eq. (5), we obtain two
uncouple Schrédinger-like equations for the upper and lower
components as follows:

R ) U(r dU(r

£l 200 g2

_(M“’ Enr{ - A(l‘))(M — Em( + Z(F))—i_ Fnk‘(r) = 07 (6)
M+Ey—A(r)

d_z _ K(l\r;I) + 2kU(r) + au@r) UZ(},)

e P dr
—(M + Ep = A)(M = En + 20D+ VG, () =0, (7)
M—Ep+2(r)

where x(x — 1) = I(I+ 1), k(k + 1) = I(I+ 1).
3. Bound state solutions

In this section, we intend to study the properties of the spin
and pseudospin symmetries’ limit using SUSYQM.

3.1. The spin symmetry limit with YLT

dA(r)
dr

In the spin symmetry limit, =0or A (r) = C;= constant

[2-3] and Eq. (6) reduces to

{% B K(Kr;i- 1) N 2;<er(r) B dl;ﬁr) — 0
~(M +E, — A(r) (M — E,, + (1)) }E, () = 0, ®)

where k = [ for k < 0 and k = —( + 1) for k > 0. We take
the sum potential Z(r) as the shifted Hulthen potential, Ikot
et al. (2013)

ity N
X(r)=— 35 9
(r) (eﬁ,,_])+(€%r7 ) ©)

where the parameters V), V] and b are real. In addition to the
Yukawa tensor interaction, Yukawa (1935)

*Hy(’ifﬁ’
r

u(r) (10)

where Hy is the Yukawa parameter.
Substitution of the Egs. (9) and (10) into Eq. (8) yields

iz B K(x+1) _ 2xHye s 7 Hye’% 7%67i
dr’ r r r r
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Eq. (11) cannot be exactly solved due to the appearance of
exponential and the centrifugal terms together. Therefore, we
introduce the approximation, Hassanabadi et al. (2013)

2)2 %
1o Gre” (12)
")

2\2 %
Al,.N\_, (1)) e’ (]3)

Inserting the latter into Eq. (11), we obtain

()*2xHye ¥

N\ 2
()

@t et met |
(=) (erf (oery) ™"
i)t et ),
L (-e9) +(1le 7:)2 )
= (M + B, ~ C)(M = E,)F,(r) (14)

where f, = (M + E}, — C,).
Or more explicitly, we write Eq. (14) as,

&iF -
~ L V(R = ELFL0), (15)
where,

Ao+ Be ¥
Veg(r) = ————5—» (16)

()

2\? 1
A4 = (Z) (HY*§>HYJFMV§ +E, V- CGh

4M  4E = 4C;

— MYy = VB, + Vo= = = (17)
L2\ 2\’ 3 .
B = 5 k(k+1)+ 5 2K+§ Hy+ MV
o . AM AE, 4G,
+E;’IKV§)_CVV0+?+ [ERS (18)
E, =E,—M +C(M~E,) (19)

In the SUSYQM formulation, the ground-state wave function
F,,.(r) is given by (Wei and Dong, 2009; Hassanabadi et al.,
2013) (see Appendix A for more detail)

Foa() =exp (- [ W), (20)

in which the integrand is called the superpotential and the
Hamiltonian is composed of the raising and lowering opera-
tors as(Wei and Dong, 2009; Hassanabadi et al., 2013)

o~ &

H = A+A = 7;‘1‘ I/,(l’)7 (21)
e &

H+:AA+_*F+ Vi(r), (22)

-~ d
A= - W), (23)
At = 7% — W(r), (24)
Vi(r) = W2 (r)F W'(r) (25)

Thus, we have to first solve the associated Riccati equation
W2(r) F W(r) = Veg(r) — Eg . (26)
for which we propose a solution of the form
_2r
pe’?
()

Thus, we can obtain the exact parameter of our study as,

02 4 s o N 5

) e b 205a°e™ b ) pSe
(') L reet | @p

2

(1 - 07%) (1 —e ‘)2
_ A'et + Be

W(r) = +q. (27)

S

) - B, (28)

l—e%

or more explicitly,

Ey,. =—(¢) (29)
T + ! 2+ (A4°+ B) (30)

p - b b I

S (‘ps‘)z -4
g == (2p5> (31)

Now based on Eq. (25), we can obtain the supersymmetric

partner potentials as,
Aot N ) -4
(1 _ 6‘7%) 2]73

" . ) 2
NP et et () -
V_(r) = N (1 - 67%) + e

Therefore, it is shown that V', (r) and V.(r) are shape invariant,
satisfying the shape-invariant condition

Vi(r,ay) = V_(r,a1) + R(a1), (33)

P —jet

Vilr) =

(32)

with @y = p* and a; is a function of ay, i.e., a1 = f(ap) = ap — 3.
Therefore, a, = flay) = ay — 2,—)” Thus, we can see that the shape
invariance holds via a mapping of the form p* — p* — % From

Eq. (33), we have
2 4\ 2 2 45\ 2
Ra) = (“952)" = (f=2)
aP—a\ 2 PRYEPR
Rla) = (“5) - ()

(34)
zf..; 2 aV—as\ 2
R(an) = ((61115;’)171 4 ) - (( ”;a,, 4 ) )
The energy eigenvalues can be obtained as follows

where
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S (@2 — 4\ _ (@)=Y
E- =S R(aq) = - , 36
S (' R (0 7 R

By substituting Eqgs. (31) and (36) into Eq. (35), we get

5 2
) ) L) — A
E;i - M + CS(M - Ejﬂ() - ((a )2(1 > (37)

Eq. (37) gives the energy equation for the shifted Hulthén
potential. Introducing the new variable of the form y = e 7,
we obtain the upper component of the wave function as,

- (r) _ N:”( (67%> wy (1 _e’%)1/2+1 /W‘I—\r’\2+w§+l/42
/1 ,
x Fy (n,n+2\ /Wi +2 Z+w} +wi—wi+1;2/wi+ l;ezh>
(38)
with
ny b2 ~Y
=g (A‘y — E‘”K)7
b ~
wy = vy (BS + 2Efm), (39)
2 Ios
Wy =— b E’”‘.
4

where N, is the normalization constant. For the lower compo-
nent, we can simply use

Gl = 35— (5 + 5= U0 ) (40)

3.2. The pseudospin symmetry limit with YLT

In the pseudospin symmetry limit, di,ff) =0 or X(r) = Cp=

constant (Ginocchio, 2005, 2004) and Eq. (7) reduces to

& kk—-1) 2« dUu(r) )
e T s G v

—(M + B} — A(r)) (M = B} +X(r)) } G (r) = 0, (41)
where k = —fand k =/ + 1 fork < 0 and k > 0, respectively.

Here, we take the difference of the potential as the shifted Hul-
then potential,

VpX +iz V[’S
A() =R+, (42)
(ez‘f - 1) (e%f — 1)
Substituting Egs. (10) and (42) into Eq. (7), we arrive at
& k(k—1) 2kHyed (B)eh  Hyet Hyed® | .
{P B 2 N r2 + r + 2 - 72 - ‘L’ps Gﬁx (I‘)
VPY +iz ps
v W e =, (43)

where &2 = (M + EL) (M — B + Cy) and B,, = (M — El 4+ Cpy).

'S ni ni ni

Substituting Eqgs. (12) and (13) into Eq. (43), we obtain

(V :>+(zrw‘“l)z Gu(r) =0, (44
N

Eq. (44) can be more neatly written as

ZGp.v .
== VoG = ERGL ), (45)
with

Veplr) = ———7—> (46)
=)

2\’ 1 v
A" = (*) <HY +*)HY +MVG — EL VG + CpVy

b 2 nK
aM 4B 4G, ps _— s
B + bzp = MVP + Ep VY — Cpy (47)
2\’ 3
w = (2) (2e-2)t v oy
. 4M 4ER 4G, (2)°
-Gy - ey (E) k(o — 1) (48)
The corresponding effective energy in this case is
B = (BR) = M = Cp(M + EY), (49)
and the superpotential posses the form
o
() = g, (50)

(-7

In this case, the coefficients are explicitly given as

-, (51)
e G) 4 \/ C))Z (47 B, (52)
g = L); o = (53)

From Eq. (A.2), we can obtain the supersymmetric partner

potentials as
2 . 2
s(ps __ 2 e*f Apsef% ps\2 AP
:fP (f[’ b) _ - + (}q )2 - (54)
ey U

Vi(r) (1 - e*%)z
b5 2 2 s\ 2
(fi) ' (m e ) >

T A it L '

2
()

With the mapping being

Py =fpo) = po — <2;") == (%n) (56)

Conversely, we have
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R(p,) = <(p0)2—A17\)2 B <(p,)274ﬂ\)2 limit, we take the difference of the scalar and vector potentials
! 2o 2 ’ as the shifted Hulthen potential,
) 2 ) 2
— (L) =A™ () A S 44 ps
R(p,) = ( o ) ( " ) ; (57) il Vi (66)

; A\~ ,,Z—A”“ 2
Rip,) = (255 ) ()

The energy eigenvalues can be obtained as follows
where,

@i—iy@u—C“Z;w>—<“%;”j, (59)

Finally, the energy relation can be written as

s __ [ps— ps
Enx - Emc + E

0,k

2
— AP
MW—M—%W+mHG@$—J—“ (60
where
o= (3)ln+ o7, (61
o = % (1 /146747 + B’”)) (62)

and the corresponding lower component of the wave function
becomes

AV 2\ 124/ =l el 174
G =N (e F) T (1) Y
X2 Fy <—n,n+2 1@”‘+2\/Z+1¢"+w’”—w’”+12 uf"}"y+1;e’271>
(63)
where,

ps _ ﬁ ps ps
wi =7 (4 —Er),

W = (BI" n 2Eg;,;), (64)

wh = -2 fl’i; .
The upper component can be found by using the following
relation

S 1 d Al
ey Erew] Ca R C) UM

4. Pseudospin and spin symmetries’ limits under GLT interaction

In the following section, we intend to investigate the Dirac
equation with shifted Hulthen potential in the presence of
GLT interactions. The presence of GLT potential as the tensor
term in the Dirac equation also removes the degeneracies in
addition to the Coulomb-like and Yukawa-like tensor interac-
tions. Thus, it is pertinent to investigate this potential under
consideration with GLT as interaction term.

4.1. Pseudospin symmetry in the Dirac equation with GLT

The pseudospin symmetry occurs in the Dirac theory as
‘lflr =0 or equivalently X(r) = C,, = const (Ginocchio,

2005, 2004). In order to find the approximate analytical solu-
tion of the Dirac equation under the pseudospin symmetry

A=ty M
(‘f# - 1) (eﬁ" — 1)

In addition, we proposed a novel generalized tensor interaction
of the form,

U(r) = —=(Uc(r) + Uy(r)), (67)

where Uc(r) and Uy(r) are the Coulomb-like and Yukawa-like
potentials (Wei and Dong, 2010a;Yukawa, 1935) defined as,

Uc(l') = 7%,
. (68)
Uy(}’) = *Hyﬂ

P
If we identify Uc(r) as the standard Coulomb potential, the
potential parameter H, is Coulomb parameter and Hy is the
Yukawa potential.

Substituting Eq. (68) into Eq. (67), we obtained our pro-
posed GTI as,

U(r) = 7; (H.+ Hye'#) (69)
Substituting the above equations into Eq. (7) yields
(g iyt B (vp ) (M- B, +G) b ()
(-t B2 et it 5T

s - s
+<M Enr(+C )((-/1)—’_((’) 1)>Glpﬂ<( )
(70)

It is well known that the above equation cannot be solved
exactly due to the centrifugal term +~2. In order to get rid of
the centrifugal term, we make use of the following approxima-

tion (Hassanabadi et al., 2013)
1 2)237%
Fee w
(1 — e’?>
2
1 @
AN "
(1-¢%)
1) 2wl H w2 (F)e
By us1ng the approximations (71) for (%5~ e, h_z» R r_” ’f
. " and
2”{#), we obtain
& Q) xc=NeF wH() e F wHy@)eF H()eF |
ar N2 N2 SC (O
S () T o
ABDEIE G E mE e (o,
<lfe’7> (17677:) (]*97%)
N L ) 2 s s 4\, s 4
. _2H<.Hy(i?2€2 H(2) f) “,,2+/3/,A<Vpo +1772")€ b . By V1 (j 7’ & (1)
(1 76*'7’) (1 76"‘4) (1 797?) (l 767%)
= (M+E) (M~ Es+C,,) Gl
(73)
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Or more explicitly, we write

PG _ -
— SR V(NG =BG (74)
where

DPe—¥ + Hre %
Vg(r) = ———5— (75)

()

2\’ 1
DPS: — Hy+* Hy+MV]0

b 2
X s 4M  4AEP  4C, s
*EZ‘:«VSA+CP-YV€+?* b2m+ bzp *MV[;
+ E{;:c Vzl’s - Cps V11U7 (76)

2\ 2\’ 3 "

4AM 4B 4C,

+ Eﬁ; W)s - C/}S VSS - 7 + 7”K e (77)
p=2xH, + H> — H, +x(kx —1) = (x+ H)(x+ H. — 1)
= ’7K(’7K - 1) — e = (K+ HC) (78)

E]}S — MZ 4 ME"

nK nK

— MCp— ME + (E2) — .Gy (79)

nK

In order to solve Eq. (74), we have to first solve the associated
Riccati equation

WA(r) F W(r) = Veg(r) — B (80)

for which we propose a solution of the form

(81)

Thus, we can obtain the exact parameter of our study as,

2 4 oo o 2
Ps\2 0~ % § 2ppxqp,&€77 Z) ppsefj
N E N,
—e b —e b — e b
D¥e™F + HPe ™7 ~
= Ey, (82)
(-
or more explicitly,
Ey = ("), (83)
Al 1 1 ? S ps
p”:—z + 5 + (D" + H™), (84)
s (pps)z - D"
e () -

Now based on Eq. (A.2), we can obtain the supersymmetric
partner potentials as,

s (phs — 2) o~ 5 -2 02 ryps 2
V+(r)zpp((1pp_e—;))ez e )*((pp) ,nDp)
:P’“(P'”+%)e*‘

(1 — e’%)2 (1 —e ¥

Therefore, it is shown that V', (r) and V_(r) are shape invariant,
satisfying the shape-invariant condition

V(r)

oS
|
2
S
~— o
Ry
S
o=
...% o
2
N———

Vy(r,ap) = V_(r,a;) + R(ay), (87)

with ap = f° and «; is a function of ay, ie., ay =flay) =
ay — (3). Therefore, a, = f{ag) = ay — (%). Thus, we can see
that the shape invariance holds via a mapping of the form
/7 — 7 — (2). From Eq. (A.5), we have

2_prs\ 2 2\ 2
Riar) = (120)" - (),
2 N\ 2 2 2
Ria) = (15:27)" = (52,

(88)
2 .. 2 2 2
_ ((ap) —D™ a,)”—D"
Ria,) = (eg=20)” — (lz)
The energy eigenvalues can be obtained as follows
B = EN + By (89)

where

Ef,j; — iR(ak) — <(a0)2a0 D’”) _ ((an)za DP-Y) 7 (90)

By substituting Egs. (90) and (83) into Eq. (89), We get

E;K_(M> ) (91)

2a,

Substituting Egs. (76), and (78) into Eq. (91), we obtain the
energy equation for the shifted Hulthén potential as

(B, )M+ C(M ~ )

nK nKk

o (O 2] o )
where
a, = — (%) [n+ 8], (93)
o= % (1 +4/1+ 6% (D" + H”“)) (94)

The corresponding lower component of the wave function
becomes,

7 5 T e 1A

) 5\ VO o\ /24w =l 1/
S (. ws (% 3 -~ 3

G ())—N”K(e h) (l—e h>

1 ; )
2 F <7n,n+2 nﬁ"+2y/Z+v¢/]"‘+\1§‘&711¢2’“+1;2 u{“+l;e’zf> (95)

with

wit = bzz (D’” - Eﬁi), (96)
Wi = —%2 (Hf”‘ + 255;), (97)
wh = szTEp"; (98)

where N, is the normalization constant. For the lower compo-
nent, we can simply use

oo 1 d « s
Fﬁx(r)*m(a—7+ U(V))Gﬁx(r)~ (99)
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4.2. Spin symmetry in the Dirac equation with GLT

In the spin symmetry limit condition, we take the sum poten-
tial X (r) as the shifted Hulthen potential, the difference poten-
tial A(r) as constant and the tensor potential U(r) as the GTI
term. Thus, we have the following

Vi L0

2(”) = PR 3 2 A(r) =G,
(1) (¢ - 1) (100)
1 .
Ulr) = - " (H.+ Hye'#).
Substituting Eq. (100) into Eq. (6) yields,
s 4 . F (r)
Vi+ V nxK
(M+Erm_c.\)< ;)’,,2 + B 1 2)
@) @) (101)
(gt 2 gt et R ()0
By using approximation (71) for ( Klerl), ), e B 7—;, (Tyr)ﬂ and
; o L) and approximation (72) for (2HYr§‘7%, H’,—{% and 2”%2""7%),
the above second-order differential equation becomes,
& (%)%c(;c +1)e’s  2xkH, (%)ze‘% ZKHY(%)ze‘%
2 N N2 2 2
dr (1 — e*%> (1 - e"?) (1 - e"?)
2 x _x
_ Hf(}_zy) e’ _ (HT) (%)e b (}’)
5\ 2 2 nK
(17€_T> (1—3 ”)
HG et Ot amH G e
N 2r 2 + 2r 2 2r 2
1- eT) (1 - e’T) (1 —e 7
2)2 - B Vs 4 et _ar
H s 7 14
+ (h) Y h2+ ( 0 b)z 4 ﬁs 1€ hz }m('")
() (e (o)
= (M+E, — C) (M- E,)F,(r) (102)
Or more neatly, we write Eq. (102) as,
d&F, =
S 0 = B0, (103)
%
where
De™t + He?
Vey(r) = ———3— (104)
(e
2\° 1
. (E) (Hy —E)Hy MV, BV + GV
AM 4E,_  4C,
2 2
. 2\, 2 3 )
. 4M 4E, 4G,
+E V- CVy+— P + PERi (106)
E=~(M+E, —C)(M-E,) (107)

=w(k+1)+2cH, + H. + H =
= AK(AK -

(k+H)(x+H +1)

1) — A= (k+ H + 1) (108)

Using the same procedure we obtain the energy equation in the
Dirac theory for the spin symmetry limits written as

(E,) =M +C(M—-E,) + (m’);p_DS) =0, (109)
where

pn=—<%>[n+0“], (110)
05:%(11 1+b2(DS+H“)). (111)

The wave function can be obtained as follows:
2\ V"3 o\ 1724/ w) —wh by 174
) =Ny ()Y (1 e®) TV

/1 y
X o Fy <7n,n + 24/ w§ + 24 ZJr Wi+ w — w4+ 12 /wi + 1;6’7)

(112)
with
wi =4 (D= B,),
Wy =4 (1 +2E,), (113)
W= —Ph

where N, is the normalization constant. For the lower compo-
nent, we can simply use

Gulr) =3 (s~ U0l (14)

5. Scattering state solution

In this section we are going to obtain the scattering properties
of Dirac equation for the shifted Hulthen potential under the
pseudospin and spin symmetries. First we consider the pseudo-
spin symmetry.

5.1. Scattering state solution for the pseudospin symmetry

Introducing a new variable of the formz = 1 — e~ >/
Eq. (73) as

& d Vl 72
{t1-a G-t

, changes

%%%@=m (115)

where

e )
= (b2>zs,m (116)

;)37() (B—C+gy),

and

A= *11,\(11‘* 1)72KHy+Hy*2HcHy,

_ 2Hy s ps | 4
B= +(M_Emc+cl75)(V0 +E ) (117)
4H s
C=- el + (M = B + Cp).
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Table 1 The energy of the spin symmetry in the presence of YTI.
! n, k State B k(ary=0) B k(iay=05) n, k State B k(uy=0) B k(iry=0.5)
1 0, -2 0p3 4.941009893 4.938976489 0, 1 Opy 4.941009893 4.943778986
2 0, -3 Od% 4.947209317 4.943778986 0,2 Odé 4.947209317 4.951209494
3 0, —4 0fz 4.955674003 4.951209494 0,3 Ofg 4.955674003 4.960486231
4 0, -5 0go 4.965521537 4.960486231 0, 4 0gz 4.965521537 4.970650204
Table 2 The energy of the pseudospin symmetry in the presence of YTI.
! n, k State B kiry—0) B y—0.5) n-1k State Bkt —0) B kiry—03)
1 1, -1 Lsy —4.971883316 —4.970112404 0,2 Od% —4.971883316 —4.973260354
2 1, -2 lp-% —4.975879919 —4.973260354 0,3 Of% —4.975879919 —4.978040648
3 1, -3 ldg —4.981196728 —4.978040648 0, 4 Og% —4.981196728 —4.983811863
4 1, —4 1 —4.987107693 —4.983811863 0,5 Ohg —4.987107693 —4.989777087
1 Sl_ Up 3
2 2
S0 t/ ‘] 0.0004 - l-/ \
0,003 - “ A
] [ \ 0.0003 - f A
0.002 ' \ [ ‘,\
0001 - /L\ -..\ 0.0002 f '.\
0 | . [ ] .’—‘_ﬁ—-—- , ‘-\
I ’ 20 30 ] H
o001 \ i 0.0001 - [ A
-0.002 4 \ 1 I \\
] » i 0 lf’-\.w r h---—q
-0.003 1 \. : 0 30
4 v
— u 3PS = —) = 5 = — S =
& w(#=Y) (=) = F(#r=Y) G x(Ar=0)
. ps = - ps = 5 = s =
Gn,x(HY 0.5) Fn,K(HY 0.5) i 'Fn,x(HI’_U‘S) — Gn,K(HY' 0,5)
Fig. 1 Wave functions in the pseudospin and spin symmetries’ limit in the presence and absence of YTI.
By taking the wave function of the system of the following with
form
1
@5(2) = 2 (1 — )i (2), ms)  Bi=5(1+vI=4), (122)
and substiFuting into Eq. (115), we obtain a hypergeometric- B, = —iék, = (123)
type equation 2

& d _
{Z(l—Z)E+(ﬂ3—[1+’12+'71]Z)E—’11'72}gﬁ-(2):07 (119)

The solution of Eq. (119), is a hypergeometric function

gne(2) = 2F1(n1, 12,33 2), (120)
where

m=Pp+B+r

ny =P+ B— s (121)

3 :2ﬁl7

From Egs. (118) and (120), we write the wave function of the
scattering states as

) A B x
() = N (1= e ¥) R (mommsi 1 = e ¥), (124)

Here, to obtain the normalized constant and phase shifts we
apply the following properties of heypergeometric function

2F1(n1,13,m3;,0) = 1, (125)



54

A.N. Ikot et al.

b
23 4 3 6 78 9 10
1 1 1 1 1 1 1
e T TR X
02 Rl
-0.4-//*#."
t /
-06 ¢
-T .g'/
', =081
L
s 1
4124y
W
-1.4—,'
-164"
]
-1.8_
-2
—.lp3 o W5 lds _ 0gg
2 2 2 2
Fig. 2 Energy spectra in the pseudospin and spin symmetries versus b for YTI interaction.
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Fig. 3  Energy spectra in the pseudospin and spin symmetries versus Hy for YTIL.
C(n)T(ny —mi —mo) iy =1y = bk = (1, + 1y — 1),
2Fi(1m0,m352) = F(ﬂ3 . 3)1_("1 — nz) o ib (e =)
oA R ms =M =bitsk— i =m, (128)
XoF1(ny, s +n, —ns + 11— 2) b
+(1- Z)'73*V/|*'1z C(ny)T(ny 41, — 13) = =By +Ek+ \/Z =
L(n)T(n,) B . C(ny—n1—m) _} C(ns—ni—m) 35
y taking = e“» and
XoFi(ny =y —mins —m —m + 11— z2). (126) T(ns—n)T0ns =) (L0 =n)T(n3—11,)

From the properties of the hypergeometric functions for
r— oo (z— 1) we have

2By (0,31 —e %) =

T3 —n,—n)
r(n3){r(’73 —n)T(n3—n,

™ () |+ (027

where we have used the following relation

inserting in Eq. (127) we can write the wave function Eq. (124) as

‘ C(ny—mni =)
S (1) — pS [ L a—
GZN(’) 2N111cr(’73) F(n3 _nl)r(r]} _7]2)

sin (kr +g+ (5,”) . (129)

By comparing Eq. (129) with the boundary condition (Landau
and Lifshitz, 1977) r — oo = G (c0) — 2sin (kr — 5+ )
phase shifts and the normalized constant can be given by
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Fig. 4 Energy spectra in the pseudospin and spin symmetries versus Vy for YTI.
Table 3 The energy of the spin symmetry in the presence of GTI.
/ n, k State E, k(tt—Hy—0) E, i(#—Hy=0.5) n, k State E, k(t1—ty—0) E, k(t—Hy—0.5)
1 0, -2 Op% 4.941009893 4.937733858 0,1 Op% 4.941009893 4.947209317
2 0, -3 Odg 4.947209317 4.941009893 0,2 Od% 4.947209317 4.955674003
3 0, —4 Of%~ 4.955674003 4.947209317 0,3 0f§ 4.955674003 4.965521537
4 0, -5 0gy 4.965521537 4.955674003 0,4 0gz 4.965521537 4.975740155
Table 4 The energy of the pseudospin symmetry in the presence of GTI.
] n, k State E, i(H—ty—0) E, kit —Hy=0.5) n—1k State E, kit —ty—0) E, kt—ty—0.5)
1 1, -1 Lsy —4.971883316 —4.969291407 0,2 Od% —4.971883316 —4.975482048
2 1, =2 lp'% —4.975879919 —4.971450277 0,3 Of% —4.975879919 —4.980849415
3 1, -3 Lds —4.981196728 —4.975482048 0, 4 Og% —4.981196728 —4.986824094
4 1, —4 lf;- —4.987107693 —4.980849415 0,5 0y —4.987107693 —4.992558832
2
M=m+1)=+0,,=(k+1 d d N
Fo et D= ) 2(1=2) T (= [T+ ]2) =l () =0, (132)
I (ibk
+arg - (i5K) = , (130)
C(B+ T VT (B + 36T V) wher
v 1 T (B1 + %k — /73) T (B + 2k + /73) 1
s _ 2 : 2 (131 7_< M—47 /)
nK 1—( 1 74/1) | F(zbk) ( ) = 5 1 =+ 1 4)/| s
b
br=—izk, K==,
L L . (133)
5.2. Scattering state solution for the spin symmetry 0= p B+
Now, we want to investigate the phase shifts and normalized =B+ 5=V
wave function of spin symmetry If we consider two transfor- iy =2,
mations, ie, z=1—e# and F (z)=zF(l —z)ﬁlf‘ (2), h
wi

Eq. (102) modified as
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Fig. 5 Wave functions in the pseudospin and spin symmetries’ limit in the presence and absence of GTI.
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Fig. 6 Energy spectra in the pseudospin and spin symmetries versus b for GTI interaction.

, , h\? , By doing the same approach as the previous subsection, the
n=A4 2 c phase shifts and the normalized constant of spin symmetry
b\ 2 limit can be given by
«,2:7@ h 8= (k+ )T 40, = (k+1)2
b\’ .y
7= <—) (B = C +e), , (ibk')
2 (134)  +targ . . , (135)
r /+@k/f T /+Qk/+ ™
A = —A(A, = 1) = 2cHy — Hy — 2HcHy, (B + 5K = VAT (B + 5K +/7)

S 1

N
B =- 2 7(M+E2K7CJ)(V5+%), T+ /14
C(P+ 4K — VAT (B + 4K + /7)

T(ibk’)

. (136)

nK

C=-3L-W(M+E,-C).
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Fig. 7 Energy spectra in the pseudospin and spin symmetries versus Hy for GTI interaction.
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Fig. 8 Energy spectra in the pseudospin and spin symmetries versus H, for GTI interaction.

6. Numerical results

In this section we discuss about the effect of the tensor interac-
tions on the wave functions and energy of the Dirac equation.
In our calculations we have taken M = 5, b = 10, V, = 0.9,
Vi = =2, C,, = =5 for the pseudospin symmetry limit and
M=5b=10,Vy=-09, V|, =2, C; =5 for the spin sym-
metry limit.

6.1. The effect of Yukawa-like tensor interaction

To show the effect of YTI on the energy eigenvalues and the
wave functions of the system we have calculated numerical

results for different states both in pseudospin symmetry and
spin symmetries’ limits as shown in Tables 1 and 2 respectively.
We can see that there are degeneracies among energy levels in
the absence of GTI such as (1p3;, 0fs2), (151/2.0d5)),... in
pseudospin symmetry and (0p32,0p12), (0ds2,0d52), ... in the
spin symmetry limits and when the GTI appears these degen-
eracies remove. Fig. 1 shows the effect of GTI on the compo-
nents of Dirac spinors. The effect of the parameters b,Hy and
Vo on the energy of the pseudospin symmetry limit for
1p3/2,0f5/2,1ds52,0g7,» and spin symmetry limits for 0dsp,
0d3/»,017/2,0f52 is plotted in Figs. 2-4. We can see that when the
parameter b increases the energy of the pseudospin symmetry
(spin symmetry) becomes less (more) bounded, and
when ¥ increases the energy of spin symmetry and pseudospin
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Fig. 9 Energy spectra in the pseudospin and spin symmetries versus V, for GTI interaction.

symmetry has an increasing behavior. It is clear that when
Hy =0, (Ip3p2.0f52) and  (1dsp,0g72) [(0ds),0d32) and
(0f7/2, 0f5/2)] are degenerated in the pseudospin symmetry (spin
symmetry).

6.2. The effect of generalized tensor interaction

In Tables 3 and 4 the energy of the Dirac equation in the
absence and presence of YTI is reported. Fig. 5 shows the
lower and upper components of the Dirac spinors under the
pseudospin and spin symmetries’ limits. The energy spectrum
in the pseudospin symmetry and spin symmetry versus b is rep-
resented in Fig. 6. By taking H. = 0.5 we have plotted the
behavior of the energy of the system versus Vy in Fig. 7 for
both pseudospin symmetry and spin symmetry. When
Vy = 0, (1ds,0f52) in the pseudospin symmetry and (0ds)s,
0f72) in the spin symmetry are degenerated. In Fig. 8, by
choosing Vy = 0.5 we have presented the effect of H. on the
energy of the pseudospin symmetry and spin symmetry. We
can see that in the case of H. =0 we have degeneracies
between (1dsj, 0fs2) in the pseudospin symmetry and (0d3p,
0f7,2) in the spin symmetry. And finally the effect of parameter
Vo on the energy of the system is shown in Fig. 9. It is seen that
as V increases the energy of the pseudospin symmetry and
spin symmetry increases.

7. Conclusions

In this work, we have studied bound and scattering state
solutions of Dirac equation for the shifted Hulthen poten-
tial under the spin and pseudospin symmetries and YTI
and GTI. We have obtained the energy eigenvalues, nor-
malized wave function and scattering phase shifts approxi-
mately. We have presented our numerical results in

Tables 1-4 for YTI and GTI, and showed that the degen-
eracy between two states in spin and pseudospin symmetries
has been removed.
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Appendix A. We include this short introduction to SUSYQM
to proceed on a more continuous manner. In SUSUQM we
normally deal with the partner Hamiltonians, Cooper et al.
(1995) and Hassanabadi et al. (2013)

)4
Hy =5+ Vi(x), (A.1)
where
Vo (x) = @ (x) + @ (x). (A2)

In the case of good SUSY, i.e., Ey = 0, the ground state of the
system is obtained via

¢y (x) = Ce Y, (A3)

where C is a normalization constant and

Ux) = /x dz®(z). (A4)
Xo

Next, if the shape invariant condition

Vi(ao,x) = V_(ar,x) + R(ay), (A.5)

where a is a new set of parameters uniquely determined from
the old set ag via the mapping F:ag+ a; = F(ag) and R(a;)
does not include x, the higher state solutions are obtained via
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E =S R(a), (A.6)
- n—1 AT(aS) -
b, (ao, x) =TI, (m) bq (@, X), (A7)
(@) = Cexp { - [ @000} (A8)
where
L0
Al = —— + D(ay, x). (A.9)

s ox

Therefore, this condition determines the spectrum of the
bound states of the Hamiltonian

H, = —68—;—1— V_(as,x)+ E;. (A.10)
and the energy eigenfunctions of
Hp, (a5, x) =E,p, [(a;,x), n=s (A.11)
are related via [17,22,26-27]

B Al B
¢,,(a;,x) = & _E" Doy (@51, X). (A.12)
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