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Abstract

We investigate which spaces have coarser connected topologies. If in a collectionwise normal
spaceX, the density equals the extent, which is attained and atdetistn X has a coarser connected
collectionwise normal topology. In the previous sentence, the separation property collectionwise
normal can be replaced by other separation properties—for example, Hausdorff, Urysohn, regular,
metrizable. A zero-dimensional metrizable spatef density at least has a coarser connected
metrizable topology. A non-H-closed Hausdorff space with-kcally finite base has a coarser
connected Hausdorff topadly. We give necessary conditions and sufficient conditions for an ordinal
to have a coarser connected Urysohn topology. In particular, every indecomposible ordinal of
countable cofinality has a coarser connectepology. We present a nowhere locally compact
Hausdorff spaceX with no coarser connected Hausdorff topology, ¥ets dense in a connected
Hausdorff spacé’.
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1. Introduction

This paper continues the quest for coarser connected topologies, begun in [13]. Much
of this paper is motivated by the following remarkable theorem:
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Theorem 1.1 [7]. A noncompact metrizable space has a coarser connected Hausdorff
topology.

Itis natural to ask whether the conclusidausdorff can be strengthened. In Section 2,
we show (Theorem 2.2) that if the extent is attained and equal to the density, ad, least
a collectionwise normal space has a coarser connected collectionwise normal topology.
In this theorem, “collectionwise normalan be replaced by various other separation
properties. For weak separation properties like Hausdorff and Urysohn, we can omit “at
leastc” from the hypothesis (Theorem 2.3). The technique works with metrics, too. If a
metrizable space attains its extent, at leashen it has a coarser connected metrizable
topology (Theorem 2.5).

In Section 3, we describe the special forrmuétrizable spaces which do not attain their
extent. We use this special form to shovattzero-dimensional metrizable spaces with
extent at least have a coarser connected metrizable topology, even if the extent is not
attained (Theorem 3.4).

After proving Theorem 1.1, Gruenhage, Tkachuk, and Wilson asked two questions (3.9
and 3.10) of the form, Can the hypothesis metrizable be weakened?

Question 3.9[7]. Let X be a non-H-closed Hausdorff space withdocally finite base. Is
it true thatX has a weaker connected Hausdorff topology?

In Section 4, Theorem 4.12 gives the affirmative answer. Along the way, Theorem 4.11
shows that every space withoalocally finite base is the perfect, irreducible image of a
metric space.

Question 3.10[7]. Does every paracompact noncompact spateave a weaker Hausdorff
connected topology? What happenifs hereditarily paracompact or perfect?

In Example 3.4 of [6], we constructed a Hausdorff compactifica#fonf a discrete
spaceD (|D| =) and Z\D ~ |2, Z has arn-base of clopen sets. An application of
Lemma 2.3 [6] yields thaZ & » does not have a coarser connected topology. Clearly,
Z & w is paracompact and not compact. In Example 3.1 of this paper, we present a
hereditarily paracompact space with no coarser connected Hausdorff topology.

We present other results on the topic of coarser connected topologies. In [6] we
investigated when spaces had coarser coegddausdorff topologies. It is natural to ask
whether similar results hold for the Urysohn property. We give answers, especially for
ordinals, in Section 5. For example, evenglecomposible ordinaf countable cofinality
has a coarser connected Urysohn topology (Theorem 5.14). If an ocdimad a coarser
connected Urysohn topology, it is necessary thags cofinalityw (Corollary 5.4), and if
a =8+ B, then necessarily| < |8]™ (Theorem 5.8). Ifr has cofinalityw and cardinality
at mostc, thena has a coarser connected Urysohn topology (Theorem 5.18).

Section 6 explores the connections witlonnectifications. We present a space,
Example 6.1, with a coarser connected Hausdorff topology which cannot be embedded
densely in a connected Hausdorff space. la tither direction, we present a nowhere
locally compact space, Example 6.6 with na@cger connected Hausdorff topology which
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can be embedded densely in a connected Hiadisspace. The nowhere local compactness
is interesting because a major step of thegb of Theorem 1.1 in [7] is to show that a
noncompact metrizable spa&ehas a coarser nowhere locally compact topology.

A spaceX is calledUrysohnif for every pairx, x’ of distinct points, there is a discrete
open family {V,, V»} with x € V, andx’ € V,». We will need a countable connected
Urysohn space. The Roy space is such a space.

Definition 1.2[12]. Let{Q,: n < w} partition Q a countdl dense subset & into infinite
dense setsR = Q U {00} is a Roy space with the following topology

Q) fxe Qo then(x —e,x +e)N Q2 € 7.
(2) Ifx € Qa1 then(x —e,x +&) N (Q2n U Q2n+1U Q2n42) €T
(3) For a”n, {OO} U Uk>2n Qk €T.

A Roy space is Urysohn and connected. Note th& i§ a Roy space anél is nowhere
dense inR then the subspace topology ®\ E is also Urysohn and connected. However,
R\{oo} is totally disconnected.

Choose a pointy € R. We let R, denote ther-product of countably many copies &f
with base pointy:

Ro = {x € R®: {i € w: x; # ro} is finite}.

R, like R, is a countable connected Urysohn space. Unkké enjoys the property that
R\ S is connected for every finite subsgbf R, .

We will use the fact that a Roy space has a proper Urysohn exterigignR U {z}.
(7 is anextensiorof R means thaRr is dense inZ. Propermeans thaZ # R.) To define
Z, choose; € R\ Q, then repeat the construction Bfwith Qo U {z} in place ofQp.

We will use the following method of defining coarser topologies in Sections 2 and 3.

Lemma 1.3. Let (X, ) and (Y, p) be spaces. Let:Y — X be a set function. Define
o(t,p.9)=0={Ver ¢ [V]ep}

o is atopology onX.

o is coarser tharr.

. (Y, p) > (X, o) is continuous.

If Y is connected ang@[Y] is dense inX, ), then(X, o) is connected.

Note thato = o(z, p, @) is the coarsest topology oX such that the functions
idx:(X,0) — (X, 7) ande: (Y, p) — (X, o) are continuous.

In general,(X, o) does not inherit separation properties frgM, ) and (Y, p). For
example, let(X, ) and (Y, p) beR with the usual topology and setlq) = ¢ for g € Q
andg(p) = —p otherwise. Then there are no disjoint open sets separating +an8o
our goal is to find conditions where thepseation properties are inherited.
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2. When the extent is attained

Definition 2.1. Our notation for cardinal functions follows [5]. For a metrizable sp&Ece
most of the global functions are equal [5, 4.1.15]. In this paper, we will useehsity
d(X), and theextente(X).

d(X) =inf{|D|: Dis denseinX},
e(X)=sup{|E|: E is closed discrete i }.

If there is a closed discrete sét satisfying|E| = ¢(X), then we say that the extent is
attained Otherwise, the extent is not attained. We say that a closed discrefg iset
strongly separatedf there is a discrete open familyW,: e € E} satisfyinge € W, for
all e € E. If X is metrizable, then every closed discrete subsef ¢f strongly separated.
(This conclusion definestrongly collectionwise Hausdorff

Digression: Instead of the extent, we really use the following cardinal function, which
we suggest calling “discrete cellularity”.

de(X) = sup{|C|: C is a strongly separated closed discrete subsﬁt}of
= sup{|W|: W is a discrete family of nonempty open subset&(¢f

However, we will state our results in terms of the existence of strongly separated closed
discrete families.

The proof of Theorem 1.1 presented in [7] has two cases. The first, easier, case is
when the extent is attained. In this cafee hypothesis metrizability can be weakened
considerably, t@(X) = d(X), as we show in Section 2. The second, harder, case is when
the extent is not attained. In Section 3, we see that the hypothesis metrizable cannot be
weakened so much.

In this section, we prove theorems of the following form(Xf, 7) is a space enjoying
separation property with d(X) = e(X) and the extent is attained, then theresisa
topology onX coarser tharr, such that X, o) is connected and enjoys propeiy We
will present three theorems—whepeis collectionwise normal, Urysohn, and metrizable.

We will often use a metric hedgehog as the spéteo) of Lemma 1.3. For each
cardinalk > ¢, there is metric spacé = (J(x), v), called thehedgehog of spininess
(See [5, 4.1.5].) The point set is= {0} U (0, 1] x «. The metric,v, is defined by cases:

v(0, (s, @) =s; v((s, ), (t,a)) = |s —t|,andv((s, «), (¢, B)) = s+t fora # B. These are
the pertinent cardinal functions @f |J| =« =d(J) = e(J). Moreoverg(J) is attained—
there is a closed discrete set= {1} x « of cardinalityx.

The next theorem is valid when “collectionwise normal” is replaced by “regular” or by
“normal”.

Theorem 2.2. Let (X, t) be a collectionwise normal space with a strongly separated closed
discrete subse€ such that|C| = d(X) > ¢. Then there isy, a topology onX coarser
thant, such that(X, o) is connected and collectionwise normal.

Proof. Setk =d(X) = |C|. By replacingC with a subset, we may assume th&tC| > «.
Let (Y, p) be the hedgehog with spininegsand closed discrete sét. (l.e.,Y = J(k),
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T ={1} x x, and|T| = «.) SetS = Y\T. Choose a one-to-one functign ¥ — X so that
¢[S]=C andy[Y]is dense inX. SetD = ¢[T] = ¢[Y]\C. Seto =o (7, p, ¢).

Towards showing thatX, o) is collectionwise normal, let{ be a discrete family of
closed sets. We will find a familyVy: H € H} satisfyingH C Vy € o for eachH € H.
DefineC* = C\ | JH. In the space&X, 1), the familyH™ = H U {{c}: ¢ € C*} is discrete,
so there is an open discrete famiy = {Wy: H € H} U {W,: ¢ € C*} separating++.
(Digression: In(X, o), the setC is dense.)

Becausep: (Y, p) — (X, o) is continuous, the family<~H = {9 [H]: H € H} is
closed discrete. S&t* = T\ | Jo~H. Letld = {Uy: H € H} U {U,: t € T*} be an open
discrete family such thai [H] c Uy for H € H andr € U, fort e T*.

The construction oVy from H can be described in words: back, expangtdorth,
expand tor; repeatw times. When considering expansionrtat is helpful to observe that
C c UH™*; hence(UW\ UH) NC =9. Thus, for allc e C*, (W.\{c}) Np[Y] C D;
and thenp < [W,\{c}] c T#. By the same argument, for alf € H, ¢ [Wy\H] C T*.
Similarly, T ¢ (¢ ~H™") leads to for allr € T#, o[U,\{t}] ¢ C*¥ and for all H € H,
¢lUn\¢“[H]l C C*.

Now the precise definition. By induction ane w, we define

G% =Uy,
vy =Wu Ul J{We: ce CPno[Gh]}.
Git=apu| o ret?ne[Vh])
vitt=vi u| {We: ce cPnolG)
Having completed the inductive definition, s&y = (J{Vj: n € o} and Gy =

U{G,;: n € w}. First, note thaVy € T andGy € p. Second, we will prove by induction
that

v Valc Gyt co vt

Taking the union as varies overw we obtaing < [Vy] = Gy € p, S0 Vy € o by the
definition ofo. Here are some details of the inclusion above:

o [Vil=Gyule[vilnTh) c Gy uJ{ur re T ne=[vi]} =G4,
Gr1l1+l C Gr;{—i—l U ((p(—[v;}-ﬁ—l] N T#) — <P(_[V1}-11+1]-

Itis straightforward to prove by induction enthat{G";,: H < H} is pairwise disjoint and
{Vi;: H € 'H} is pairwise disjoint. ThenV = {Vy: H € H} is pairwise disjoint, and we
have separatet in (X,0). O

The next theorem is valid when “Urysohn” is replaced by any of “Hausdorff”,
“collectionwise Hausdorff”, and “strongly collectionwise Hausdorff”. We will use the
Roy fan intead of the metric hedgehog as the spHcd.et I be the discrete space
of cardinality «. Choose a point* € R, the Roy space (Definition 1.2) and I& be
the discrete space of cardinality Define an equivalence relatior on the product
R x I: (r,i) ~ (s, j) iff ((r,i) = (s,j) or r = r* =s). The Roy fanwith « spines,
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denotedF,, is the quotient space & x I with the equivalence relation. The density of
F. isk andF, has a closed discrete subset of cardinadity

Theorem 2.3. Let (X, ) be a Urysohn space with a strongly separated closed discrete
subsetC such thaiC| = d(X). Then there isr, a topology onX coarser thanr, such that
(X, o) is connected and Urysohn.

Proof. Let ¥« = d(X). We use the Roy hedgehog as the spéeo) in place of the
hedgehog of spininegs DefineT, S, ¢, andD in Theorem 2.2.

Let x, x” be distinct points off. Let C* = C U {x, x’}. Observe that our hypotheses
are strong enough to guarantee a discrete open family; {W,.: ¢ € C*} separatingC#
in (X, 7). Similarly, let7# =T U {¢1(x), ¢~ 1(x)}, and find a discrete open family =
(U, t € T#) separating’ in (Y, p). The back and forth construction from Theorem 2.2
gives a disjoint open familyV,, V,/} separating andx’ in (X, o). To show that X, o) is
Urysohn, we must show that this doubleton is in fact discretezleei be arbitrary; we
will find V, € o containingz and disjoint from at least one &, andV,..

Becausé/V is discrete, there is at most onsuch that € cl; W.. Becausé/ is discrete,
if 9~1(z) is defined, there is at most onsuch thapy~1(z) € cl, U;.

Claim. The conjunctior; € cl; Wy, z € ¢[Y], andgp~1(z) € cl, Up-1(x) does not occur.

Casel. If z € W,, thenp~1(z) € G, an open set disjoint frorty,.
Case2. If o 1(z) € U,-1,), thenz € Vi, an open set disjoint frorv,.

Case3. If z € cl, W,\W,, thenz € D andgp™(z) € T. Howeverp™(z) € cl, U,-1(,)\
Uy-1(,y impliesp™(z) ¢ T.

Via the claim (and possibly switchingandx’) we may assume that¢ cl, W, and, if
¢ () is definedp1(z) ¢ clp Ug-1(x)- We now repeat the inductive constructionos
andG'’s, replacingx, x” with x,z. Let C” = C U {x,z} and T’ = T U {9~ 1(x), o 1(2)}.
(If ¢~1(z) is not defined, lef™® = T U {¢~1(x)}). We can choose the discrete open family
W = {Wf: ¢ € C"} to differ from W in at most two elements. Firstb replacesw,/;
second, we may have to modify the at most dfiehavingz in its closure. Observe that if
W, C Vi, thenW. = W,. Similarly definel4* = {U: ¢ € T} to differ from/ in at most
two elements.

By induction onn, we see that/;"” = V. So V, is disjoint from V; = V,, which
demonstrates thdV,, V,-} is discrete. We have shown th@, o) is Urysohn. 0O

In the last theorem of this section, the separation property is metrizability. It is perhaps
surprising that the construction is the same as in the first two theorems, and that of the
requirements on the new metric, the hardest to verify is (essentially) the Hausdorff property.

We start with a preparatory lemma.

Lemma 2.4. If C is a closed discrete set in a metric spacg ), there is a compatible
metric i’ such thatu(c, ¢’) > 1 for all distinctc, ¢’ € C.
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Proof. Choose a discrete open fam{ly/.: ¢ € C} separatindg’. For each € C, choose a
continuous, real-valued functiofy satisfying f.(c) = 1 and f.[X\U,.] = {0}. Define

W x) = p0e, X))+ ) [ fel) = fex)].

ceC
The sum is defined because at most two summands are nonzero.

The following theorem was also proved by Irina Druzhinina, a doctorate student of
Wilson, in [4, Theorem 3.3].

Theorem 2.5. Let (X, ) be a metrizable space with a closed discrete sufisstich that
|C| =d(X) > c. Then there isr, a topology onX coarser thant, such that(X, o) is
connected and metrizable.

Proof. Let the metricu generate the topology on X. By replacingC with a subset and
using Lemma 2.4, we may assume th&tC| > « and thatu(c, ¢’) > 1 for all distinct
¢,c’ € C. As in the proof of Theorem 2.2, I€Y, p) be the hedgehog of spininesswith
metricv, and closed discrete sét DefineS, ¢, andD as above.

For x,x" € ¢[Y], let xo(x,x’) be the lesser ofu(x,x’) and v(p~1(x), ¢~ 1(x")).
For otherx, x’ € X, setio(x,x’) = u(x,x’). Becauserg does not satisfy the triangle
inequality, we set

A(x, x") =inf{1o(x0, x1) + Ao(x1, x2) + - - - + Ao(Xn—1, Xn) },

wherexo, x1, . .., x,, varies over all finite sequences with= xg andx’ = x,,.
Observe that in the definition af, it is sufficient to take the infimum of “alternating”
sums

1 (xo, x1) + v~ H(x1), o1 (x2)) + (2, x3) + -

(including those starting(¢~1(x0), ¢ 1(x1)) + u(x1, x2) + - - -) becausg: andv satisfy
the triangle inequality. Also useful is this trivial observation: If the sum is less4htdren
each summand is less than

Note thath is symmetric and satisfies the triangle inequality. To complete the verifica-
tion thata is a metric, letc andx’ be distinct points of<. We will show that\(x, x") > 0.
Chooses € (0, 1) to be less thanu(x, x"), u(x, C\{x}), and u(x’, C\{x'}). Moreover,
¢ should be less than(p~1(x), o 1(x"), v(p~1(x), T\{¢~1(x)}), and v(p~1(x"), T\
{¢~1(x")}), whenever these are defined.

We now follow the proof of Theorem 2.2. S€t = C U {x, x}. Forc € C*, let W, be
the ball of . radiuse /3 arounde. Similarly, set7T# = T U {¢p1(x), o~ 1(x")} (if the latter
are defined), and léf; be the ball ofv radiuse/3 around. DefineV, andV,. via the back
and forth induction.

We choses/3 small enough that ifu(x;, x;+1) IS a term in an alternating sum, then
xip1 ¢ C. Similarly, if v(p=1(x;), ¢ (x;+1)) is a term in an alternating sum, then
¢ L(xiy1) ¢ T. Observe how the alternating sum parallels the back and forth induction. We
see that the. ball of radiuse /3 aroundx is a subset o¥/,.. Henceir(x, x’) > ¢/3>0. O
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When we used the metric hedgehog as the spggcere additionally assumed that
d(X) > ¢. When the new spadgX, o) is at least Tychonoff, some assumption of bigness
is necessary because a connected Tychonoff space has cardinality at (Eastanother
necessary condition, see [3].) However, to obtain a coarser topology which is Urysohn (or
even less, Hausdorff), this necessary condition disappears. We removed the assumption
d(X) > ¢ by using the Roy fan instead of the metric hedgehog.

3. When theextent isnot attained

We begin with an example showing that “extent is attained” cannot be omitted from the
hypotheses of the theorems of the previous section.

Example 3.1. A hereditarily paracompact spaceé with d(X) = e(X) with no coarser
connected Hausdorff topology.

Let ¥« be a strong limit cardinal of cofinalityw. The example(X, ), is the free
sum of a metrizable spac& and compact spac&. Let S = {§} U {s4: o < k}. Let
K = {IQ} U{ky: @ <«}. In (X, 1), all pointss, andk, are isolated. A neighborhood of
§ contains{s,: B < a < «} for somep < «. A neighborhood of contains all but a finite
subset offk,: a < «}.

It is easy to verify that the spad&, p) has many nice properties. For example, it is
regular, hereditarily paracompact, first countable except ltcally compact except 4t
andd(X) = e(X) = k. However the extent is not attained, and we now show that there is
no coarser connected Hausdorff topology.

Let o be a Hausdorff topology oX coarser tharr. We will show that(X, o) has
an isolated point, hence is not connected. First, note khais a subspace diX, o) is
homeomorphic tok as a subspace @i, ). (We can observe that is compact and
then quote a general theorem, e.g., [10, 7.5b] or [16, 17M]. However, it is straightforward
to verify this special case.) In particuldky,} U S € o for everya < «. Becauser is
Hausdorff, there ar& andU’ disjoint elements of satisfyingk c U ands € U’. Since
seU eo C1,weobservethdl/ N S| <«.

For eachx <k, setN, ={VNUNS: k, € V € o). Note that{k,} U N € o for every
N € N, and that the intersection of two members/\df is again in\,. Becausex is a
strong limit cardinal, there are < o’ < « with AV, = N,/ (Sets = |U N S| and observe
that 2 <«.)

Let W, W’ be disjoint elements ob satisfyingk, € W and k,» € W’. Note that
W NUNS eNy =Ny Hence(W NnU NS N(WNUNS) =0 e N. We conclude that
{ky} € o, as desired.

Let (X, ) be a metrizable space where the exiemtot attained. Because of the above
example, if we hope to find a coarser connected Hausdorff topology,ame must use
special properties aX. We now list some of these properties.

Theorem 3.2. Let (X, 7) be a space with metrig in whiche(X) =« is not attained. Let
K be set of points of X such that every neighborhood.othas extenk. Then
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(1) « is a singular cardinal of cofinality.

(2) K is a compact, nowhere dense subseX of

(3) If U is an open subset of such thatcl, U N K =@, thene(Y) < «.

(4) K is nonempty.

(5) For every open set/ meetingK and everyd < « there is an open subsét’ of U
such thate(U’) > 0 is attained anctl, U' N K = . If X is zero-dimensional, we can
require U’ to be clopen.

Proof. (1) is true becaus& has ao-discrete base. Letx,: n € w) be an increasing
sequence of cardinals cofinalsn

Towards (2), assume th&t is not compact. Then there {s,: n € w} C K which is
closed discrete iX. Hence there is an open discrete fanjily,: n € w} with x,, € U,. For
eachn, chooseE,,, a closed discrete subset@f with |E,| = «,. Then| J{E,: n € w} is
an closed discrete family of cardinalitycontradicting the hypothesis that the extent is not
attained. It follows thak is nowhere dense—if were in the interior oK, thenK would
be a neighborhood of with ¢(K) < w < «, andx ¢ K (by the definition ofK).

Towards (3), we assume thatlU) = « and again findE, a closed discrete subset of
cardinalityx . We argue by cases. First assume that, for eatiere is a point,, € U such
that every neighborhood af, has extent at least,. Then{x,: n € w} is closed discrete,
because a limit point would be in.d/ N K = ¢J. Again there is an open discrete family
{U,: n € w} with x,, € U,. For eachn, chooseE,,, a closed discrete subset &f, with
|E,| = kn. Then| J{E,: n € w} is an closed discrete family of cardinality

The remaining case is that theresis € v and an open coveyV of U such that
e(W) <k, for everyW € . X is paracompact, so we may assume tHats locally
finite. Becausez(U) = «, for eachn there is a closed discrete subget of U with
|En| = kn. SetS, = J{W e W: W N E,, # @}. Note thate(S,,) < kng - k. Set

E= U{En\ U Sm}
new m<n

and observe thaf is a closed discrete subset with| = «.

Towards (4), assume th&t is empty and apply (2) witly = X to get a contradiction.

Towards (5), letU andé be given. Let us call an open sBte-homogeneous every
nonempty open subs&t of V satisfiese(V’) = e(V). Observe that every nonempty open
set has a nonempty open e-homogeneous subset. Moreover, the extent is attained in an
e-homogeneous open subset (of a metrizable space).

Let V be a maximal pairwise disjoint family of se¥ssatisfying

e V is an open e-homogeneous subseat/of
e Cl, VNK =0;
e VisclopeninX (if X is zero-dimensional).

If someV €V hase(V) > 0, let V = U’. Otherwisef > supe(V): V € V} and|V| =«.
Choosee > 0 so thatV’' = {V € V: u(K,V) > ¢} has cardinality greater that. )}’
is disjoint, but not necessarily discrete. Letbe the set of limit points o). Choose
¢ €(0,¢e)sothaty’ ={V eV’ (e € V) u(e, L) > ¢’} has cardinality greater thanh For
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eachV € V", choose a nonempty open (cloperXifis zero-dimensional) subset satisfying
w(V,L)y>¢. LetU' = J{V: VeV’}. O

We now show thaK has a countable “base K".

Lemma 3.3. Let K be a Lindel6f subset of a zero-dimensional metric sgaces). There
is a countable familys of clopen subsets @i, 1) such that, for any € K and any open
U c X withx € U there isB € B for whichx e BC U.

Proof. Foreach: € w, letG, be the family of clopen sets of diameter less than/4; that
is, they satisfy sufpe(x, x): x,x’ € G} < 1/n. Because is Lindel6f, there is a countable
subfamilyG), which coversk. LetB=J,., G.- O

We are ready to prove

Theorem 3.4. If (X, ) is zero-dimensional space with metyicande(X) = « > ¢ is not
attained, then there is, a topology onX coarser thant, such that(X, o) is connected
and metrizable.

Proof. There are four parts to the proof. First, we use the countalitem Lemma 3.3 to
define a countable tre,. Second, we partitioiX\ K into a clopen family{W,: p € P}
indexed byP. Third, we use the method of Theorem 2.5 on edich whereY is a
connected tree of hedgehogs. The last step is to verifyitisa metric.

Choose{B;: i € w} C T as in the conclusion of Lemma 3.3. Fare w andp € "2,
define

BY =("\{Bi: p)=1}n[\{X\Bi: p(i)=0}.
Let P, ={p e™2: BPNK # @} andP = | J{P: m € w}. Say thatp andg areneighbors
if p € P41 andg = p|m.

Claim. We can redefingB;: i € w} so thatB? N K = impliesB? = .

__ Let{B;: i € w} be given. We will define,,, by induction onn. We defineBy by cases:
Bo=XIif K CABO; Bo=9if BN K =@; andBg = Bgotherwise. IfB; has been defined
fori < m, let B? be defined analogously ®”, usingB; in place ofB;. Then we define

By =|J{B": pe P,andB? N K C By},
B, :U{ﬁ”: p€P,andB” NK N B, =0},
B, = B, UB,\By,.

Observe thai,, is clopen and thaB,, N K = B,, N K. Moreover,B? N K = ¢ implies
B? =, as required.

By induction orv, using Theorem 3.2.5 repeatedly, we will defifig, C,, andk, for
p € P, to satisfy
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W, is a clopen subset a7,

{W,. p € P}is pairwise disjoint;
C, is a closed discrete subsetdf,;
|Cp| = e(Wp) = d(Wp) =Kp =
U{W,: pe P} =X\K.

Let {0,,: m € w} be a nested, increasing sequence of clopen subsefssatisfying
0o =9, Ue, On = X\K, and u(K, O,) < 27™. A first approximation tow, is
W[’, = B’ N (Op+1\Om). However,W[’7 may be empty, too small, or not attain its extent.

As the induction goes on, we defin&, = (J{W,: domp < m}, and verify the
induction hypothesi®,, ¢ W,,,. Whenm = 0, we haveOg = 0 = Wp.

For p € Py, setd, = maxXc, d(B” N (Op+1\Wwn))}. Apply Theorem 3.2.5 witllU =
B? andf =0, to getaclopen séf’. SetW, = U’ U(B” N (Om+1\Wn)). Setk, = e(W),).
Let C, be a closed discrete subset@f with |C,| = ¢(W,). (The existence o€, is
guaranteed by Theorem 3.2.5).

Claim. We can redefine the metric on X so that it satisfies, for eachr € v and each
p e PMI

e 1(c,c’) =27 for distincte, ¢’ € Cp; and
o w(Cp, X\W,) =27,

We use the technique of Lemma 2.4. For each P, choose a discrete open family
{Uc: ¢ € Cp} separating”,, whose union is contained iW,. For eaclr € C,,, choose a
continuous, real-valued functiofy satisfying f.(c) = 1 andf.[X\U.] = {0}. For p € Py,
define f7(x) = 27" - 3 .cc, fe(x). Next, definef (x) =3 ,.p f7(x). Finally, define
W, x") = pu(x, x) + 1 f(x) = (D]

Let J, be the metric hedgehog of spininesswith closed discrete sdt,, |T,| = k.

If g is a neighbor ofp, choose a point,, € T,,, and setN, = {z,4: ¢ is a neighbor ofp}.
The metric spaceY, p) with metricv will be the quotient of the free suéb{J,: p € P}
created by identifying,,, with z,, for all neighborsp andg. (Note thatY is connected.)
To avoid denoting equivalence classes, we will abuse notation and conéitierbe
U{Jp: p € P}. (In casep € P,41 andq = p|m, there is an ambiguous poift,,, 75}
We will consider this point to be iV, and not inJ,). Notice that ify € J,,, y" € J,», and
v(y,y’) < 1, then eithep = p’ or p andp’ are neighbors.

For eachp € P, defineTl’, = T,\N,p. As in the proof of Theorem 2.5, choose a one-
to-one functionp), : J, — W), such thalp,[J,\T,1 = C, andg,[J,] is dense inW,. Set
¢ =U{ep: pe P};thenp:Y — X is one-to-one ang[Y] is dense inX.

Definerg andx as in the proof of Theorem 2.5. Theéris a pseudometric oK, and we
must show that (x, x") > 0 for distinctx, x’ € X. We proceed by cases.

Casel. x ¢ K andx is not of the forme(z,,). Letx € W, p € P,. In casex’ € W),
too, we argue as in Theorem 2.5xf¢ W, chooses € (0,27™) so thatu(x, Cp\{x} U
(X\W,)) > e. Moreover, ifx € p[Y], thenv(p~1(x), T)\{p 1 (x)} U (Y\J,)) > &. Now
the A ball of radiuse centered at is contained irW,,.
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Case2. x has the formp(z,,). Proceed as in case 1, withi, U W, replacingW,, J, U J,
replacingJ,, 2-(m+D replacing 2™, etc. We conclude that theball of radiuse centered
atx is contained i, U W,.

Case3. x € K andx’ € K. Findi so thatx € B; andx’ ¢ B;. Chooses € (0,2~ (*D) so
thate < w(Bi, X\Bj).

Towards a contradiction, assume thak, x’) = 0. Fix a finite sequence, x1, ..., x
with Ao(x, x1) + Ao(x1, x2) + - - + Ao(x,—1, x') < &.

Becausex = xo € B; andx’ = x, € X\B;, there isj < n such thatx; € B; and
xj+1 € (X\B;).

/

Claim. At least one of;, x; 41 is in W;.

Towards a contradiction, assume thgt¢ W; andx;.1 ¢ W;. First, observe that
w(xj,xj+1) = n(Bi, X\B;) > e. Second, observe thatgf1(x;) € J, andp~1(x;41) €
Jy, then p(i) =1 andgq(i) = 0. Hencep andg are neither equal nor neighbors, and
v(p~1(xj), p71(x;+1)) = 1. Combining these inequalities, we see thetx;, xj+1) > ¢.
However, this contradicts

ro(xj, xj41) < Ao(x, x1) + Ao(x1, x2) + -+ - + Ao(xp—1,x) <e.

The claim establishes that therexise W; N {x;, x;1}. In more detail, there are < i and

p € Py, with x* € W,,. If u(x*, ¢[N,]) > ¢, we argue as in case 1 and conclude thatithe
ball of radiuse centered at; is contained inW,,. Otherwiseu(x*, ¢(t,4)) < ¢ for some
neighborg of p. We argue as in case 2, and conclude thaitball of radiuse centered at
x* is contained inW, U W, . In either casey is not in thei ball of radiuse centered at*.
However(x, x*) < A(x, x") < e. Contradiction. O

The following question is essentially the same as Question 3.1 of [4].

Question 3.5. Does every metrizable space of weight at leasave a coarser connected
metrizable topology?

In this context, notice that Kénig's Theorem (see [8, Corollary 10.41]) impliescthat
is not a singular cardinal of countable cofinality. Xfis a metrizable space of weight
thend(X) = ¢ = e(X), and the extent is attained. Hence the hypothesis of Theorem 2.5 is
satisfied, anX has a coarser connected metrizable topology.

4. o-locally finite bases

We show that every non-H-closed Hausdorff space withtlacally finite base has a
weaker connected Hausdorff topology using a modification and extension of the technique
provided in [9]. First, some additional background material is needed.

In this section, if we introduce a spa&ewithout specifying a topology, then implicitly
that topology is called (X). We say that a Hausdorff spa&eis H-closedif wheneverX is
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a subspace of a Hausdorff spdtethenX is closed inY. For a Hausdorff spack, this is
equivalent to every open ultrafilter dh converges and to the property that for every open
coverC of X, there is a finite subsé@® C C such thatX = clx (| D). All of these results
and more can be found in [10].

Let X andY be two spaces. A functioyf : Y — X is 6-continuousf for eachp € Y
and open selV € t(X) such thatf (p) € U, there is an open sét € 7 (Y) such thatp € V
and f[cly V] c clx U. A function f:Y — X is perfectif the image of every closed set
is closed and the preimage of every point is compact. Note that perfect does not imply
continuous.

Theorem 4.1 [9]. Let X andY be spaces ang : Y — X be a@-continuous surjection. If
Y is connected, then so 8.

Let X andY be sets andf: Y — X be a function. ForA C Y, define f*[A] = {x
X: f<(x) C A}. Note that for subsetd, B c Y, f#[Y\A] = X\ f[A] and f/[AN B] =
f#A1n f#[B]. The topology onY generated by f*[U]: U € t(Y)} is called thed-
quotient topologynduced byf. The functionf is calledirreducibleif for each nonempty
openselU € t(Y), there is some € X such thatf ~(x) cU.

Theorem 4.2 [9]. Let f:Y — X be perfect, irreducible, and onto wheie and Y are
spaces. Letr be theg-quotient topology induced ok by f. Then(X, o) is a Hausdorff
spacep C 7(X),andf:Y — (X, o) is 6-continuous.

Let X be a Hausdorff space and l&X = {{/: U is an open ultrafilter onx}.
For U € 1(X), let O(U) = {U: U e U}. For U,V € 1(X), it is easy to verify (see
[10) thatO (@) =0, O(X) =X, 0UNV)=0U)NOV),0(UUV)=0U)U
oWV),X\0WU)=0X\clxU), andO(U) = O(intx clxy U). ®X with the topology
generated by{O(U): U € t(X)} is an extremally disconnected compact Hausdorff
space. The subspadeX = {/ € ©®X: U is fixed} is called theabsoluteof X. The
functionk: EX — X defined byk(l{) is the unique convergent point &f is called a
covering function. The subspadgX is dense in® X (in particular,EX is an extremally
disconnected Tychonoff space aédX = BE X), and the covering functiokh: EX — X
is irreducible g-continuous, perfect and onto and has the property tHatisfa nonempty
open subset of X, thenk®[T] is a nonempty open subset ¥f

The next technical result is pivotal in solving Question 3.9 of [7].

Theorem 4.3. Let X be a space,Y a connected spacef:EX — Y a continuous
surjection, antg : Y — X a function such thag o f = k. ThenX has a coarser connected
topology.

Proof. First, we show thafg is perfect, irreducible and onto. Clearly, is onto. For
xeX, flk=x)] = fIf g~ (x)] = g (x) is compact. IfA is closed inY, f<[A]
is closed andk[f < [A]] = g[A] is closed inX. If U is a nonempty open subset of
Y, f<[U] is a nonempty open subset BfX. For somex € X,k (x) C f<[U]. Thus,
g (x) = flk“(x)] Cc U. Let o be thef-quotient topology onX induced byg. By
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Theorem 4.2(X, o) is Hausdorff,oc C 7(X), andg:Y — (X, o) is #-continuous. By
Theorem 4.1(X, o) is connected. O

Corollary 4.4. Let X be a space. IEX has a coarser connected topology, then so does
A space is calledeebly compadf every locally finite family of open sets is finite.
Theorem 4.5[10, 1.11(b)].The following are equivalent for a spase

(1) X is feebly compact.

(2) Every locally finite family of pairwise disjoint open sets is finite.

(3) If {Uy: n € w} is a decreasing family of nonempty open set& pthen(\{clx U,: n €
w} #0.

(4) Every countable open cover &f has a finite subfamily whose union is dens&in

Theorem 4.6 [10, 1.11(c)].

(1) Every feebly compact space is pseudocompact.
(2) A Tychonoff space is feebly compact iff it is pseudocompact.

Theorem 4.7.

() If U is a locally finite family of open sets of, then{OU N EX: U € U} is a locally
finite family of open sets oA X,
(2) A spaceX is feebly compact ifE X is feebly compact.

Proof. To show (1), led € EX andk(V) = x. There is an open s&tin X such thatt € T
andT NU = ¢ except for a finite number of elemeritsof /. Now,V € OT N EX and
OT N OU = ¢ except for a finite number of elemeritsof /. To show (2), SUppOSE X
is feebly compact ani is a locally finite family of pairwise disjoint open sets én By
(1), {OoUNEX: U €U} is locally finite and hence finitby feebly compactness. Thug,
is finite. Conversely suppose thitis feebly compact. Lel/ be a locally finite family of
pairwise disjoint open sets afiX. Then{k*[U]: U € U4} is a family of pairwise disjoint
open sets oX. If x € X, then ask (x) is compact, there is an open getin EX such
thatk < (x) c T andT meets only a finite number of elementsléfNow, x € k#[T] and
k*[T1 meets only a finite number of elements{éf[U]: U € U}. Thus,{k*[U]: U € U}
is locally finite from which it follows that/ is finite. O

Definition 4.8. Let U be a locally finite family of clopen sets on a spacteForx, y € X,
let py(x, ¥) =Y {lfux) — fu(y)|: U € U} where fy: X — {0, 1} is the characteristic
function onU.

Theorem 4.9. LetU/ be a locally finite family of clopen sets on a spateThenpy, is a
pseudometric oiX taking only integer values. Fore X and0 < r < 1,

B(x,r)=B(x, )= |(UelU: xeUn[ {(X\U: x ¢ U},
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which is a clopen set. HenagX, p) is a zero-dimensional pseudometric spdbat not
necessarily Hausdorff

Theorem 4.10. If X is not H-closed and has@-locally finite base3 = {B8,: n € w}, then
X and E X are not feebly compact and there is a continuous surjectioB X — .

Proof. If X is feebly compact, theB, is finite for alln € w. So,X is second countable.
However, second countable plus feebly compact implies H-closedX3s,not feebly
compact. By Theorem 4.E X is not feebly compact. A& X is zero-dimensional, there is
an infinite locally finite family of pairwise disjoint clopen s€i§,,: n € w}. The function
u:EX — o defined byu[U,] =n andu[EX\ | J{U,: n € w}] =0 is continuous and
ontow. O

Let (Y, p) be a pseudometric space. Fpre Y, let y = {x € Y: p(x,y) =0} and
consider the partitiory = {y: y € Y} of Y. Definep onY by p(x,y) = p(x,y) and
h:Y — Y by h(x) = x. By Exercise 2C in [16](Y, p) is a metric space, and fot C Y,

A is closed (open) i iff h[A] is closed (open)irY.

Let X be a non-H-closed space withealocally finite baseB = {B,: n € w}. By
Theorem 4.7U, = {OU N EX: U € BB,} is a locally finite family of open sets oA X
for eachn € w. Let E, denoteEX with oy, the pseudometric defined in Theorem 4.8.
Thus, E, is a zero-dimensional pseudometric space but may not be Hausdorff. Define
FiEX > wx[[{Es: n€w}by f =u x A whereu is as in Theorem 4.10 and where
A is the infinite diagonal mapA(x) = (x,x,...). Now, o x [[{E,: n € w} is a zero-
dimensional pseudoetric space. Let

h:a)xH{En: nea)}—>a)xH{En: n € w}

be defined as above.

Theorem 4.11. Let X be a non-H-closed space withsalocally finite base3 = {5, n €
w}. Using the notation defined in the preceding paragraph, the function

hof:EX—>a)xH{En:n€a)}

is continuous andh o f)[E X] is a noncompact metric space.

Proof. h o f is continuous because bofhandh are continuous. As is unbounded and
o X [[{Er: n € o} is a metric spacd} o f)[E X] is a noncompact metric spacen

The following theorem was also proved by Alas and Wilson in [1, Theorem 3.4].
The case wherX has a countable network was proved by Tkachuk and Wilson in [14,
Theorem 3.4], and by Porter in [9] (the main theorem).

Theorem 4.12. A non-H-closed space with@-locally finite base3 = {B8,: n € w} has a
coarser connected topology.
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Proof. This follows from Theorems 4.3, 4.11, and 1.1 if we can find a funcgioh o
fIEX]— X suchthatgoho f =k. If x,y € EX andk(x) # k(y), it suffices to show
thath o f(x) # ho f(y). If k(x) # k(y), there is some: € w and B € B, such that
k(x) € Bandk(y) € X\clx B. Thusx € OBNEX andy ¢ OBNEX. Thus,p,(x,y) >0
as fopnex(x) =1 and fopnex(y) = 0. Hence,p(f(x), f(y)) > 0. This shows that
h(f(x)) #h(f(y)). O

Question 4.13. Improve Theorem 4.12 to: A non-H-closed space with-Bocally finite
point separating familyg = {5,,: n € w} has a coarser connected topology.

Question 4.14. If X is non-H-closed space with a-locally finite base, does there
exist a non-compact metric spad¢ and a perfect, irreduciblé-continuous surjection
fiM— X?

5. Coarser connected Urysohn topologieson ordinals

We begin with some general information about ordinals, ordinal notation, and ordinal
arithmetic. In this section, we must be especially careful about notation. Here is a
potentially confusing pairk™ is cardinal exponentiations™ = |[«]¥|; while «© is
ordinal exponentiations® = sup{x": n € w}. Here is another potentially confusing pair:

B - w is ordinal multiplication, whileg x w is the product of topological spaces.Afis
indecomposible,thef- 0 = (B+1) x w Z B X w.

Definition 5.1. An ordinal g is calledindecomposiblé § + 8 = g forall § < 8. An ordinal
B is indecomposible iff there is such tha{3 = »® (ordinal exponentiation!) [8, p. 43(5)].
For an ordinak > 0, setB8, = min{8 > 0: 35, a = § + B}; setx (a) = |By|. Observe that
B« is indecomposible.

We also recall the Cantor normal form theorem (see [8, p. 43(6)]): Every nonzero ordinal
o may be represented
a:a)sj-.ml_lr_..._lr_wsn s my
where I<n <w,a > &1 > ---> &, and 1< m; <w fori =1,...,n. Now we present a
topological normal form.

Lemma 5.2. Every nonzero ordinal is homeomorphic to an ordinal of the forad - m or
of the formw? - m + ", where& > n andm € .

Proof. Suppose that the Cantor normal form @fis ! - m1 + --- + & - m,. Set
=02 -my+---+ 0 - (m, —1)+ 1. Then

a= (0 mi+1) @D =L@ (0 m1+ 1) ® o™
E(a)&-ml—}—l)@a)s”Ea)&-ml—}—ws".

If o is a successor ordinal (i.e.,&f = 0), the details are slightly different.0
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The basic concepts established, we can now introduce the results of this section. In [6]
we asked the question, which ordinal spdtage a coarser connectHausdorff topology?

The answer is easy to state and depemdg on cardinal arithmetic. An ordinal has a
coarser connected Hausdorff topologydiffs a limit ordinal ande| < 2/A«!.

Here we ask, which ordinals have coarser connected Urysohn topologies? Note that
it suffices to consider only ordinals in the form of Lemma 5.2. We have some answers
analogous to the Hausdorff case. If an ordimalhas a coarser connected Urysohn
topology, therw is a limit ordinal of countable dality (Corollary 5.4), anda| < |B«|~0
(Theorem 5.8). For example! + w7 - w has no coarser connected Urysohn topology. There
are some easy to state sufficient conditions, too. A “monomial” ordirdithe formaw” - m
has a coarser connected Urysohn topologwiff m has cofinalityw; equivalently ify is
a successor or has cofinality(Corollary 5.14). Also, for an ordinat of cofinality w to
have a coarser connected Urysohn topology, it sufficesatHzve cardinality at most
(Theorem 5.18). For example; ¢ + w1 - w has a coarser connected Urysohn topology.

To express our results whef, | = |«|, we must use ordinal arithmetic. For example,
let « be a cardinal and an ordinal,A < «. The ordinale =« - A + « - @ has a coarser
connected Urysohn topology if < ¢t (Theorem 5.21), or ik is singular with cofinality
o (Theorem 5.17). However, thig has no coarser connected Urysohn topology when
A=k = (2% (Theorem5.9). The ordinal’ -k +«®-w has a coarser connected Urysohn
topology for all cardinalg (Theorem 5.17).

First, the necessity results.

Recall that a set is callaglatively compaciff it is a subset of a compact set.

Lemmab5.3. Lett be a0-dimensional topology oK ando a coarser connected Hausdorff
topology. Then no nonemptye o is relatively compact. Hence if an ordinal has a
coarser connected Urysohn topologythen every nonempty setdnis unbounded ir.

Proof. Letu € o. If u is relatively compact then, since compact topologies are minimal
Hausdorff,u is open in some compact O-dimensional subsp&ceSo there is some
7-clopen seC C u whichiso-open (because € o) ando -closed (becausk is compact),

a contradiction. O

R. Wilson showed thab; cannot be condensed onto a dense-in-itself (and hence onto a
connected) Urysohn space [17, Example 2.12].

Corollary 5.4. An ordinal with a coarser connected Urysohn topology has countable
cofinality.

Proof. Let u be a nonempty set ia a coarser connected Urysohn topology on some
ordinal«. Thenu is unbounded, so gl is closed unbounded. Hence ifcet> w, then
cly uNcly v # @ forany nonempty,veo. O

Every continuous function from an ordinal to the reals has countable range. Hence
a continuous function from a coarser topolaglgo has countable range. Therefore, no
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ordinal has a coarser connected Tychonoffdlogy. We use the preceding corollary to
weaken the hypothesis Tychonoff to regular.

Proposition 5.5. No ordinal has a coarser connected regular Hausdorff topology.

Proof. This follows from Corollary 5.4 and [13, 2.11] (citing dimension theory). Here is
a direct proof: by Corollary 5.4 an ordinal with a coarser connected regular Hausdorff
topology must have cofinality, and hence is the union of countably many compact
subsets. Thus it is Lindel6f and hence Tychonoff

The next string of necessity results starts with a combinatorial condition and then gives
cardinality results.

Definition 5.6.

(a) A sequence of sefg”,: n < v} is right-independeniff for all finite H, G C v with
supH <infG (M, Cy\U,en Cy is infinite.

(b) If{Cy: n <v}isright-independentwe defitte= {(), . Cy\(cUU,cyCy): SUPH <
infG < v andH, G, c are finitg.

(¢) ForC =, Cy\(cUU,cp Cy) € C we define niC) = supH, M(C) =infG.

Theorem 5.7. Leta = § + 8. If « has a coarser connected Urysohn topolagythen g
has a right-independent family of subsgts;: n < §8}.

Proof. It suffices to find such a family on the intervd, § + 8). Leta =3 + 8. Leto
be a coarser connected Urysohn topologwo®ince any two disjoint compact subsets of
a Urysohn space can be separated bynogets with disjoint closures, for eaghe [0, §)
there areu,, v, € o separatind0, n] from (», 6] with cl, u, N cl, v, = @. DefineC; =
(8,84 B) Nu,. Note thatC, # ¥ by Lemma 5.3.

Suppose that su = u < infG =y < §, where H, G are finite. Then(u, 8] N
Clo Uyepm n =9 and [0, y1 C (e Uy, SO (14, ¥1 C (e Un\ Clo U, ey uy Which is
open, hence has infinite intersection Withs + 8). O

Letting § vary, we see that for a8 < «, there is a right-independent family ¢y,
indexed bys.

Theorem 5.8. Let § and 8 be nonzero ordinals satisfying| > |8|%°. If «’ is an ordinal
with a coarser connected Urysohn topology,then noU € o has order types + 8. In
particular,« = § + 8 has no coarser connected Urysohn topology.

Proof. Suppose, by way of contradictia#, has a coarser connected Urysohn topolegy,
and thatU € o has order typé + 8. Let f : 8 + 8 — U be the order preserving bijection.
(N.b. f is not necessarily continuous). For eachk &, [f(0), f(n)] and[f(n + 1), f(3)]
are disjoint compact sets in a lghn space. So there are open sé;tSU;] with disjoint
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closures satisfyingf (0), f ()] C uj, and[f(n + 1), f(8)] C vy,. Setu, = U Nuj and
v, =UnN v;.

Fix n < 8. We define an increasing sequenge= {p,: n € w}, which alternates
between, andu,,. Start withp] = f(8) € vy, then letp] be the least element of, greater
thanpy, let p; be the least element of, greater than;, etc. Formally, seb = f(8); set
Par1 = Min(uy\(pg, +1)); and setpy, . , = min(v, \(py,_ 4 +1)). This definition is valid
becauser, andv, are unbounded in’ (Lemma 5.3). Moreovep” is unbounded im’; if
suppn: n € w} =& < d’, thené € clu, Nclv, = 7.

Because|s| > |B|%0, there aren < i’ < 8 with p"7 = p"/. Observe thatu,, N
(Unew[pgk’ '0127k+1)) =¥ and thatv’l n (Urzew[pgk+l’pgk+2)) = 0. Henceun/ n Un n
[f(6),a)=0.

On the other handf (n’) € u,y N v,, a nonempty element af, so by Lemma 5.3,
uy Nuy N[f(8),a') #@. Contradiction. O

Now we use the ideas of the previous two theorems to showotltain fail to have a
coarser, connected Urysohn topology even wigh= || (and cfe = w, of course).

Theorem 5.9. Suppose is a cardinal andy andsé are ordinals which satisfy

Q) cfk >w
(2) if A <k, then|a|N0 <«
(3) 18] > 227",

If o’ is an ordinal with a coarser connected Urysohn topolagythen nolU € o has order
typek -8 4+« - y. In particular,a = k - § + « - y fails to have a coarser connected Urysohn

topology.

Proof. Suppose, by way of contradictia®, has a coarser connected Urysohn topolegy,
andthaty € o has ordertype -6+« -y.Let f:x -8+« -y — U be the order preserving
bijection. (N.b.f is not necessarily continuous).

Let Y be the final segmeitf (« - §), a’). Sinceo is connectedY is dense in the space
(o, 0) (Lemma 5.3). For each < §, let ug =sup f(1): « <« - (§ + 1)}. For eachB < y,
letzg =supf(): t<k-(8+p)}, andselZ ={¢g: B <y}

Claim. We cannot separate any pojm from the closed sef. In symbols, ifug € W € o,
thencl, WN Z £ @.

Suppose that: and W refute the claim. Choose < « so thatf[(x - & + v,k - (§ +
1))] ¢ W. We may assume tha¥ is disjoint from the compact s¢0, f(x - &€ + v)] U
[ne + 1, f(k - 6)]. Assuming thajs ¢ U, the order type oV N W\Y is the order type of
(k - & 4+ v,k - (£ + 1)) which isk. Assuming thajts € U, the order type oUU N W\Y is
the order type ofx - £ + v,k - (¢ + 1)] which isk + 1.
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Now we show that the order type & N W N Y, call it A, is less thanc. Because
cl, WNZ =9, there ardf;: i € w}, a sequence cofinal ip, and{A;: i € w}, a sequence
of ordinals less than, satisfying

way U@, £k @+ +2)-

icw

Hencer <) ;_, 4 <«, by (1); and therl™ < «, by (2). So the open set] N W, with
order typex + A, contradicts Theorem 5.8 and establishes the claim.

For eacht € 4, definelds = {cl, U N Z: ug € U € o}. By the claimif; is a filterbase.
Becausgs| > sz, by (3), there arg <&’ in M with U =U;. Let V, V' € o separate
we, . Then(cl, V.N Z) N (cl, V' N Z) is not empty. We have shown that is not
Urysohn. Contradiction. O

Theorem 5.10. Let « be a cardinal of uncouable cofinality such tha2*! < « for all

A <. Then for alln € w and for all A < «, if &’ is an ordinal with a coarser connected
Urysohn topologyo, there is no open sel/ € o having order typec"t! + «” - A. In
particular,« = k"1 4 k" - A fails to have a coarser connected Urysohn topology.

Proof. By induction orm. Theorem 5.8 is (stronger than) the base step,0. The general
induction step follows closely the proof of Theorem 5.9, which is the induction step 0
tol. O

This ends the necessity results. Now the sufficiency results.

Lemma 5.11. Let 8 be an indecomposible omtl of countable cofinality. Theg =
@, .., 8 whenevers;: i € w} is a nondecreasing sequence of successor ordinals cofinal
in 8. Moreover,8 = 8 x w.

Proof. Let{s;: i € w} be a nondecreasing sequence of successor ordinals coffhabat
Zo=6p, and for O< n < w, setZ, = Zign 5\ ., 8i.ThenZ, =8, andp=P,_, Zi.

Let{P;: i € w} partitionw into infinite pieces. SeX; = P Z,. ThenX; =8, and
@,’<in = @i«u Zi=p. O

nep;

Definition 5.12. Let X be a space and a space with a proper extensidh=Y U {p}. For
A a subspace of the produktx Y, let A, = {y € Y: (x,y) € A} and letX’ be the set of
x € X such thatA, is connected ang € clz A,. We say thatA is vertically connectedf
AN(X' xY)isdenseiM. The simplest instance is wheYds connected and = X x Y.
Another instance is when for alle X, A, is a dense connected subsetof

Theorem 5.13. Let X be a Urysohn space arida connected space with a proper Urysohn
extensionZ = Y U {p}. If A is a vertically connected subspace Xfx Y, thenA has a
coarser connected Urysohn topology.
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Proof. Let t be the product topology oK x Y. Chooseg, r) € A. We define a coarser
topology onX x Y. Leto be the set of” € = such thatif(q, r) € T, then there i/, open
in Z and containing, suchthatX x V C T.

We show that X x Y, o) is Urysohn by cases. First, we sepanater) and(x, y) when
r#y.In Z, there are open seis,, V;, andV, with disjoint closures containing, r, and
y, respectively. TheiX x (V, UV,) andX x V, are elements of with disjoint closures
which separatég, r) and(x, y).

Second, we separatg, r) and(x, y) wheng # x. In X, there are open set, andU,
with disjoint closures containing andx, respectively. InZ, there are open set, and
V, with disjoint closures containing andy, respectively. ThegU, x Y)U (X x V,) and
(Ux x Y)N (X x V,) are elements of with disjoint closures which separate, ») and
(x, ).

The other cases are similar. Now the subspace topology, is a coarser Urysohn
topology onA.

For eachx € X', A, is connected andy, r) € Cly 14 Ax. ThenA N (X’ x Y) being the
union of connected subspaces witlp@int in common, is connected. Sbis connected
because it has a dense connected subset.

Corollary 5.14. If a Urysohn space& is homeomorphic t&X x w, thenX has a coarser
connected Urysohn topology. & = 8 - m, where 8 is an indecomposible ordinal of
countable cofinality ane: € w, thena has a coarser connected Urysohn topology.

Proof. The Roy space is a coarser connected Urysohn topology.9mand it has a proper
Urysohn extension. Hencé maps on-to-one continuously onkox R, which is vertically
connected.

Similarly, the spacég - m maps on-to-one continuously onto to the vertically connected
subspace

A= (B xR)U({B} x9)
of the produc{8 + 1) x R, whereS is anm — 1 element subspace & O

Corollary5.15.1f X is a Urysohn space an,,: n € o} is a family of subspases &fsuch
that X, C X,41 forall n € 0, thend, ., X, has a coarser connected Urysohn topology.
Proof. Let{r,: n € } enumerater,;, theo-product of countably many copies of the Roy
space, see Definition 1.2. Then

A= U(Xn X {rn})
new
is a vertically connected subset &f x R,, and hence, by Lemma 5.13, has a coarser
connected Urysohn topology. ThéB,,., X has a coarser connected Urysohn topology
because it maps one-to-one continuously ofito O

We remark that Theorem 5.13 is validittv “Hausdorff” or “regular” replacing
“Urysohn”. Corollary 5.15 is valid with “Hausdorff” replacing “Urysohn”.
The following lemma is a variation on the Rado—Milner paradox.
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Lemma 5.16. Let § be an ordinal of cardinalityx The space has the formJ, ., Xx,
where{X,: n € w} is an increasing sequence of regular closed sets and &adas order
type less thar®. If « is singular of cofinalityw, we can require that eacl,, have order
type less tham.

Proof. The general case is proved by inductionoof8, p. 45(20)]. The singular case can
be done directly. (Lek,, be the closure of a small set of isolated pointsy)

Theorem 5.17. Let o be an ordinalof cofinalityw. If x = |a| and«® < B4, thena has
a coarser connected Urysohn topologyk I |«| is singular of cofinalityw andx < B,
thena has a coarser connected Urysohn topology.

Proof. If « is indecomposible, then we are done by Corollary 5.14. Sa lets + g,
wheres is a successor ordinal greater thaie:= 8,. Note thaiv =5 @ 8. Lets =, Xn,
where{X,: n € w} is as in Lemma 5.16. L&}, be the order type ok,,. We may assume
that{&,: n € w} is cofinal inB. (Let{B,: n € w} be cofinal ing, and make3, a subset of
X,.) Observe thako = [0, &), X1 = [£0, é0 + £1), etc. Hencgd =P, ., Xn-

Let R be the Roy space and enumer&tgoo} as{r,: n € w}. Then

A= (8 x{o0}) U J(Xn x {ra})
new
is a vertically connected subset 6fx R, and hence, by Lemma 5.13, has a coarser
connected Urysohn topology. Becausds a one-to-one continuous image @f o has
a coarser connected Urysohn topology, toa

We start another series of sufficiency theorems.
Theorem 5.18. If cfa = w and|«| < ¢ thena has a coarser connected Urysohn topology.

Proof. Let D be anw-sequence cofinal ik. Then D is closed discrete. Let be a
connected Urysohn topology ad with a countable closed discrete setcovered by an
open discrete familyfv,: a € A} where each: € v,, €.g9., the countable fan on the Roy
space.

Let A be an independent family oA, enumerated agA,: y < «}, and letC =
{MNyec Ay\(c UUyen Ap: G, H, c finite, supH < infG}. For C = (1), Ay\(c U
UneH Ay) € C we write mC) = supH, M(C) = inf G. We define the topology on «
as follows:

1) T Co;
(2) f yeueo andy ¢ D thendn <y 3C € C with (n, y] Cu, m(C) < n, M(C) >y
andJ,ccta Cu.

o is connected because it has a dense connected subspace. We shoig thatsohn.
Distinct points inD are easily seen to be separated by open sets whose closures are
disjoint.
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Supposé <y, &,y ¢ D. Then[0,£]1U{v,: a € Ag} and(&, y]1U{v,: a € A, \Ag} are
open sets separatiggy whose closures are disjoint.

SupposeE e Ac Aandy ¢ D. Let§ so& ¢ (6,y] and letC = A,\{£}. Then
ve, (8, y1U {v,: a € C} are open sets separatifigy whose closures are disjoint.

Supposet € D\A andy ¢ D. Let v € T with cl; v N v, = @ for all but at most
onea € A (we will call this point, if it exists,a*). Let§ < y so&,a* ¢ (8, y]. Then
(8, v1U{vs: a #a*}, v are open sets separatibgy whose closures are disjoint

Here is a proof of Theorem 5.18 in the style of [6]. L&t= {¢,: n € w} be a set of
isolated points cofinal ie. Thena = («\Z) & Z. Choose a one-to-one functighfrom
a to the product space‘Zo thaty [(«¢\Z) is an embedding and[Z] is dense in 2
Observe thaty is continuous and that[«] is separable, Tychonoff, and has a countable
closed discrete subset. Theorem 2.3 gives a coarser connected Urysohn tapaagy
Yla]. Then{y~1[U]: U € o} is the desired connected Urysohn topologyon

Definition 5.19. Let X andY be spaces and let be an open subset &f. We define
W =W(X,Y,S) to be the space with point s€§ x Y) U (X\S) and two types of
basic open sets: rectanglés x V where U is open inS and V is open inY; and
Ut=((SNU) xY)U(U\S), whereU is openinX.

Here are a few easy observations abbyix, Y, S).

Lemma 5.20. If X and Y have the separation property Hausdorff, Urysohn, regular, or
Tychonoff, then so dog& (X, Y, S). If X is connected, so i (X, Y, S). If X’ has the
same point set aX¥ with a coarser topology, thei (X', ¥, §) has the same point set as
W(X, Y, S) with a coarser topology.

Theorem 5.21. If « = 8 - y and y has a coarser connected Urysohn topology, tien
does, too. In particular, itfy = w andy < ¢, thena has a coarser connected Urysohn
topology.

Proof. Let S be the set of successor ordinalsyafthat isS = {¢ + 1: & € y}. SetY =
(B + D\{0}. We define a homeomorphism from(y, Y, S) ontoa. For(§ +1,¢7) e Sx Y
seth(¢ +1,0)=B-&+¢. Foré e y\S, seth(¢) =B - £. Let X be the spacéy, o),
whereo is the hypothesized coarser connected topology ofihe spacéV (X, Y, S) is
connected and Urysohn by Lemma 5.20. THenl[O]: O openinW(X,Y, S)} is the
desired coarser connected Urysohn topologwon O

Question 5.22. Which ordinals have coarser connected Urysohn topologies? The least
ordinal to which the results of this section do not applyTs- ¢* + ¢t - w. Another
interesting open caseis" + «, wherex is a singular cardinal of cofinality.
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6. Connectionswith connectifications

In [15] Watson and Wilson asked which spacggébave Hausdorff connectifications. We
say thatY is aconnectificatiorof X if X is dense int andY is connected. It is natural to
ask whether this property is related to having a coarser Hausdorff topology. In this section,
we present examples showing that there is no direct implication. Afterwards, we show that
for everyp € w*, the space*\{p} has a coarser connected Hausdorff topology.

It is easy to see that a space with an isolated point, or, more generally, a norHrivial
closed open set, has no Hausdorff connectification. It is harder to find nice nowhere locally
compact spaces with no Hausdorff connectifima Example 4.1 of [15] (our 6.1 below)
is a regular, Lindelof, nowhere locally compact space with no Hausdorff connectification.
We show that it does have a coarser connected Hausdorff topology.

Example 6.1 [15, Example 4.1]Let k = 2° andA =« ™. Let S be the set of successor
ordinals ofx; that isS = {& + 1: £ € A}. For eachx € S, let beZ, be the irrationals; for
a € (A+ D\S, let Z, be a singleton{p,}. The point set ofX is the free sun@a@ Zy.

If « € S, thenZ, is open and homeomorphic to the irrationals in the natural waydfs,
then a neighborhood gf, containd_J{Z,: B < y < «} forsomep < «. Itis easy to verify
that X is a regular, Lindel®f, nowhere locally compact space.

Suppose thalt is a Hausdorff connectification &f. We will find a nontrivial clopen set.
For eachy € Y\ X, let U, be an open set containingwhose closure misses the compact
set{S«: @ € A+ 1\S} (itis homeomorphicta + 1). Observe thaf € S: Uy N Z, # 0}
is finite, and conclude thafl, = {« € S: y € clx Z,} is finite. BecauseX is Hausdorff,

Y, ={y e Y\X: y e cly Z,} has cardinality at most, the number of open filters an,.

Next a counting and closure argument gives a limit ordinal A such that ife < p and
y € Yy, thenF, C p. Then| J{Z,: a < p}U{y: Fy C p} is a nontrivial clopen subset of
Y. HenceX has no Hausdorff connectification.

Towards showing thaX has a coarser connected Hausdorff topology, for eacl$ let
Z/, be a coarser connected Hausdorff topology on the irrationals with a proper Hausdorff
extension,Z), U {g,}. Designate a special poipt, € Z,,. We create the coarser topology
on X in two steps. First, we repeat the constructiorXadising Z, in place ofZ,. Second,
we require that open set$ satisfy, for alla < A, if p, € U, then{gq+1} U (U N Z&+1) is
openinZ,, U{qq}

We remark that the space of the previous example can be expressedvds + 1,
irrationals,S), using the notation of Definition 5.19. The method of Lemma 5.20 does not
apply becausg + 1 has no (strictly) coarser Hausdorff topology. Further, we note that our
methods give a coarser connected normal topology on

We denote the Ston&ech remaindeBw\w asw®*. Recall thatw* has a clopen base
{A*: A € [w]®}, whereA* = {p € w*: A € p}. Note thatA* N B* =@ iff A andB are
almost disjoint (it means that N B is finite). A Tychonoff space&X is calledextremally
disconnectedf every pair of disjoint open subsets &fhave disjoint closures. A Tychonoff
spaceX is called anF-spaceif every pair of disjoint operF,, subsets ofX have disjoint
closures. Note thaBw is extremally disconnected, and that is an F-space, but not
extremally disconnected.
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The following machinery was introaded in [6] specifically for the space*, but it
generalizes to F-spaces.

Definition 6.2. Let Y be a compact, zero-dimensional F-space without isolated points (for
example Sw\w). A sequence :w — Y is faithful if s is one-to-one. A subset of Y is
calledpervasivef for every pair of faithful sequenceg,), (f,,) contained inY, there is

p € Bw such thatplims, € X andplim ¢, € X. Note that ifX is pervasive irt, thenX is
dense iny.

The next lemma is 7.1 of [6].

Lemma 6.3. Let (s,) and (z,) be disjoint pair of sequences in an F-spateThere is
M € [w]® such that

Cly{sy: neM}ncly{t,: ne M} =0.

For the rest of this section, léf be pervasive irY . Let t denote the subspace topology
on X and leto be a Hausdorff topology oX coarser than.

Forx e X, definek (x) =" (cly U: x e U e o}.
Lemma 6.4. With the notation and assumptions established above we have

(1) x}=Kx)NX;

(2) Forx € X, K(x)\X is finite

(3) UK (x): x € X)\ X is finite

(4) Additionally assume thatX, o) is also connectedd C Y is clopen, andA N X #
# # X\A. Then there is some € X such thatK (x) N A # @ # K(x)\A. Hence,
{x e X: K(x)#{x}}isdenseinX, ).

Proof. (1) follows becauséX, o) is Hausdorffand U N X =cl(x) U C cly(xy U.

Towards (2) assume tha& (x)\X infinite. Then there is a faithful sequence,)
contained inK (x)\X. By Lemma 6.3, we can assume thatt cly{s,: n € w}. Since
K(x) N X = {x}, we see that ¢l{s,: n € o} N X = @. This is a contradiction a¥X is
pervasive.

Towards (3) assume thgJ{ K (x): x € X}\ X isinfinite. Sincek (x)\ X is finite for each
x € X, we can find a faithful paifs,) and(z,) of sequences satisfying,: n € w} C X,
{t.: n € w} Ccly X\X, andt, € K(s,) for eachn € w. By Lemma 6.3, we may assume
that cly{s,: n € w} Ncly{t,: n € w} =@. There isp € w* such thatt = plims, € X and
t=plimzs, € X. Since(X, o) is Hausdorff, there are disjoint open s&tandV with s € U
andf € V. There is somei € p such that{s,: n € A} C U. Thus,{t,: n€ A} Ccly U.
ThenV =Y\ cly U is open inY and containg’. As7 € V, there is some € p such that
{th: ne BYC V.Thus,{t,: n€ AN B} Ccly UNV =¢, acontradiction ag N B # ¢.

Towards (4), assume that for alle X, K(x) C A or K(x) C X\A. For eacht € X\A,
ANKx)=ANN{clyU: x e U e o} =0. So, there is som& € o such thatx € U
andU c X\A. It follows that X\ A € 0. By symmetry, it follows thatX N A € o. This
contradicts thatX, o) is connected. O
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Lemma 6.5. If Y is an extremally disconnected space without isolated pointsXarnsl
pervasive inY, thenX has no coarser connected Hausdorff topology.

Proof. Let o be a coarser Hausdorff topology on If x,y € X are distinct, there are
d|310|ntU Veosuchthatt e U, y € V. There ard/,V openinY such that/ N X =U
andVNX=V.AsXisdenseint, UNnV =@. ButY is extremally disconnected. So,
cyUnclyV=0.AsclyU=cly(UnX)=cly U, K(x)NK(y)=%. By Lemma 6.4, it
follows thatX has no coarser connected Hausdorff topology.

Example 6.6. A separable, nowhere locally compact, extremally disconnected Tychonoff
spaceX with no coarser connected Hausdorff topology but with a connectificatisach
thatY\ X is countable.

Recall that the absolut&l of the unit intervall is separable, compact, crowded,
extremally disconnected and has a countable clopdyase5. By 6F in [10], EI can
be embedded iBw\w in such a way thatB| = 2¢ for eachB € B. Choose a countable
subsetCp C B suchthatCp N Cp = for B, D € B. The spaceX = EI\ | J{Cp: B € B}
is dense inET, has a countable clopem-base, is nowhere locally compact since a
countable set has been removed from each element ot thase, and for eacB € B
and p € Cp, there is an free open ultrafiltéf(p, B) on X converging top in Y. Using
{{U(p, B): p € Cp}: B € B} and a slight modification of 2.7(a) in [11], we conclude that
X has a connectification with a countable remainderEA§X is countableX is pervasive
in ET. By Lemma 6.5X has no coarser connected Hausdorff topology.

The first step of the proof of Theorem 1.1 in [7] is to show that a noncompact metrizable
spaceX has a coarser nowhere locally compact topology. In this context, we observe that
Example 6.6 is the first known example of avfwere locally compadpace with no coarser
connected Hausdorff topology.

Observe that in Lemma 6.4 we were careful not to assert the tempting but false: if
U,V € o are disjoint, then ¢l U and ck V are disjoint. Example 6.8 refutes Lemma 7.2
of [6], where we were not so careful. In Lemma 6.5 above, we repaired our error by
strengthening the hypothedisis an F-space t& is extremally disconnected.

Lemma 6.4 suggests what a coarser connected Hausdorff topology on a pervasive
subspace&X of Bw must look like. Because of clause (Bp\X may as well be finite, so
we letX = w*\{p}. Because of clause (4), we choose a dense set of pDietgxs: E €
[w]*}. Forx € D, we will haveK (x) = {x, p}; for x € X\ D, we will haveK (x) = {x}. To
actually construct such a space, we need the powerful Corollary 1.7 from [2].

Theorem 6.7. Let p € w™* be arbitrary.

(1) There is an almost disjoint familyAp: P € p} C [@]® such thatAp c P for all
peP.

(2) There is a pairwise disjoint open family of cardinality ¢ such thatp € clU for all
Uel.
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Example 6.8. For everyp € w*, the spacev*\{p} has a coarser connected Hausdorff
topology.

Let p € w* be arbitrary. LefAp: P € p} be as in Theorem 6.7 (1). For eaéhe p,
choose a poingp in A}, and apply Theorem 6.7(2) to get a disjoint open fammg: E e
[0]®} with gp € clU[ for all E € [0]®. We may assume that. c A% for all P andE.

For all E € [w]®, choosexg € E*\{p}, and defind/r = U{U};: P € p}. Lett be the
topology onX as a subspace af*. Let the new topology be the set of all” € T such
thatif xg € T, then for someP € p we haveUg N P* C T.

It is straightforward to verify thatX, o) is Hausdorff and nowhere Urysohn (it means
that there is no pair of nonempty open sets with disjoint closures)—heXice) is
connected.
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