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Abstract The expression, regulation and functional significance
of multiple peroxisome proliferator-activated receptor c tran-
script variants in bone were studied. PPARG transcripts giving
rise to PPARg-1 protein were expressed in human osteoblasts,
whereas PPARG-2 transcript and protein remained virtually ab-
sent. PPARG expression underwent homologous regulation, was
upregulated during differentiation and directly induced by the
osteogenic hormone dexamethasone, suggesting a role for
PPARg-1 in osteogenesis. Differences between the stabilities of
PPARG-1, -3 and -4 were observed. We hypothesize that cell-
specific expression patterns of multiple PPARG transcript vari-
ants encoding for the same protein but differing in mRNA stabil-
ities enable a fine-tuning of PPARG action, which eventually
supports a well-adjusted signal transduction between the cell
and its environment.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Peroxisome proliferator-activated receptor c (PPARG) is a

nuclear transcription factor that plays roles in the control of

proliferation, differentiation and survival of various cell types

(reviewed in [1]). The single PPARG gene undergoes alterna-

tive splicing and promoter usage giving rise to two proteins:

PPARg-1 and PPARg-2 (Fig. 1; [2]). PPARg-2 contains an

additional N-terminal exon that results in a higher trans-

activation capacity compared to PPARg-1 [3]. Besides this

functional difference at protein level, there is an additional

complexity at its transcript level. Interestingly, PPARg-1 pro-

tein can be translated from the three PPARG transcripts

PPARG-1, -3 and -4 that only differ in their 5 0-untranslated re-

gion [4]. The existence of multiple transcript variants encoding
bbreviations: PPARG, peroxisome proliferator-activated receptor c
EX, dexamethasone; ROSI, rosiglitazone; VSMC, vascular smooth
uscle cells; MSC, mesenchymal stem cells
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for the same protein has been reported for other genes as well

[5], but its functional significance has not been revealed yet.

PPARg-1 protein is expressed in many cell types, whereas

the expression of PPARg-2 is mainly limited to adipocytes

[6–8]. Also, it has been reported that PPARg-1 is expressed

in a murine pre-osteoblastic cell line [9,10].

In this study, we investigated the differential expression of

the four PPARG transcript variants in human pre-osteoblast

and osteoblast-like cells and in human mesenchymal stem cells

(MSCs) that were driven to differentiate towards the osteoblas-

tic lineage. Furthermore the effect of the osteoblast differentia-

tion-inducing hormone dexamethasone (DEX) and the

PPARG agonist rosiglitazone (ROSI) on PPARG expression

in human osteoblasts were investigated.
2. Materials and methods

2.1. Cell culture
SV-HFO cells [11], normal human osteoblasts (NHOST; Cambrex

Bio Science CC-2538, East Rutherford, NJ, USA), human vascular
smooth muscle cells (VSMC; Cambrex Bio Science, CC-2583) and hu-
man MSCs (Cambrex Bio Science) were cultured as described previ-
ously [12].

2.2. Quantification of mRNA expression
RNA isolation and cDNA synthesis have been carried out as described

recently [13] except that the total amount of RNA was quantified spec-
trophotometrically using NanoDrop technology (Bancroft Building
Wilmington, DE, USA) according to the manufacturer�s instructions.
Quantitative real time-PCR (QPCR) was either based on FAM/TAM-
RA or SYBR Green detection. FAM/TAMRA-based QPCR was per-
formed as described previously [13] with the exception that reaction
mixes contained 8 instead of 20 ng cDNA. SYBRGreen-based QPCR
was carried out using an ABI 7700 sequence detection system (Applied
Biosystems, Foster City, CA). Reactions were performed in 25 ll
volumes using qPCR core kit for SYBR Green I (Eurogentec, Seraing,
Belgium). Reaction mixes contained 8 ng cDNA, 3.5 mM MgCl2,
200 lMdNTPs and 0.025 U/ll Hot GoldStar enzyme. Primer and probe
sequences as well as their concentrations are listed in Table 1.

2.3. Short-term incubation studies with DEX, RU-486 or ROSI
Medium was supplemented with 10 lM ROSI (Cayman Europe;

Tallin, Estonia), 100 nM DEX in the absence or presence of 2 lM of
the glucocorticoid receptor antagonist RU-486 (Sigma) at specific time
points (3, 6, 12, 24 and 48 h) before harvest at day 12 of culture. For
short-term ROSI incubations, SV-HFO cells were grown in the contin-
uous presence of 100 nM DEX. For short-term DEX and RU-486
incubations, SV-HFO cells were grown in the medium as described
above with the exception that DEX was not added continuously. Then
RNA was isolated and QPCR was performed as described above.
blished by Elsevier B.V. All rights reserved.



Fig. 1. Exon–intron structures of multiple PPARG transcripts. Exons are depicted as grey squares and separated from each other by intronic
sequences (black lines). The positions and sizes do not match real scale. Sequences underlying this figure were received from the NCBI database
(received at 12, 11, 2007 from the NCBI on-line database/Entrez Gene, http://www.ncbi.nlm.nih.gov).

Table 1
Primer and probe concentrations and sequences

GAPDH
300 nM Forward 5 0-ATGGGGAAGGTGAAGGTCG-30

300 nM Reverse 5 0-TAAAAGCAGCCCTGGTGACC-30

150 nM Probe 50-FAM-CGCCCAATACGACCAAATCCGTTGACTAMRA-30

PPARG 1 (NM_138712)
50 nM Forward 5 0-GTGGCCGCAGATTTGAAAGAAG-30

50 nM Reverse 5 0-TGTCAACCATGGTCATTTCG-30

PPARG 2 (NM_015869)
50 nM Forward 5 0-CAAACCCCTATTCCATGCTGTT-30

50 nM Reverse 5 0-AATGGCATCTCTGTGTCAACC-3 0

PPARG 3 (NM_138711)
50 nM Forward 5 0-AGAAGCCTGCATTTCTGCAT-30

50 nM Reverse 5 0-TGGCCTTGTTGTATATTTGTGGTT-30

PPARG 4 (NM_005037)
50 nM Forward 50-GTGGCCGCAGAAATGACCATG-30

50 nM Reverse 5 0-GAGAGATCCACGGAGCTGAT-30

ANGPTL4
50 nM Forward 5 0-GACAAGAACTGCGCCAAGAG-30

50 nM Reverse 5 0-AGTACTGGCCGTTGAGGTTG-30

FABP4
50 nM Forward 5 0-TACTGGGCCAGGAATTTGAC-30

50 nM Reverse 5 0-GGACACCCCCATCTAAGGTT-30

ADFP
50 nM Forward 5 0-CAGAAGCTAGAGCCGCAAAT-30

50 nM Reverse 5 0-AGCCCCTTACAGGCATAGGT-30
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2.4. Short-term incubation studies with DEX and cycloheximide
Medium was supplemented with 100 nM DEX at 3 h before harvest

at day 12 of SV-HFO culture. Before DEX incubation, cells were pre-
treated with 10 lg/ml of the protein biosynthesis inhibitor cyclohexi-
mide (Sigma) for 15 min. Then RNA was isolated and QPCR was per-
formed as described above.

2.5. Actinomycin D treatment
SV-HFO cells were cultured as described above until day 7 of cul-

ture. At 6, 12, 24 and 48 h before harvesting, actinomycin D (2 lg/
ml; Sigma) was added to the cultures. Then RNA was isolated and
QPCR was performed as described above.

2.6. Western blotting
Cells were solubilized in lysis buffer (M-PER Mammalian extraction

kit; Pierce Rockford, IL, USA). Total protein concentrations were
quantified using BCA protein assay kit (Pierce). Fifty micrograms of
total protein extract were loaded on an SDS–polyacrylamide gel con-
sisting of a 5% (w/v) stacking and a 10% (w/v) running gel. After elec-
trophoretic separation, samples were transferred to Nitrocellulose
blotting membrane (Hybond; Amersham Pharmacia, UK). Unspecific
binding sites were blocked using 4% skim milk in TBS without Tween
for over-night at 4 �C. Then, the membrane was incubated in primary
antibody solution (primary antibody diluted in TBS with 0.1% TBS-
Tween and 1% skim milk) for 1 h at room temperature on a roller
bank. The dilution for rabbit polyclonal antibody against PPARG
was 1:1000 (Cat. 600-401-419; Rockland Gilbertsville, PA, USA).
Mouse monoclonal antibody against GAPDH (Cat. MAB374; Milli-
pore) was used as an internal calibrator in a dilution of 1:20000
and incubated for 30 min at room temperature. The membrane was
washed four times in 0.1% (v/v) TBS-Tween and incubated in a diluted
secondary antibody solution (secondary antibody diluted in TBS with
0.1% TBS-Tween and 1% skim milk) for 1 h at room temperature. The
secondary antibodies, anti-rabbit IgG conjugated with IRDye 800CW
(Cat. 17122; Rockland) and anti-mouse IgG conjugated with Alexa
Fluor 680 (Cat. A21057; Invitrogen) were used in a 1:10000 dilution
for 1 h at room temperature to detect the respective primary antibody.
After washing the membrane four times in 0.1% (v/v) TBS-Tween and
having removed residual Tween by washing in TBS only, fluorescence
was detected and analyzed using LI-COR Infrared Imaging System
according to the manufacturer�s instructions (Odyssey Lincoln, NE,
USA).

http://www.ncbi.nlm.nih.gov


F
o
d
m
o
b

1620 C. Bruedigam et al. / FEBS Letters 582 (2008) 1618–1624
2.7. Statistics
Data presented are the results of at least two independent experi-

ments performed in at least triplicate. Values are the means ± S.E.M.
Significance was calculated using the Students t-test.
3. Results

3.1. Expression of PPARG and its primary target genes
The cell models used all proceed through a differentiation

process resulting in the production of a mineralized extra-

cellular matrix in a 2–3-week period [12]. PPARG expression

was demonstrated during the differentiation of the two

human pre-osteoblast cell lines SV-HFO (Fig. 2A), NHOST

(Fig. 2B) and MSCs that were differentiated towards the osteo-

blast lineage (Fig. 2C). In addition, PPARG expression was

demonstrated in mineralizing VSMC that are an experimental

model of arthrosclerosis (Fig. 2D). The expression levels of the
ig. 2. Expression levels of multiple PPARG transcripts encoding for PPAR
steoblast-like cells. Q-PCR of PPARG transcripts 1–4 in the human pre-oste
erived mesenchymal stem cells differentiated towards osteoblasts MSC (C), hu
edium lacking the osteogenic differentiation factor DEX (E). Expression leve

f at least three biological replicates ± S.E. Western blotting of PPARg-1 (up
and) was used as loading control. 3, 14: SV-HFO culture days 3 and 14, res
four PPARG transcript variants PPARG-1,-2, -3 and -4 at var-

ious time points during culture were quantified by QPCR.

Expression levels of PPARG-1, -3 and -4 were significantly in-

creased during differentiation and mineralization of all the four

cell models. PPARG-2 expression, however, was virtually ab-

sent in SV-HFO, NHOST and VSMC and significantly lower

compared to PPARG-1 in MSCs (Fig. 2A–D). Interestingly,

PPARG expression levels were virtually absent and did not

increase in the non-mineralizing condition, i.e. when cells were

not stimulated with DEX to differentiate towards a mineral-

ized matrix-producing osteoblast (Fig. 2E). Finally, the

presence of PPARg-1 protein and its increase during differen-

tiation (from day 3 to 14 of SV-HFO culture) was confirmed

by western blotting (Fig. 2F). In addition, expression levels

of the confirmed primary PPARG targets ANGPTL4, ADFP

and FABP4 [14,15] increased during differentiation of

SV-HFO (Fig. 3).
g-1 protein increase during differentiation of human osteoblasts and
oblast cell lines SV-HFO (A) and NHOST (B), human bone marrow-
man vascular smooth muscle cells VSMC (D) and SV-HFO grown on

ls are relative to the housekeeping gene GAPDH. Values are the mean
per band) in SV-HFO at day 3 and 14 of culture (F). GAPDH (lower
pectively; L: protein standard.



Fig. 3. Expression levels of primary PPARG target genes increase during osteoblast differentiation. Q-PCR of ANGPTL4 (A), ADFP (B) and
FABP4 (C) in the human osteoblast cell line SV-HFO at multiple time points during differentiation. Expression levels are relative to the housekeeping
gene GAPDH. Values are the mean of at least three biological replicates ± S.E.

Fig. 4. Glucocorticoid receptor-regulated expression of PPARG. SV-HFO cells were short-term incubated with the cortisol analog DEX and/or the
glucocorticoid receptor antagonist RU-486 at day 12 of culture. Transcript levels were measured using QPCR. Values are relative to the
housekeeping gene GAPDH and the mean of at least three biological replicates ± S.E. Asterisks (*) denote values that were determined to be
significantly (P 6 0.05) different from those of control.
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Fig. 7. Differential stabilities of the three PPARG transcripts
PPARG-1, -3 and -4 encoding for PPARg-1 protein. The polymerase
II inhibitor actinomycin D was added at 6, 12, 24 and 48 h before
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3.2. Direct regulation of PPARG expression by DEX

Short-term treatment with the synthetic cortisol analog

DEX during early differentiation of SV-HFO (day 12) showed

already after 3 h significant increases in expression levels of

PPARG transcripts-1, -3 and -4 (Fig. 4). The expression further

increased when DEX was added to the medium for 6, 24 and

48 h before harvest. Induction of PPARG-1, -3 and -4 expres-

sion levels was completely blocked by the glucocorticoid recep-

tor antagonist RU-486 (Fig. 4). In addition, blocking de novo

protein biosynthesis using cycloheximide did not effect the

stimulatory action of DEX on PPARG-1, -3 and -4 expression

(Fig. 5).

3.3. Homologous regulation of PPARG

ROSI is a well-studied PPARG agonist and stimulates

PPARG signalling in several target tissues (reviewed in [16]).

We found that, after short-term treatment with ROSI,

PPARG-1, -3 and -4 transcript levels were significantly increased

(Fig. 6). PPARG-4 transcript was already significantly induced
ig. 5. De novo protein biosynthesis is not required for induction of
PARG expression by dexamethasone. SV-HFO cells were short-term

ncubated with the DEX and/or the protein synthesis inhibitor
ycloheximide. Transcript levels were measured using QPCR. Values
re relative to the housekeeping gene GAPDH and the mean of at least
hree biological replicates ± S.E. Asterisks (*) denote values that were
etermined to be significantly (P 6 0.05) different from those of
ontrol.

ig. 6. Homologous regulation of PPARG. Rosiglitazone was added
o the SV-HFO cultures at distinct time points before harvest at day 7.
ranscript levels were measured using QPCR. Values are relative to

he housekeeping gene GAPDH and the mean of at least three
iological replicates ± S.E. Asterisks (*) denote values that were
etermined to be significantly (P 6 0.05) different from those of
ontrol.

harvest at day 7. Data have been obtained by QPCR. Values are
expression levels relative to GAPDH and normalized to control.
after 3 h of treatment compared to control, and increases in

PPARG-3 and -1 expression levels reached significance after 6

or 12 h, respectively. However, PPARG-2 expression was not in-

duced upon ROSI-treatment (data not shown).

3.4. Differential dynamics for expression of PPARG splice

variants

By analyzing the stabilities of the PPARG transcripts using

the RNA polymerase II blocker actinomycin D in a time-

course experiment, we observed that the stabilities surprisingly

differed between the PPARG transcripts 3 and 1/4 (Fig. 7). The

half-life of the PPARG transcripts-1 and -4 was about 24 h.

The PPARG-3 transcript had about a 6-fold shorter half-life

of 4 h.
4. Discussion

The aim of the current study was to assess expression and

regulation of PPARG in human osteoblasts. They are bone-

forming cells and have the unique function to produce and

mineralize an extracellular protein matrix. Osteoblasts under-

go several developmental phases through their lifetime: early

commitment to organic-matrix production, mineralization

and apoptosis or terminal differentiation into an osteocyte.

The complex developmental process is orchestrated by the

timely activation of specific transcription factors that regulate

the expression of their target genes and thus define the osteo-

blast phenotype (reviewed in [17]). The current study demon-

strates increasing expression levels of three PPARG

transcripts-1, -3 and -4 giving rise to PPARg-1 protein but

not PPARG-2 encoding for PPARg-2 protein during differen-

tiation of the two human pre-osteoblast cell lines SV-HFO and

NHOST. We furthermore found that PPARG expression

levels increased during MSC differentiation towards the osteo-

blastic lineage. And, finally the observations in the osteoblasts

were confirmed in a VSMC-based model for vascular calcifica-

tion that mimics matrix formation and mineralization by the

osteoblasts. In the absence of differentiation towards matrix
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producing and mineralizing cells, PPARG transcript levels are

virtually absent and do not increase during culture time. In

addition, transcript levels of three confirmed primary PPARG

target genes ANGPTL4, FABP4 and ADFP increase during

osteoblast differentiation, which correlates with the changes

in expression levels of PPARG transcripts-1, -3 and -4. To-

gether these data show a clear coupling between PPARg-1

expression and extracellular matrix synthesis and mineraliza-

tion indicating a role for PPARg-1 signalling in these pro-

cesses.

Presence of DEX is crucial for all cell models examined to

develop into a mineralizing condition [18]. Our short-term

DEX incubation studies demonstrated that PPARG expres-

sion is directly stimulated by DEX. Addition of the glucocor-

ticoid receptor antagonist RU-486 blocked the DEX effect. In

silico searches for putative glucocorticoid receptor response

elements (GRE) in the promoter region of the PPARG gene re-

vealed several hits close to the transcription start sites (Tatjana

Degenhardt, personal communication). In addition, blocking

de novo protein biosynthesis using cycloheximide did not

change the stimulatory action of DEX on PPARG expression.

These data demonstrate that PPARG is a direct glucocorticoid

receptor target gene, however, the analysis of functional gluco-

corticoid receptor response elements in the PPARG gene will

be necessary to better understand PPARG regulation at chro-

matin level. Our data do not exclude an additional indirect

osteoblast differentiation-driven expression of PPARG because

PPARG-1 expression also increases in a DEX-independent dif-

ferentiating murine osteoblast cell model [9].

We demonstrate for the first time in human osteoblasts the

presence and regulation of the two additional PPARG tran-

scripts 3 and 4. Moreover, we show that these transcripts as

well as PPARG-1 are homologously upregulated. Interest-

ingly, the magnitude of transcriptional regulation by both

ROSI and DEX is different between PPARG-1, -3 and -4. This

points to a high order of complexity in promoter usage and

transcriptional control for these transcripts (Fig. 1). An even

higher order of control of levels of these PPARG transcripts

is demonstrated by the mRNA stability analyses. Both at tran-

scriptional control and stability, the PPARG-3 transcript is the

most sensitive. Overall these data are tempting to speculate

about a possible functional relevance. The combination of dif-

ferentially regulated PPARG transcript levels that encode for

the same protein with differential mRNA stabilities could en-

able a fine-tuned protein expression level that may depend

on a specific cell type or metabolic state. However, this hypoth-

esis has to be functionally proven in future studies. Finally, the

differences in stabilities for the three PPARG transcripts-1, -3

and -4 are mechanistically intriguing and yet unexplained.

Transcript stability is usually dedicated to the 3 0-, but not

the 5 0-UTR in which these transcripts differ. Thereby the cur-

rent data suggest also a role for this part of the transcript in

stability control.

In conclusion, the current study demonstrates that (1)

PPARG-1, -3 and -4 transcript levels encoding for PPARg-1

protein increase during differentiation of all four cell models

that were used in this study, (2) PPARG expression is directly

regulated by DEX and (3) PPARG regulates its expression it-

self by an auto-regulatory mechanism. We hypothesize from

this that cell-specific PPARG transcript-variant ratios, due to

their specific transcriptional regulation and stabilities, enable

a fine-tuning of PPARG receptor-level regulation supporting
a well-adjusted signal transduction between the cell and its

environment.
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