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ABSTRACT To investigate the role of nonlinear myofilament regulatory processes in sarcomeric mechanodynamics, a
model of myofilament kinetic processes, including thin filament on–off kinetics and crossbridge cycling kinetics with
interactions within and between kinetic processes, was built to predict sarcomeric stiffness dynamics. Linear decomposition
of this highly nonlinear model resulted in the identification of distinct contributions by kinetics of recruitment and by kinetics
of distortion to the complex stiffness of the sarcomere. Further, it was established that nonlinear kinetic processes, such as
those associated with cooperative neighbor interactions or length-dependent crossbridge attachment, contributed unique
features to the stiffness spectrum through their effect on recruitment. Myofilament model-derived sarcomeric stiffness
reproduces experimentally measured sarcomeric stiffness with remarkable fidelity. Consequently, characteristic features of
the experimentally determined stiffness spectrum become interpretable in terms of the underlying contractile mechanisms
that are responsible for specific dynamic behaviors.

INTRODUCTION

The frequency-dependent, complex stiffness of muscle fi-
bers has value for several reasons: 1) for characterizing the
contractile status of one fiber to compare it with other
fibers; 2) for predicting physiologic function of fibers; and
3) for inferring underlying contractile mechanisms. These
values were recognized early by those who worked on
insect flight muscle (Machin and Pringle, 1960; Pringle,
1978; Abbot and Steiger, 1977; Thorson and White, 1983)
and by Kawai and colleagues who applied muscle stiffness
techniques to vertebrate striated muscle. These latter work-
ers developed a theoretical basis for interpreting experimen-
tally obtained complex muscle stiffness in terms of cross-
bridge (XB) kinetic processes (Kawai and Brandt, 1980;
Kawai and Halvorson, 1989; Kawai et. al., 1993; Saeki et.
al., 1991; Zhao and Kawai, 1993, 1996) and these ideas
have been adopted and extended by several others (Blan-
chard et. al., 1999; Dickinson et. al., 1997; Maughan et. al.,
1998; Murase et. al., 1986; Smith, 1990; Thomas and
Thornhill, 1996; Wannenburg et. al., 2000).
Recent work from our laboratory (Campbell, 1997; Ra-

zumova et. al., 1999, 2000) has implicated myofilament
regulatory proteins as significant determinants of the dy-
namic behavior of constantly activated myofilament sys-
tems. These regulatory actions are expressed in fiber dy-
namics through cooperative and other nonlinear
mechanisms and contribute to fiber dynamics in such a way
that they confound the observation of XB cycle kinetic
steps.

Therefore, the purpose of the present work was to incor-
porate nonlinear regulatory mechanisms into a myofilament
model of the sarcomere for the purpose of examining how
these nonlinear regulatory mechanisms impact complex
stiffness of the sarcomere and, thus, muscle fibers. We give
special emphasis to cardiac muscle because of its peculiar
length-dependent dynamic behavior.

INTERPRETING SARCOMERIC COMPLEX
STIFFNESS IN TERMS OF
MYOFILAMENT KINETICS

Myofilament kinetic model

A mathematical model of the sarcomere was built based on
kinetics within the myofilament system. In the simplest
conceptualization of myofilament kinetics (Fig. 1), there are
three kinetic processes responsible for muscle dynamics: 1)
the kinetics of activator Ca2� availability to myofilaments;
2) the kinetics of thin-filament regulatory process by which
the troponin–tropomyosin regulatory units (RU) change po-
sition on the thin filament in switching from a position that
blocks to one that permits myosin attachment to actin on the
thin filament; and 3) the kinetics of the XB cycle, during
which there is chemomechanical energy transduction ac-
companying actin-activated, myosin-catalyzed ATP hydro-
lysis.
We assumed that Ca2�-binding to the tropomyosin–tro-

ponin regulatory protein complex was both relatively fast
and independent of other kinetic processes. Accordingly,
Ca2�-binding kinetics may be reduced to Ca2�-binding
isotherms to the troponin C subunit (TnC) as given in the
Appendix, Eqs. A12, and A13.
Thin-filament regulatory kinetics involve switching the

tropomyosin–troponin RU between an off state that does not
permit XB attachment and an on state that permits attach-
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ment. RU on–off switching depends on whether Ca2� is
bound to TnC. Thus, we identify four rate coefficients for
RU on–off state transitions: kon0 ; koff0 ; konCa; koffCa, where the
superscript indicates whether Ca2� is bound to the TnC part
of the RU. For any Ca2� level, the net values of the on–off
coefficients are given by

kon � kon0 � �konCa � kon0 ��Ca2� binding isotherm�

and

koff � koff0 � �koffCa � koff0 ��Ca2� binding isotherm�.

XB cycling kinetics requires representing transitions
among at least three states: detached, D; attached pre-power
stroke, A1; and attached post-power stroke, A2. The transi-
tion between states D and A1 is the attachment step; the
transition between states A1 and A2 is the power stroke; and
the transition between states A2 and D is the detachment
step. Because chemomechanical energy transduction takes
place in the power stroke, the pre-power stroke attached
state, A1, does not bear force except in nonisometric con-
ditions when the sarcomere undergoes length change and
there is shearing between thick and thin filaments. In con-
trast, the post-power stroke attached state, A2, is force
bearing in both isometric and nonisometric conditions. We
treat the attachment step and the power stroke as reversible,

but we treat the detachment step as irreversible. Steps in the
XB cycle are regulated by the rate coefficients f, f�, h, h�,
and g, which determine the rate of change between states
according to Fig. 1.

Length-dependent processes within the myofilament
system occur as a result of sliding filament and nonlinear
kinetic mechanisms

Fundamental to any myocardial myofilament model are
mechanisms that account for well-known length-dependent
processes in cardiac muscle such as length–tension behavior
and length-dependent Ca2� sensitivity. The three kinetic
processes (Ca2� binding, RU on–off transitions, and XB
cycling) all take place on a sliding myofilament system
where overlap between thick and thin filaments changes
when the sarcomere changes length. Thus, through filament
sliding alone, the three kinetic processes become coupled to
sarcomere length, LS. Additionally, nonlinear mechanisms
also couple these kinetic processes to LS through either
structurally-coupled or cooperatively-coupled pathways.
There are four categories of nonlinear mechanisms that

impact myofilament kinetics: saturation, cooperativity,
length-dependent kinetic steps, and strain-dependent kinetic
steps. Of these, strain-dependent kinetic steps, following the
work of Huxley (1957), have been central in most attempts
at modeling contractile system behavior. However, by re-
stricting our concern to small amplitude perturbations
around an isometric state, strain-dependence in the kinetic
steps may be excluded as if variation in XB strain energy is
occurring around the bottom of a strain-energy well (Thor-
son and White, 1983). Once strain-dependent phenomena
are excluded, it is possible to focus on the other nonlineari-
ties. Such a focus distinguishes our analysis from several
others, where attempts to reproduce aspects of frequency-
dependent muscle stiffness relied heavily on strain-depen-
dent XB cycling kinetic steps (Murase et. al., 1986; Smith,
1990; Thomas and Thornhill, 1996). Of the remaining three
nonlinear categories, we are interested here in nonlinear
dynamic effects arising from responses to changes in LS.
These consist of two types of effects; those that are closely
coupled to LS and work through structural mechanisms
(structurally coupled) and those that are loosely coupled to
LS and work through cooperative mechanisms (cooperative-
ly coupled).
Structurally-coupled effects give rise to a force response

with only one or two intervening events following a muscle
length perturbation. The sliding filament mechanism is an
obvious example in that changes in LS change filament
overlap and this changes the number of available sites for
myosin XB attachment to actin. Changes in XB-attachment
site number leads to changes in the number of attached XB
with concomitant changes in the ensuing force. In the
model, sliding filament mechanisms are the consequence of
fixed myofilament lengths and their overlapping arrange-

FIGURE 1 Three kinetic processes in myofilament interaction showing:
1) Ca2� binding to the tropomyosin–troponin complex that acts as the
thin-filament RU; 2) switching between off and on states of the RU; and 3)
myosin XB cycling between attached and detached states. The forward, k�,
and backward, k�, Ca2� binding constants are taken to be large with
respect to other kinetic constants and independent of other steps in the
contraction process, such that Ca2� binding is always in equilibrium. The
three connected circles represent the thin filament. The bar along the thin
filament represents the RU. In the down position, the RU is off and XBs
cannot attach. In the up position, the RU is on and XBs can attach. The rate
coefficients regulating the transition between on and off states, kon(Ca) and
koff(Ca), are functions of Ca2� bound to RU as given in the text. The
darkened ellipse with the coiled tail represents the XB, which may be in
one of three states: detached, D, attached pre-power-stroke, A1, or attached
and post-power-stroke, A2.
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ment (Eqs. A7–A11) and are not graded with an adjust-
able parameter. Another structurally-coupled effect arises
when an increase in LS causes a decrease in myofilament
lattice spacing. Decreased interfilament spacing reduces
the distance that the myosin head must travel to attach to
the actin binding site and, thus, reduces the activation
energy barrier for XB attachment (Godt and Maughhan,
1981; McDonald and Moss, 1995; Fuchs and Smith,
2001). The result is that the probability for myosin at-
tachment to actin increases. For this reason, we changed
the f-f� coefficient pair with changes in LS because this is
the attachment step in our XB scheme. We had no ratio-
nale for changing h, h�, and g with sarcomere length and,
therefore, we did not allow these coefficients to be length
sensitive. To account for expression of length-dependent
XB attachment, a formulation based on activation energy
variations, as these affect the f-f� coefficient pair, was
derived, Eqs. A16 and A17. The single arbitrary param-
eter, �, was used in Eqs. A16 and A17 to grade the
strength of these length-dependent effects.
Cooperatively-coupled effects give rise to a secondary

force following a primary length-induced force event.
For instance, because of the elastic properties of the
strongly-bound XB (A2 state, Fig. 1), this XB is strained
and undergoes a change in force immediately upon a
change in LS. This change in force may affect the strength
of influence of this strongly bound XB on actions at a
neighboring site. If this influence is to favor the turning
on of a neighboring RU, then we say there is XB–RU
neighbor interaction. We vary XB–RU neighbor interac-
tions through the single parameter, w, which impacts the
kon-koff coefficient pair according to Eqs. A18 and A19.
If the influence of the force exerted by the strongly-
bound XB is to influence XB attachment at a neighboring
site then we say there is XB–XB interaction. We vary
XB–XB neighbor interactions through the single param-
eter, v, which impacts the f-f� coefficient pair according
to Eqs. A20 and A21. Thus, through these cooperative
mechanisms, a change in LS has a primary and immediate
force effect on existing XB that then has a secondary
force effect through neighbor interactions. In addition to
the two preceding cooperative mechanisms, we also var-
ied cooperative interactions between neighboring regula-
tory units (RU–RU interaction) through the single param-
eter, u, which impacts the kon-koff coefficient pair
according to Eqs. A18 and A19. Equations for these
nonlinear cooperative effects have been developed pre-
viously (Razumova et. al., 2000).
Equations for both structurally coupled and cooperatively

coupled LS responsiveness, together with the differential
equations for kinetics of change of state, constitute the
essential features of the mathematical model of the sarco-
mere, Eqs. A1–A21.

Recruitment-distortion concept allows sarcomeric
dynamics to be expressed in terms of variables derived
from XB population kinetics

In addition to kinetic concepts, a recruitment-distortion con-
cept plays an essential role in the calculation of overall
sarcomeric stiffness. This idea evolved from notions first
expressed by Huxley (1957), extended and applied by Thor-
son and White (1983), further applied by Berman et. al.
(1988), and finally articulated in the version used in this
manuscript by Razumova et. al. (1999). In the recruitment-
distortion concept, the net XB force, F(t), is due to the
collective instantaneous stiffness of a population of parallel,
attached XB multiplied by their average elastic deforma-
tion. In this, we assume that each XB is an elastic spring. If
XB in A1 and A2 attached states are all in parallel, then

F�t� � �A1�t�x1�t� � �A2�t�x2�t�, (1)

where � is the elastic stiffness coefficient of a single XB (	
4–7 
 10�4 N/m); A1(t) and A2(t) are the time-dependent
system variables representing changing numbers of XB in
the A1 and A2 states, respectively; and x1(t) and x2(t) are the
time-dependent system variables representing average elas-
tic deformations (or distortions) of XB in the A1 and A2
states, respectively. Note that � is a constant, but all other
terms on the right hand side of Eq. 1 are dynamic system
variables with time behaviors that are dictated by differen-
tial equations (Eqs. A1–A5). Because, for a single half
sarcomere, all XB in each state are in parallel, the collective
stiffness coefficient of the XB populations in each of the
two states may be given as

�1�t� � �A1�t� and �2�t� � �A2�t�. (2)

Thus,

F�t� � �1�t�x1�t� � �2�t�x2�t�, (3)

where the XB population stiffness coefficients, �1(t) and
�2(t), are time-dependent variables that change according to
A1(t) and A2(t), respectively. Because our use of the word
“stiffness” takes on multiple nuances as we proceed with an
analysis in the frequency domain, we will call �1(t) and �2(t)
recruitment variables for the reason that these variables
(according to Eq. 2) are proportional to the number of XB
that have been recruited into A1 and A2 states, respectively.
Physically, �1(t) and �2(t) represent instantaneous or infi-
nite-frequency stiffness, and this is a special case of a
general complex stiffness as developed below.

Sarcomeric stiffness dynamics are the sum of dynamics
due to XB distortion and dynamics due to XB recruitment

The product of two time-varying variables in each term of
the recruitment-distortion equation (�1(t)x1(t) and �2(t)x2(t)
in Eq. 3) complicates stiffness evaluation. In part, these
complications arise because this is a nonlinear combination
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of variables, all of which depend on LS. Thus, the experi-
mental determination of stiffness as the ratio, �F/�LS, is
meaningful only for incremental changes in force and length
around some reference point. We examine these incremen-
tal changes with linearization techniques. Linearization of
Eq. 3 results in

dF�t� � �10dx1�t� � �20dx2�t� � x20d�2�t�, (4)

where �10, �20, and x20 are the reference baseline values
around which incremental variations in the �1(t), �2(t), and
x2(t) variables occur. The term x10d�1(t) drops out of Eq. 4
because all reference states around which incremental vari-
ations are imposed are in the isometric condition and x10,
the average distortion of the pre-power stroke A1 state in the
isometric condition, is identically zero. To determine stiff-
ness, the dF(t) dependence on change in sarcomere length,
dLS(t), is required. For this, the linear situation created by
restricting our analysis to incremental behaviors allows the
following expressions

dx1�t� � Hx1�dLS�t�, (5)

dx2�t� � Hx2�dLS�t�, (6)

d�2�t� � H�2�dLS�t�, (7)

where the Hy{ } are the linear, dynamic transfer operators
that convert a dLS(t) input into dx1(t), dx2(t), and d�2(t)
responses, respectively. Substituting Eqs. 5–7 into Eq. 4 and
Fourier transforming the result gives

dF�j�� � �10Hx1�j��dLS�j�� � �20Hx2�j��dLS�j��

� x20H�2�j��dLS�j��, (8)

where the Hy(j�) are now frequency-dependent transfer
functions relating each of the respective variables to sinu-
soidal dLS(j�). Terms with physical units of stiffness are
readily formed by dividing both sides of Eq. 8 by dLS(j�),
yielding

The left-hand side of Eq. 9 is the overall frequency-
dependent, complex stiffness of the sarcomere. It is com-
posed of the three terms on the right-hand side, each of
which arises from different kinetic features of the myofila-
ment system. We designate the first term the x1 component
because its dynamic attributes derive from myofilament

kinetic features responsible for changes in the x1 distortional
variable in response to changes in LS. We designate the
second term the x2 component because its dynamic at-
tributes derive from myofilament kinetic features responsi-
ble for changes in the x2 distortional variable in response to
changes in LS. Together, the x1 and x2 components combine
to form a distortional stiffness component of the sarcomeric
complex stiffness. We designate the third term the �2 com-
ponent because its dynamic attributes derive from myofila-
ment kinetic features responsible for changes in the �2
recruitment variable in response to changes in LS. Because
of the physical sense of the �2 component, it may be thought
of as a recruitment stiffness. We will see that the �2 com-
ponent possesses dynamic behaviors that are important to
the elucidation of length-sensitive mechanisms within the
sarcomere.

Model interpretation of frequency domain
stiffness components

To relate the three stiffness components to myofilament
kinetics, the model’s nonlinear, state-variable, differential
equations (Eqs. A1–A5) were first linearized by taking a
first-order Taylor expansion about some reference state.
This linearization procedure is detailed by Eqs. A30–A91 in
the Appendix and is summarized here. Let the i indexed
upper case Yi, represent state variables (D, A1, A2, x1, x2)
and the k indexed upper-case, Um, represent input variables
(LS, Ca). The indexed lower-case yi and ui represent respec-
tive incremental deviations of state variables and input
variables from their reference values. Then, the general
form for linearized differential equations is given as

ẏi � �
j

	i
Yjyj � �

m

	i
Umum, (10)

where the 	i
Yj are the values of the partial derivatives of the

Ẏi with respect to the Yj (j 	 1, 2, 3, 4, 5) evaluated at the
reference state and the 	i

Um are the values of the partial
derivatives of the Ẏi with respect to the Um (m 	 1, 2) also
evaluated at the reference state.
Once the 	i

Yj and 	i
Um were known, the linear differential

equations for incremental variation were formed, they were
frequency transformed and substitutions were made to elim-
inate unwanted state variables. After rearrangement, the
transfer functions in Eq. 9 for the x1 and x2 components
were found in terms of the kinetic rate coefficients of the
myofilament system (Eqs. A45–A47) as

Hx1�j�� �
1
2

j��j� � �h� g� h���
�j��2 � �h� f� � g� h��j� � f��g� h�� ,

(11)

Hx2�j�� �
1
2

j��j� � �h� f� � g� h���
�j��2 � �h� f� � g� h��j� � f��g� h�� .

(12)

dF
dLS

�j��
Ç

sarcomeric stiffness
�

�10Hx1 �j��Ç
x1 component

�
�20Hx2 �j��Ç
x2 component

Ç
distortion stiffness

�
x0H�2 �j��Ç
�2 componentÇ

recruitment stiffness

(9)
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These transfer functions are multiplied by the steady-state
values of the recruitment variables (�10, �20) to form dis-
tortional stiffness according to Eq. 9.
Further substitution and rearrangement of the frequency-

transformed linear equations resulted in the following trans-
fer function expression for the �2 component, also in terms
of kinetic features of the myofilament system,

H�2�j�� �

�n5 j� � n4��Hx1� j���
� �n3 j� � n2��Hx2� j��� � n1j� � n0

�j��3 � k2�j��2 � k1 j� � k0
(13)

In Eq. 13, the numerator and denominator coefficients, ni
and ki, are combinations of the 	i

Yj and 	i
Um (in turn, these

partial-derivative terms from the linearization process are
combinations of rate coefficients, reference states, and co-
efficients that grade the strength of the various nonlineari-
ties, according to Eqs. A48–A91). This transfer function is
multiplied by x0 to form the �2 component, or recruitment
stiffness, as identified in Eq. 9.
The numerator terms in Eq. 13 lead to a natural decom-

position of recruitment stiffness into band-pass and low-
pass components according to

x0H�2� j��Ç
recruitment stiffness

�
x0

�n5 j� � n4��Hx1� j��� � �n3 j� � n2��Hx2� j���

� j��3 � k2� j��2]� k1 j� � k0
Ç

band - pass recruitment stiffness

�
x0

n1 j� � n0
� j��3 � k2� j��2 � k1 j� � k0
Ç

low - pass recruitment stiffness

(14)

The band-pass and low-pass recruitment stiffness compo-
nents are associated, respectively, with the cooperatively
coupled and structurally coupled responses to LS described

previously. As demonstrated below, the numerator coeffi-
cients of the band-pass recruitment component, n2–5, have
value only if some forms of cooperativity are operative. In
contrast, the numerator coefficients of the low-pass recruit-
ment component, n1–0, have value only if structural mech-
anisms such as sliding filament or lattice spacing-related
XB attachment are operative.

Structurally-coupled and cooperatively-coupled
responses to sarcomeric length greatly modify
sarcomeric stiffness and step response
characteristics

Without length-responsiveness the sarcomere is a dynamic
system that exhibits strictly hi-pass filtering characteristics
and no positive work features

A generic myofilament baseline condition was defined by:
1) LS 	 2.3 
m (because this LS is on the plateau of the
filament overlap versus LS relation, there is no change in
filament overlap with incremental change in LS); 2) Ca2�
binding isotherm 	 1, i.e., full Ca2� saturation; and 3) all
model parameters equal to the generic-muscle baseline val-
ues given in Table 1. The baseline parameter values in Table
1 were chosen as a compromise because there is no one set
of parameters for a general model of striated muscle be-
cause of the great diversity among muscles adapted for
specific functions in different species, among muscles
adapted for different functions within a single organism, and
within single muscles undergoing temporal adaptations be-
cause of disease, changing use patterns, and mechanical
environments. The parameter set given in Table 1 is only
representative of a baseline, and one can expect 2–10-fold
differences from these values for any given muscle. Impor-
tantly, the baseline condition lacked cooperativity, length-
dependent XB attachment, and sliding filament recruitment
(� 	 1, u 	 v 	 w 	 0).

TABLE 1 Model Parameters

Kinetic Parameters f0 (s�1) f�0 (s�1) hiso (s�1) h�iso (s�1) g0 (s�1) konCa (s�1) koffCa (s�1) kon0 (s�1) koff0 (s�1)

Generic baseline 50 500 8 6 4 150 50 0 150
Rat trabecular muscle 4.35 791 2.23 2.30 20.0 26.6 38.0 0.0 30,155
Mouse papillary strip 10.7 1023 8.85 1.62 47.7 49.4 39.5 0.0 12,800

Nonlinear Parameters

Length-dependent parameter Cooperativity parameters

� u v w

Generic baseline (null values) 0 1 1 1
Rat trabecular muscle 4.49 1.00 4.25 5.33
Mouse papillary strip 3.01 1.07 4.78 4.68

Structural Parameters LA (
) B (
) LM (
) RT LR (
) x0 (
)

Generic baseline 1.2 0.2 1.6 1.62 
 105 1.8 0.01
Rat trabecular muscle 1.2 0.2 1.6 1.62
 105 1.62 0.11
Mouse papillary strip 1.2 0.2 1.6 1.62 
 105 1.77 0.10
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MATLAB was used to obtain polar graphs of Eqs. 11, 12,
and 13 and, thus, polar graphs outputs of the x1, x2, and �2
components. Coefficient values in Eq. 13 were obtained
from calculations according to Eqs. A47–A91 in the Ap-
pendix.
Under baseline conditions, at frequencies between 0.01

and 100 Hz, the polar locus of the x1 component de-
scribes a truncated quasi-hemisphere in the first quadrant
of the complex plane; the locus of the x2 component
describes a nearly complete quasi-hemisphere in the first
quadrant; and the �2 component has no value at all. The
x1 and x2 component polar loci are characteristic of
high-pass filters. These differ in that the x2 component
passes lower frequencies than the x1 component. The
summation of components produces an overall complex
stiffness that traverses a gull-winged locus tilted diago-
nally in the first quadrant of the complex plane (Fig. 2).
At frequencies �10 Hz, the x2 component dominates to
produce the arc of the left wing, and at frequencies �10
Hz, frequency variation in the x1 component dominates to
produce the arc of the right wing. The dip in the locus
between the two wings is the point where frequency-
variation dominance is shifted from one component to the
other. The sum of the x1 and x2 components is the total
distortional stiffness.
There is no recruitment stiffness in the baseline model,

and the plot does not go through the fourth quadrant.
Because the stiffness locus is confined to the first quad-
rant, this baseline model exhibits only work-absorbing
features and possess no work-producing features. The
step response of the baseline model is shown in the right
panel of Fig. 2. The recovery due to the x1 component is,
as expected, much faster (recovery from this component

is approximately 90% complete within 10 ms) than that
from the x2 component (approximately 90% complete in
250 ms).

Cooperatively coupled length responsiveness adds a
band-pass filtering characteristic and a potential
work-producing effect

The effect of RU–RU, XB–RU, and XB–XB cooperative
mechanisms was evaluated by comparing the complex stiff-
ness of the baseline condition to the complex stiffness when
each type of cooperativity was introduced into the model at
a high level by individually adjusting the parameters u, v,
and w. RU–RU cooperativity simply amplified the distor-
tional stiffness and did not introduce an �2 component or
recruitment stiffness.
In contrast, both XB–RU and XB–XB cooperativities

not only amplified the distortional stiffness but, also
produced an �2 component, or recruitment stiffness. Of
these two cooperativities, XB–XB cooperativity was
much stronger in producing recruitment stiffness. The
polar locus of this recruitment stiffness (Fig. 3) traversed
a circular path beginning at the origin (� 	 0), circling
through the first quadrant, progressing on to enter the
fourth quadrant at frequencies just above 1 Hz, where it
continued until it entered the third quadrant at frequen-
cies above 10 Hz. For all intents and purposes, the locus
terminated at the origin at frequencies approaching 100
Hz. Such a locus is characteristic of a band-pass filter
that attenuates low and high frequencies while passing
only mid-range frequencies. The impact of a large �2
component on the shape of the �m(j�) locus is dramatic.
In this case, the �2 component adds to the distortional

FIGURE 2 Left panel, Polar plot of overall complex stiffness for baseline model parameters showing vector composition in terms of x1 and x2 components
(dashed arrows) at 10 Hz. Also, magnitude (solid arrow) and phase (�) at 10 Hz are shown. With these baseline parameter values, the �2 component is
zero and its locus is located at the origin, i.e., it contributes nothing to the overall complex stiffness. The overall complex stiffness is entirely a distortion
stiffness and there is no recruitment component. Right panel, Force response of baseline sarcomeric model to step decrease in sarcomeric length. The
separation of predominance of contributions by x1 and x2 components is clearly seen at�10 ms. The response recovery for times�10 ms is almost entirely
due to the x1 component and, for times �10 ms, is almost entirely due to the x2 component.
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stiffness to not only introduce a looping aspect to the
�m(j�) locus but also to cause the nadir of the locus to dip
below the real axis into the fourth quadrant.
A fourth quadrant presence of �m(j�) has profound phys-

ical meaning, i.e., for all frequencies in which �m(j�) re-
sides in the fourth quadrant (negative imaginary part and
negative phase) the system behaves actively and performs
positive cyclic work on its mechanical environment. This
contrasts with first quadrant stiffness in which the system
must absorb work from its mechanical environment to com-
plete a cycle. Thus, the system behaves passively at fre-
quencies where the stiffness locus resides in the first quad-
rant, i.e., when it has positive phase, but it behaves actively
when the locus is in the fourth (and third) quadrant, i.e.,
when it has negative phase.
The corresponding step response is shown in the right

panel of Fig. 3. The component of the step response due to
recruitment stiffness develops relatively slowly and then
recovers slowly to contribute a hump with long-lasting tail
to the overall step response. Importantly, unlike the distor-
tion stiffness response, the recruitment stiffness response is
not immediate. It develops slowly and may be called de-
layed tension, a feature that has often been associated with
the phenomenon of stretch activation (Pringle, 1978; Abbot
and Steiger, 1977; Steiger, 1971).
It is of interest to compare the step response of Fig. 3

with the classic quick-release records obtained in frog
sartorius muscle by Huxley and Simmons (1971). There
are four phases identified in these classic records: phase
1 is the initial response coincident with the change in
length; phase 2 is the fast recovery phase; phase 3 is the
apparent plateau; and phase 4 is the slow recovery back
toward the initial force. Each of these phases may be

identified in the model predicted response in Fig. 3. The
segment of the model response corresponding to phase 3
can be made more or less pronounced by changing the
strength of XB–XB cooperativity. Note that the time-
duration of the various response segments may be easily
altered to agree with the time durations seen in the
Huxley–Simmons experiment by changing the kinetic
constants in the myofilament model.

Structurally coupled length responsiveness adds a
low-pass filtering characteristic and a significant
positive work effect

There are two structurally coupled length-sensing mecha-
nisms in the model: sliding filament mechanisms leading to
changes in filament overlap (Eqs. A7–A11) and length-
dependent XB attachment through the effect of � on the f-f�
coefficient pair (Eqs. A16–A17). Both of these mechanisms
generated an �2 component, or recruitment response, but the
sliding filament effect from the ascending filament overlap
region (Eq. A7) was very small. In contrast, the XB attach-
ment effect could be made arbitrarily large by increasing the
value of the parameter �. Importantly, the shape of the
recruitment response locus from these structurally coupled
length-responsiveness mechanisms was similar and differed
fundamentally from the shape of the recruitment response
locus resulting from cooperatively coupled mechanisms. In
the case of structurally coupled length responsiveness, the
recruitment stiffness locus began (� 	 0) on the real axis
away from the origin and traversed a half-circular path
entirely below the real axis within the fourth quadrant for
frequencies �10 Hz and, then, into the third quadrant for
frequencies �10 Hz. For all intents and purposes, the locus

FIGURE 3 Left panel, Polar plot of overall complex stiffness (solid curve) for model expressing XB–XB cooperative behavior. This cooperativity gives
rise to a significant recruitment stiffness (labeled dashed circle) that, when added to the distortion stiffness, imparts a looping aspect to the overall stiffness
that dips into the fourth quadrant. Right panel, Force response of model (solid curve) to step change in sarcomeric length showing composition in terms
of distortion and recruitment responses (dashed curves). The recruitment response contributes to the overall step response only after some time has passed,
i.e., it is not immediate. The step response of a process with a band-pass filter dynamic is not sustained and slowly dies away.
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terminated at the origin at frequencies approaching 100 Hz.
This locus is characteristic of a low pass filter.
When length-dependent XB attachment was given suffi-

cient strength, the recruitment stiffness contributed signifi-
cantly to �m(j�) and dramatically changed the shape of its
locus in the complex plane from the gull wing shape of the
distortion stiffness to an opening spiral that began at a
sizeable zero-frequency value on the real axis (Fig. 4).
Importantly, the �m(j�) locus began and remained in the
fourth quadrant, where the recruitment stiffness dominated
for most frequencies �10 Hz, before crossing into the first
quadrant at higher frequencies, where the distortion stiff-
ness dominated. For all frequencies where the locus was in
the fourth quadrant, the sarcomere exhibited work-produc-
ing behavior.
The corresponding step response shown in the right panel

of Fig. 4 demonstrates that the recruitment-stiffness re-
sponse to a step change in length rises relatively slowly for
a period and is then sustained. When added to the overall
step response, this recruitment-stiffness response causes a
slow depression after the initial fast recovery and a sus-
tained depressed force. When seen as a response to a quick
stretch, rather than to a quick release as in Fig. 4, this
recruitment-stiffness response imparts a slow rise in force
after the initial fast recovery and a sustained elevated force.
Like the slowly developing force from the cooperatively
coupled length responsiveness in Fig. 3, the slow develop-
ing force of structurally coupled length responsiveness is a
delayed tension response and its sustained character is the
sine qua non of stretch activation.

Structurally coupled plus cooperatively coupled length
responsiveness add both a band-pass and a low-pass
filtering characteristic

The �m(j�) resulting from introducing both XB–XB coop-
erativity (cooperatively coupled length responsiveness) and
length-dependent XB attachment (structurally coupled
length responsiveness) into the model is shown in Fig. 5.
The locus is characterized by four features: its zero fre-
quency (or DC) value; a low-frequency first quadrant seg-
ment; a mid-frequency fourth quadrant segment; and a
high-frequency first quadrant segment. The low-pass re-
cruitment response from structurally coupled length respon-
siveness determines the zero frequency location of �m(j�)
on the real axis. Thereafter, at low frequencies, the band-
pass recruitment stiffness from cooperatively coupled
length responsiveness and the low-pass recruitment stiffness
from structurally coupled length responsiveness mecha-
nisms compete to determine the extent of the low frequency
segment in the first quadrant. At frequencies where both the
band-pass cooperatively coupled and low-pass structurally
coupled recruitment stiffnesses reside in the fourth quad-
rant, these two stiffnesses work together and compete with
the distortion stiffness to determine the extent of fourth
quadrant looping. The recruitment stiffness from both struc-
turally and cooperatively coupled length responses have
decreasing influence on �m(j�) as frequencies become high;
high frequency �m(j�) is determined almost exclusively by
the distortional stiffness. These structurally and coopera-
tively coupled length responsiveness effects also combine in
the step response to produce a delayed tension component,

FIGURE 4 Left panel, Polar plot of overall complex stiffness (solid curve) for model expressing length-dependent XB attachment behavior. This form
of structurally coupled length sensing gives rise to a large recruitment stiffness (labeled dashed hemi-circle) that, when added to the distortion stiffness,
imparts an opening spiral form to the overall stiffness that begins and remains in the fourth quadrant as long as the recruitment stiffness dominates. Right
panel, Force response of model (solid curve) with left panel complex stiffness to step change in sarcomeric length showing composition in terms of a
distortion and recruitment responses (dashed curves). As with the example in Fig. 3, the recruitment response contributes to the overall step response only
after some time has passed, i.e., it is not immediate. Different from recruitment due to cooperatively-coupled length responsiveness in Fig. 3, recruitment
from structurally coupled length responsiveness persists and does not die away.
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part of which is not sustained and part of which is sustained,
as one would expect, from the individual effects from the
two recruitment mechanisms presented earlier.

Summary of myofilament model decomposition
of sarcomeric stiffness

A nonlinear myofilament model was analyzed, according to
steps summarized in Fig. 6, to predict the model’s dynamic
stiffness. This analysis led to a decomposition of stiffness
into a component due to XB distortion and a component due
to XB recruitment. The XB distortion component was due to

XB elastic properties and was scaled, but not altered dy-
namically, by recruitment effects. XB recruitment stiffness
was induced by two classes of nonlinear phenomena: coop-
eratively-coupled length responsiveness as a result of XB-
related cooperativities (i.e., XB–RU and XB–XB cooperat-
ivities only—other kinds of cooperativities did not induce a
length-dependent dynamic recruitment effect); and, struc-
turally-coupled length responsiveness as a result of chang-
ing filament overlap and length-dependent XB attachment
step. Recruitment stiffness resulting from cooperatively
coupled mechanisms could be characterized dynamically as
a band-pass filter that introduced looping into the �m(j�)

FIGURE 5 Left panel, Polar plot of overall complex stiffness (solid curve) for model expressing both cooperatively and structurally coupled forms of
internal length-sensing behavior. In this case, the recruitment stiffness combines the features of the band-pass effect from cooperatively coupled length
sensing and the low-pass effect from structurally coupled length sensing. The resulting looping locus of the overall stiffness possesses a significant fourth
quadrant presence. Right panel, Force response of model (solid curve) with left panel complex stiffness to step change in sarcomeric length showing
composition in terms of a distortion and recruitment responses (dashed curves). In this case, the recruitment response combines features of both
cooperatively and structurally coupled length sensing with the result that it evolves apparently, more slowly than either of the two length sensing
mechanisms by themselves.

FIGURE 6 Steps in deriving stiffness predictions
from a nonlinear myofilament model. This analysis
naturally decomposes stiffness into distortional and
recruitment components which are, in turn, made up of
subcomponents as indicated in the figure and de-
scribed in the text. Nonlinearites related to cooperat-
ivity and structural effects not only change the value
of kinetic parameters but are also entirely responsible
for the recruitment stiffness component.
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locus. This looping could be sufficient to take the �m(j�)
locus into the fourth quadrant (positive work region) over a
limited frequency range. This recruitment stiffness also
produced a delayed tension effect in the step response that
eventually died away. In contrast, recruitment stiffness re-
sulting from structurally coupled mechanisms (i.e., length-
dependent XB attachment) could be characterized dynami-
cally as a low-pass filter that moved the zero frequency
stiffness from the origin to the right along the real axis.
Further, this effect caused the �m(j�) locus to pass through
the fourth quadrant (positive work region) at the lowest
frequencies and produced a delayed tension effect in the
step response that was sustained. Both band-pass and low-
pass recruitment mechanisms participate in the stretch ac-
tivation phenomenon.

REPRODUCTION AND INTERPRETATION OF
EXPERIMENTAL DATA FROM CARDIAC MUSCLE
WITH THE MYOFILAMENT MODEL

To adapt the generic distortion-recruitment model to car-
diac muscle, myofilament kinetic parameters were ad-
justed to reproduce as closely as possible the best-fit
complex stiffness locus of data obtained from rat trabec-
ular cardiac muscle (Wannenburg et. al., 2000) and from
mouse LV papillary muscle (Blanchard et. al., 1999).
These two sets of data differed in that the Wannenburg
data had no detectable first quadrant looping at the lowest
frequencies and no obvious fourth quadrant presence,
whereas the Blanchard data had both first quadrant loop-
ing at the lowest frequencies and significant low-fre-
quency fourth quadrant presence. These data sets were
selected for reproduction because they represent ex-
tremes of the more common observation that cardiac
muscle stiffness exhibits a low-frequency fourth quadrant
presence but not low-frequency first quadrant looping
(Berman et. al., 1988; Saeki et. al., 1991; Kawai et. al.,
1993; Rossmanith et. al., 1986; Shibata et. al., 1987;
Campbell et. al., 1993). Fitting to the selected data was
by adjusting model parameters with a least squares opti-
mizer to minimize the difference between the model-

predicted polar locus and each of the polar loci reported
by respective authors. The resulting polar plot reproduc-
tions are given in Fig. 7 and the corresponding cardiac
myofilament parameters for each set of data are given in
Table 1. The model-generated polar plot loci given in
Fig. 7 are virtually indistinguishable from the curves
given by the authors in the original publications. Al-
though, because many parameters were allowed to un-
dergo change, the parameters estimated by our curve-
fitting technique and reported in Table 1 are not unique,
they may be taken as starting points for the current
comparison and for future evaluations of cardiac muscle
mechanoldynamics.
Note that XB cycle kinetic parameters (f, f�, h, h�, g) in

the mouse are larger than the corresponding parameters in
the rat (Table 1) as one would expect for muscle from a
heart that beats at 500–600 min�1 as opposed to muscle
from a heart that beats at 200–300 min�1. However, the
relative values among XB kinetic parameters within a spe-
cies is about the same, with a surprisingly high value of f�
relative to f in both species. This indicated that the A1
(prepower stroke) state was underpopulated relative to the
A2 and D states in both species. A second item of interest is
that the nonlinear phenomena associated with cooperativity
and length-dependent XB attachment are present in appar-
ently equal strengths in both species. However, the fact that
the stiffness polar loci are so different for these two sets of
model parameters indicates that only subtle differences in
the nonlinear parameters are sufficient to produce polar loci
that appear quite different.

DISTORTION-RECRUITMENT INTERPRETATION
OF MUSCLE STIFFNESS DIFFERS FROM
PREVAILING VIEW

The distortion-recruitment interpretive framework pre-
sented above leads to a different understanding of processes
responsible for dynamic muscle stiffness than would be
obtained using the prevailing view. The prevailing view
decomposes muscle stiffness into four first-order high-pass

FIGURE 7 (A) Model reproduction of polar
plots of cardiac muscle stiffness from the data
of Wannenburg et al., (2000) obtained from
the trabecular muscle of a rat. (B) Model re-
production of polar plots of cardiac muscle
stiffness from the data of Blanchard et. al.
(1999) obtained from the papillary muscle
strip of a mouse. These two differing patterns
of cardiac muscle stiffness are easily accom-
modated by the model. Units of stiffness are
expressed in terms that are comparable to pub-
lished data obtained experimentally. Myofila-
ment parameters for both sets of data are given
in Table 1.

Myofilament Kinetics and Muscle Stiffness 2287

Biophysical Journal 81(4) 2278–2296



filters often referred to as the A, B, C, and D processes, as
in

�m�j�� � H0 � A
j�

j� � a� B
j�

j� � b� C
j�

j� � c

� D
j�

j� � d . (15)

This prevailing view was first put forth by Kawai and
Brandt (1980) as the sum of three filters representing the A,
B, and C processes and then expanded to four filters by
Kawai et. al. (1993) and Zhao and Kawai (1993), who added
the D process.
The characteristic frequency of each filter bears a puta-

tive relationship to a specific step in the XB cycle. A basic
assumption in assigning these relations is that there is at
least an order of magnitude difference in the XB kinetic
constants, such that each kinetic step may exhibit dynami-
cally as an uncontaminated mechanodynamic event. In this
prevailing view, recruitment and distortion are not recog-
nized explicitly as phenomena that contribute to stiffness.
Further, there is no means by which mechanisms such as
cooperativity and explicit length sensing can participate in
stiffness dynamics. In the prevailing view, all fourth quad-
rant presence of the stiffness locus derives from the negative
sign on the B process, which is assigned because the B
process putatively derives from the active force-generating
isomerization step (power stroke) in the XB cycle.
In contrast, the distortion-recruitment theory divides stiff-

ness dynamics into x1- and x2-distortional components that
act as high-pass filters and a recruitment component that
may appear in the form of a low-pass filter, a band-pass
filter, or a combination of low-pass and band-pass filters.
Important to the distortion-recruitment theory, is that re-
cruitment dynamics arise from nonlinearities in the myofil-
ament kinetic system. These act to give rise to internal
length sensing by the myofilament system and are entirely
responsible for any fourth quadrant presence in the �m(j�)
polar locus. As demonstrated in Fig. 2, the power stroke in
the XB cycle cannot, by itself, be responsible for fourth
quadrant stiffness and cannot give rise to positive work
features of constantly activated muscle. Although not suf-
ficient, the power stroke is necessary for any positive work
feature, as can be seen in Eq. 14, where it is shown that
recruitment stiffness is the product of the outcome of the
powerstroke, x0, and H�2(j�). Thus, if there is no power
stroke, there is no x0 and no recruitment stiffness and,
consequently, no positive work.
Another important feature of the distortion-recruitment

theory comes from inspection of the Hy(j�), which demon-
strates that there is considerable complexity in relationships
between myofilament kinetic events and dynamic coeffi-
cients associated with both distortion and recruitment.
There is no correspondence between any single dynamic

characteristic and a single myofilament kinetic step; each
dynamic characteristic depends on multiple underlying ki-
netic features of the myofilament system. With these fun-
damental differences, interpretations based on the prevail-
ing-view model lead to very different understanding of
mechanisms responsible for muscle stiffness than would be
obtained from the interpretations based on the distortion-
recruitment model presented here.
Clearly, there is a need to simplify the distortion-recruit-

ment theory if it is to find application either for simulation
or identification purposes. As a beginning point for reduced
representation, we suggest the following approximations.
The numerator and denominator polynomials of the transfer
functions, (Hx1(j�), Hx2(j�), and H�2

(j�)) in Eqs. 11–13,
may be factored into terms containing the polynomial roots.
Roots of numerator polynomials are designated as zeros,
and roots of the denominator polynomial are designated as
poles. The zero of the single factor in the numerator of
Hx1(j�) of Eq. 11 approximately cancels the lowest valued
pole of the two-factor representation of the denominator
polynomial. In contrast, the zero of the single factor in the
numerator of Hx2(j�) of Eq. 12 approximately cancels the
highest valued pole of the two-factor representation of the
denominator polynomial. As a consequence, the two com-
ponents of distortional stiffness may be taken as approxi-
mately independent and may be written as

x1 component� E1
j�

j� � d1
, (16)

x2 component� E2
j�

j� � d2
, (17)

where E1 and E2 are magnitude scaling parameters and d1
and d2 are dynamic parameters for the respective processes.
These reduced formulations retain the essential high-pass
filtering characteristics of the original formulations.
A second approximation is that one of the three roots of

the denominator polynomial of Eq. 13 is of much larger
magnitude than the other two, such that the large-magnitude
root contributes little to dynamics at frequencies of interest.
After dropping the large-magnitude root, the following fur-
ther simplifications may be taken without any appreciable
loss of fidelity

band-pass
recruitment stiffness� Rcoop

j�/�j� � a�
�j��2 � 2��n�j�� � �n

2 ,

(18)

low-pass
recruitment stiffness� Rstr

b
�j��2 � 2��n�j�� � �n

2 ,

(19)

where Rcoop and Rstr are magnitude scaling parameters for
the cooperatively based band-pass recruitment stiffness and
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structurally based, low-pass recruitment stiffness respec-
tively. Further, a, b, �, and �n are dynamic parameters for
the respective processes. Eq. 18 retains the band-pass fil-
tering characteristics of the original expression for cooper-
atively coupled recruitment stiffness, and Eq. 19 retains the
low-pass filtering characteristics of the original expression
for structurally coupled recruitment stiffness. Eqs. 16–19
represent simplified, reduced versions of the distortion-
recruitment model that emphasize system-dynamic param-
eters rather than myofilament-kinetic parameters. The nine
parameters in Eqs. 16–19 are no more than the nine param-
eters in the prevailing view formulation, Eq. 15, and many
fewer than the eighteen parameters in the linearized model
equations, Eqs. 9–13. In the reduced version of the distor-
tion-recruitment model, there remains explicit representa-
tion of basic myofilament phenomena such as cooperativity
(band-pass recruitment stiffness), but there is no attempt to
relate these representations to specific kinetic steps.
Further reductions may be made for cardiac muscle in

that many authors report no observable first quadrant loop-
ing in cardiac muscle at the lowest frequencies (Berman et.
al., 1988; Saeki et. al., 1991; Kawai et. al., 1993; Ross-
manith et. al., 1986; Shibata et. al., 1987; Campbell et. al.,
1993; Wannenburg et. al., 2000) suggesting no role for the
prevailing model’s A process. Additionally, frequencies of
the D process appear to be above those of physiological
interest. This has led to the practice of using just a five-
parameter version of the prevailing-view model to fit car-
diac muscle stiffness data,

�m�j�� � H0 � B
j�

j� � b� C
j�

j� � c . (20)

This reduced form is equivalent to a six-parameter reduced
version of the distortion-recruitment model,

�m�j�� � E1
j�

j� � d� Rrec� �j�/�j� � d�� � b
�j��2 � 2��n�j�� � �n

2� ,
(21)

which may be reduced even further to a five-parameter
version under circumstances where one of the poles in the
denominator of the recruitment term is far to the left. Some
complex stiffness loci can be fit equally well with both of
these formulations. However, the parameters obtained with
each will give quite different interpretations. In the prevail-
ing view of Eq. 20, the time constant associated with the B
process has a putative relation to the XB attachment (and
powerstroke) step, while that associated with the C process
has a putative relation to the XB detachment step. In the
reduced distortion-recruitment model, all distortional dy-
namics are captured in the first term on the right-hand side
and all recruitment dynamics are captured in the second
term. For this reduced model, the parameter interpretations
are as follows: E1, instantaneous stiffness that is propor-

tional to the number of attached XB; d, a characteristic
frequency by which distorted XB are replaced by undis-
torted XB; Rrecb/�n2, zero frequency stiffness equal to the
slope of steady-state length-tension relationship; �, damping
within the recruitment process expressing the tendency for
oscillations; and �n, characteristic frequency for recruitment
processes, which expresses the combined effect of all ki-
netic coefficients in the myofilament kinetic scheme.
A rough mapping between parameters in the prevailing-

view and distortion-recruitment models may be made as
follows. Parameters C and c in the prevailing-view model
are roughly equal in value to parameters E1 and d in the
distortion-recruitment model. Parameter B in the prevailing-
view model is roughly equal in value to Rrec in the distor-
tion-recruitment model and parameter b in the prevailing
view model has some equivalence to the smaller of the two
roots of the denominator polynomial, (j�)2 � 2��n(j�) �
�n
2, in the distortion recruitment model. However, when
estimated from stiffness data obtained in isolated cardiac
muscle, the interpretations assigned to these analogous-
valued parameters will be substantially different. We claim
that the parameters of the reduced distortion-recruitment
model are not only characteristic of observed stiffness dy-
namics but, also, give a new sense of appreciation for the
underlying contractile processes responsible for these dy-
namics.

OVERALL SUMMARY

A myofilament model of sarcomeric stiffness based on
distortion and recruitment concepts not only accurately re-
produces every feature of experimentally measured cardiac
muscle stiffness, but also provides a novel basis for inter-
pretation of these features in terms of underlying nonlinear
contractile mechanisms. Through this interpretive frame-
work, cardiac muscle stiffness provides a window to con-
tractile processes and a unique context in which to relate
elemental sarcomeric processes to the functional behaviors
of different muscle types or altered states (e.g., disease)
within a given muscle type.

APPENDIX

This Appendix lists the relevant mathematical expressions of the model
and its predictions as given in the text. Developments of these equations
have been presented in preliminary form in Razumova et. al. (1999, 2000)
and Campbell et. al. (2001).

Dynamic equation list

State variable differential equations

Model state variables may be divided between recruitment variables (i.e.,
the numbers of XB in the D, A1, and A2 states in the XB cycling scheme
of Fig. 1) and distortional variables (i.e., the average distortion of all XB
in the A1 and A2 states). The state variable differential equations describing
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rates of changes of recruitment variables can be written from inspection of
Fig. 1 as

Ḋ�t� � konRoff�t� � f�A1�t� � gA2�t� � �koff � f�D�t�

(A1)

Ȧ1�t� � fD�t� � h�A2�t� � �f� � h�A1�t� (A2)

Ȧ2�t� � hA1�t� � �h� � g�A2�t� (A3)

It is understood in Eqs. A1–A3 that the kinetic coefficients kon, koff, f, f�,
h, h�, and g are not constants and depend on state variables and input
variables according to relations given below.
The state variable differential equations for the x1 and x2 distortional

variables are derived according to the following. Let x1(t) be the time-
varying average distortion among A1 XB and x2(t) be the time-varying
average distortion among A2 XB. There are two phenomena causing
distortion of XB: chemomechanical energy transduction during the XB
power stroke causing elastic energy storage in the XB as transition is made
from state A1 to state A2, and shearing between filaments during sliding
between thick and thin filaments when sarcomere length, LS, changes.
These two phenomena are treated as independent.
Independent distortional effects are seen in the development of the

differential equation for x2(t). This derivation uses a macroscopic distortion
balance over all parallel XB in the A2 state in the half sarcomere. The
collective distortion among the parallel A2 XB is given by

X2�t� � A2�t�x2�t� (A3a)

where the upper case X2(t) is used to designate the collective distortion and
the small case, x2(t), designates the average distortion among the A2(t) XB.
X2(t) at some t � �t, can be written as

X2�t� �t� � X2�t� � �added distortion due to shearfrom change in LS over �t �
� �added distortion due to formation ofnew A2 XB via power stroke over �t�
� �lost distortion due to transition ofdistorted A2 XB to other statesover�t�

(A3b)
where

[added distortion due to shear from change in LS over �t]

� ��externally imposed �LS/2�
�#A2 XB existent at t� � � ��LS/2�A2�t�

(A3c)
[added distortion due to formation of new A2 XB over �t]

� ��number of newly formed A2 XB
distortion of newly formed XB �

� �hA1�t���t�x0 � x1 � �LS/4� (A3d)

[lost distortion due to transition of distorted A2 XB to other
states over �t]

� � �number of A2 XB lost)
�average distortion of these lost A2 XB)�

� ��g� h��A2�t���tx2�t� (A3e)

The power stroke induces, on the average, x0 distortion in XB as they
enter the A2 state from the A1 state. In addition, because we treat distortion
from the power stroke and that from sliding filaments as independent
events, the XB entering the A2 state bring with them whatever distortion
they may have possessed in the A1 state prior to the transition to A2.
Substituting Eqs. A3c–A3e into Eq. A3b gives

X2�t� �t� � X2�t� �
�LS
2 A2�t�

� �hA1�t���t�x0 � x1 �
�LS
4 �

� ��g� h��A2�t���tx2�t� (A3f)

Rearranging,

X2�t� �t� � X2�t�
�t

� A2�t�
�LS
2�t � �hA1�t���x0 � x1 �

�LS
4 �

� ��g� h��A2�t��x2�t� (A3g)

Taking the limit as �t 3 0, yields

Ẋ2�t� � A2�t�
L̇S
2 � �hA1�t���x0 � x1�

� �g� h��A2�t�x2�t� (A3h)

Now, Ẋ2(t) may be eliminated from Eq. A3h by noting that differentiation
of Eq. A3g yields

Ẋ2�t� � Ȧ2�t�x2�t� � A2�t�ẋ2�t� (A3i)

Equating Eqs. A3h and A3i, making appropriate substitutions for Ȧ2(t)
from Eq. A3, and solving for ẋ2(t), gives the desired differential equation,

ẋ2�t� � �h
A1�t�
A2�t�

�x2�t� � �x1�t� � x0�� �
L̇S�t�
2 (A4)

In like manner, it can be shown that

ẋ1�t� � ��f D�t�
A1�t�

� h�
A2�t�
A1�t��x1�t� � h�

A2�t�
A1�t�

�x2�t� � x0�

�
L̇S�t�
2 (A5)

where XB enter the A1 state from D with no distortion, but return to A1
from A2 via the reverse power stroke with residual distortion not removed
by loss of x0.

Output equation

The model is structured such that it may be viewed as being driven by two
input signals: the time course of available activator calcium, Ca(t), and the
time course of sarcomere length, LS. The model responds with a single
output, the predicted force, F(t). Force prediction is given by the model
output equation (Razumova et. al., 1999),

F�t� � �A1�t�x1�t� � �A2�t�x2�t� (A6)
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Nonlinear phenomena in myofilament system

Filament overlap. Let Z be the length of the overlap region of thick and
thin filaments in a half sarcomere that allow cycling XB. Also, let LA 	
length of thin filament, LM 	 length of thick filament, and B 	 length of
thick filament bare zone. Then,

If LS  2LA � B, then Z� 1
2 LS � �LM/2� LA�

(A7)

If 2LA � B LS  2LA � B, then Z� 1
2 �LM � B�

(A8)

If LS � 2LA � B, then Z� �1
2 LS � �LM/2� LA�

(A9)

Let RT equal the number of XB in a half sarcomere and RZ equal the
number of XB in the Z overlap region. Then,

RZ �
Z

1
2 �LM � B�

RT (A10)

Roff � RZ � D� A1 � A2 (A11)

Saturation effects from Ca2�-binding Isotherms. For a single low-affinity
Ca2�-binding site to TnC, as in cardiac muscle, the binding isotherm is

�binding isotherm�1 �
Ca�t�

K1 � Ca�t� (A12)

where K1 is the half saturation concentration for binding to the available
site. For two low-affinity Ca2�-binding sites on TnC, as in fast skeletal
muscle, the binding isotherm is

�binding isotherm�2 �
Ca�t�2

K1K2 � K2Ca�t� � Ca�t�2 (A13)

where K1 and K2 are the half saturation concentrations for binding to the
first and second sites, respectively.
Input variable-dependent coefficients. Calcium-dependent RU on–off

coefficients. For any level of Ca2�-binding, the reference value of the RU
on–off coefficients are given by

konref � kon0 � �konCa � kon0 ��binding isotherm� (A14)

koffref � koff0 � �koffCa � koff0 ��binding isotherm� (A15)

where the 0 superscript indicates the value of the coefficient when Ca2� is
not bound to TnC, and the Ca superscript indicates the value when the TnC
binding site is saturated.
Sarcomere length-dependent attachment coefficient. In our conception,

changes in LS causes changes in longitudinal and transverse dimensions of the
myofilament system. Longitudinal dimension changes are responsible for
changing filament overlap as described above; transverse dimension changes
are responsible for changes in transverse interfilament spacing. Increases in LS
causes decreases in interfilament lattice spacing and reduces the distance that
the myosin head must travel to attach to the actin-binding site and, thus,
reduces the activation energy barrier for XB attachment (Godt and Maughan,
1981; McDonald and Moss, 1995; Fuchs and Smith, 2001). The result is that
the probability for myosin attachment to actin increases. For this reason, we
changed the f-f� coefficient pair with changes in LS because these coefficients
govern the attachment step in our XB scheme. We had no rationale for

changing h, h�, and g with sarcomere length and, therefore, we did not allow
these coefficients to be length sensitive.
To consider the impact of LS on D-to-A1 transitions, we defined a

normalized LS variable as

� �
LS � LS0
LS0

where LS0 is a reference LS. Let decreased lattice spacing due to increased
LS reduce the activation energy, B, needed for a D-to-A1 transition as

BDA1 � BDA1
0 � b�

where b is a coefficient expressing the strength of the activation energy
reduction, and the 0 superscript on B refers the first term on the right-hand
side to the activation energy at LS 	 LS0. Then, according to normal
activation energy conventions, the rate coefficient for a D-to-A1 transition
is enhanced with � according to

fLS � fa�e�( BDA1
0 �b�)/�T� � f0 �e��� (A16)

where fLS is the value of f due to just LS effects, fa is an attempt frequency,
� equals b/�T, and f0 is the coefficient governing D-to-A1 transition at LS0.
Coincidentally, following normal conventions, the probability for an A1-
to-D transition is reduced with increased LS according to

f�LS � f�a�e�(BA,D
0 �b�)/�T� 	 f�0�e���� (A17)

The outcome from this treatment of the effect of LS on the kinetics of the
attachment step is that the strength of these effects in the model can be
graded with the single parameter, �.
State variable-dependent coefficients. Neighbor Interactions. Considering

three kinds of nearest-neighbor interactions (RU–RU, XB–RU, and XB–XB
interactions), we grade the strength of each of these interactions with the
parameters: u, w, and v, respectively. Then, combining the independent effects
of each interaction, as developed and presented in Razumova et. al. (2000) as
single terms, these interaction effects may be represented as

kon � konref�1�
D
RZ

�u� 1� �
A1
RZ

�ue(w�1)(x1/x0) � 1�

�
A2
RZ

�ue(w�1)(x2/x0) � 1��2 (A18)

koff � koffref�1�
D
RZ� 1u� 1� �

A1
RZ�e

�(w�1)(x2/x0)

u � 1�
�
A2
RZ �e

�(w�1)(x2/x0)

u � 1��2 (A19)

f� fLS�1�
A1
RZ

�e(v�1)(x1/x0) � 1� �
A2
RZ

�e(v�1)(x2/x0) � 1��2
(A20)

f � � f �LS�1�
A1
RZ

�e�(v�1)(x1/x0) � 1�

�
A2
RZ

�e�(v�1)(x2/x0) � 1��2 (A21)
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where konref and koffref refer to baseline values of the respective coefficients
when there are no nearest-neighbor cooperative effects.
Distortion-dependent kinetic coefficients. A central tenet in XB theory

is that kinetic coefficients leading away from attached states must change
according to the elastic energy stored in those states due to elastic defor-
mation (i.e., distortion). Because elastic energy changes with the square of
elastic deformation, it may be argued that these kinetic coefficient changes
are nearly parabolic around an isometric reference state. If so, there will be
no appreciable changes in these coefficients for small amplitude length
perturbations, and this allows distortion dependence to be ignored (Thorson
and White, 1983).

Steady-state equations

All variations arising from small-amplitude-length perturbations take place
around a steady-state, isometric baseline. Because of nonlinearities, the
baseline state influences small-amplitude dynamic behavior. Thus, solution
of the steady-state model to determine baseline values is required before
dynamic behavior can be determined.
Under steady-state isometric conditions all inputs are constant, i.e.,

LS(t) 	 LS0 and Ca(t) 	 Ca0. Thus, the differential equations become
algebraic equations and the steady-state equation list may be restructured
into Eqs. A7–A17 plus the following set of seven simultaneous algebraic
equations.

kon � konref�1�
D0 � A10
RZ

�u� 1� �
A20
RZ

�ue(w�1) � 1��2
(A22)

koff � koffref�1�
D0 � A10
RZ �1u� 1� �

A20
RZ � 1

ue(w�1) � 1��2
(A23)

f� fLS�1�
A20
RZ

�e(v�1) � 1��2 (A24)

f � � f �LS�1�
A20
RZ � 1

e(v�1) � 1��2 (A25)

D�
kon

kon � koff � f RZ �
f� � kon

kon � koff � f A1

�
g� kon

kon � koff � f A2 (A26)

A1 �
f

f � � h D�
h�

f � � h A2 (A27)

A2 �
h

h� � g A1 (A28)

Under isometric conditions, x1 	 0 and x2 	 x0, and the output equation
reduces to

F� �A2x0 (A29)

Model linearization

Once steady-state values were determined, small-amplitude model behavior is
given by the model’s linearized dynamic equations. The nonlinear, state-
variable, differential Eqs. A1–A5 were linearized by taking a first-order Taylor
expansion about the reference state to create a set of linear differential equa-
tions. Let the i indexed upper case Yi, represent state variables (A1, A2, D, x1,
x2) and them indexed upper-case,Um, represent input variables (LS, Ca). Thus,
i 	 1, 2, 3, 4, 5 and m 	 1, 2. The indexed lower-case yi and um represent
respective incremental deviations of state variables and input variables from
their reference values. Index values are assigned according to

y1 � A1 � A10, y2 � A2 � A20, y3 � D� D0

y4 � x1 � x10, y5 � x2 � x20

u1 � Ca� Ca0, u2 � LS � LS0

where the subscript 0 represents the reference value. The general form for
linearized differential equations is given by

ẏi � �
j

	i
Yjyj � �

m

	i
Umum (A30)

where the 	i
Yj are the values of the partial derivatives of the Ẏi with respect

to the Yj(j 	 1, 2, 3, 4, 5) evaluated at the reference state, and the 	i
Um are

the values of the partial derivatives of the Ẏi with respect to the Um also
evaluated at the reference state.
Once the 	i

Yj and 	i
Um are known, the linear differential equations for

incremental variation around the reference state may be written from Eqs.
A1–A5 as

ẏ1 � 	1
1y1 � 	1

2y2 � 	1
3y3 � 	1

4y4 � 	1
5y5 � 	1

u2u2 (A31)

ẏ2 � 	2
1y1 � 	2

2y2 (A32)

ẏ3 � 	3
1y1 � 	3

2y2 � 	3
3y3 � 	3

4y4 � 	3
5y5 � 	3

u1u1 � 	3
u2u2

(A33)

ẏ4 � 	4
4y4 � 	5

5y5 � 	5
u3u̇2 (A34)

ẏ5 � 	5
4y4 � 	5

5y5 � 	5
u3u̇2 (A35)

That there are different numbers of terms on the right-hand side of these
equations is because the values of particular partial derivatives were zero,
i.e., there was no dependence of the respective time derivative on the
variable of the partial derivative. These zero-valued terms were dropped
from Eqs. A31–A35. The linearized differential Eqs. A31–A35, were
Fourier transformed to produce the set of simultaneous algebraic equations
in the complex frequency (j�) domain,

j�y1 � 	1
1y1 � 	1

2y2 � 	1
3y3 � 	1

4y4 � 	1
5y5 � 	1

u2u2 (A36)

j�y2 � 	2
1y1 � 	2

2y2 (A37)

j�y3 � 	3
1y1 � 	3

2y2 � 	3
3y3 � 	3

4y4 � 	3
5y5 � 	3

u1u1 � 	3
u2u2

(A38)

j�y4 � 	4
4y4 � 	4

5y5 � 	4
u3j�u2 (A39)

j�y5 � 	5
4y4 � 	5

5y5 � 	5
u3j�u2 (A40)
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where the yi, as frequency transformed variables, are now functions of
complex frequency rather than functions of time as in the differential Eqs.
A31–A35.
Now, the overall complex stiffness was defined in the text in terms of

three components as

Recognizing that u2 	 dLS, each of the frequency-dependent transfer
functions within each component was identified as

Hx1�j�� �
y4
u2

�j�� (A42)

where y4 is the frequency-domain representation of the incremental vari-
ation in x1(t);

Hx2�j�� �
y5
u2

�j�� (A43)

where y5 is the frequency-domain representation of the incremental vari-
ation in x2(t); and

H�2�j�� �
y2
u2

�j�� (A44)

where y2 is the frequency domain representation of the incremental vari-
ation in A2(t).
By performing the divisions indicated in Eqs. A42 and A43 on Eqs. A34

and A35 and then carrying out the necessary substitution and rearrange-
ment to eliminate unwanted state variables, it can be shown that the transfer
functions for the x1- and x2-distortional components, defined by Eqs. A42
and A43, respectively, may be given in terms of the kinetic rate coefficients
of the myofilament system as

Hx1�j�� �
1
2

j��j� � �h� g� h���
�j��2 � �h� f � � g� h��j� � f ��g� h��

(A45)

Hx2�j�� �
1
2

j��j� � �h� f � � g� h���
�j��2 � �h� f � � g� h��j� � f ��g� h��

(A46)

Further, substitution and rearrangement of Eqs. A33–A40 result in the
following expression for the �2 recruitment component, defined by Eq.
A44, in terms of kinetic features of the myofilament system,

HE2�j�� � �n5j� � n4��Hx1�j��� � �n3j� � n2��Hx2�j���

�j��3 � k2�j��2 � k1j� � k0

�
n1j� � n0

�j��3 � k2�j��2 � k1j� � k0
(A47)

where the numerator coefficients, ni, and denominator coefficients, ki, are
a combination of the 	i

Yj and 	i
Um (and these are, in turn, combinations of

rate coefficients, reference states, and coefficients that grade the strength of
the various nonlinearities). For the numerator coefficients.

n0 � 	2
1	1
3	1
u2 � 	2

1	3
u2	3

3

n1 � 	2
1	1
u2

n2 � 	2
1	1
3	3
5 � 	2

1	1
5	3
3

n3 � 	2
1	1
5

n4 � 	2
1	1
3	3
4 � 	2

1	1
4	3
3

n5 � 	2
1	1
4

For the denominator coefficients:

k0 � �	1
1	2
2	3
3 � 	2

2	1
3	3
1 � 	2

1	1
2	3
3 � 	2

1	1
3	3
2

k1 � 	1
1	2
2 � 	2

2	3
3 � 	1

1	3
3 � 	1

3	3
1 � 	2

1	1
2

k2 � ��	1
1 � 	2

2 � 	3
3�

Using the 0 subscript to represent the value of the state variables at the
steady-state reference condition, the 	i

Yj and 	i
Um are derived from Eqs.

A1–A5 as

	1
1 � ��h� f �� (A48)

	1
2 �

	f
	A2

D0 �
	f �
	A2

A10 � h� (A49)

	1
3 � f (A50)

	1
4 �

	f
	x1

D0 �
	f �
	x1

A10 (A51)

	1
5 �

	f
	x2

D0 �
	f �
	x2

A10 (A52)

	1
u2 �

	f
	LS

D0 �
	f �
	LS

A10 (A.53)

	2
1 � h (A54)

	2
2 � ��h� � g� (A55)

	3
1 �

	kon
	A1

�RZ0 � A10 � A20 � D0� �
	koff
	A1

D0 � �f � � kon�

(A56)

	3
2 �

	kon
	A2

�RZ � A10 � A20 � D0� �
	f �
	A2

A10

� � 	f
	A2

�
	koff
	A2�D0 � �g� kon� (A57)

dF
dLS

�j��
Ç

sarcomeric stiffness
�

�10Hx1 �j��Ç
x1 component �

�20Hx2 �j��Ç
x2 component

Ç
distortion stiffness

� x0H�2 �j��Ç
�2 componentÇ

recruitment stiffness

(A41)
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	3
3 �

	kon
	D �RZ � A10 � A20 � D0� �

	koff
	D D0

� �kon0 � koff0 � f0� (A58)

	3
4 �

	kon
	x1

�RZ0 � A10 � A20 � D0� �
	f �
	x1

A10

� � 	f
	x1

�
	koff
	x1 �D0 (A59)

	3
5 �

	kon
	x2

�RZ0 � A10 � A20 � D0� �
	f �
	x2

A10

� � 	f
	x2

�
	koff
	x2 �D0 (A60)

	3
u1 �

	kon
	Ca �RZ0 � D0 � A10 � A20� �

	koff
	Ca D0 (A61)

	3
u2 �

	RZ
	LS

kon �
	kon
	LS

�RZ � D0 � A10 � A20�

�
	koff
	LS

D0 �
	f �
	LS

A10 �
	f

	LS
D0 (A62)

	4
4 � ��h� f �� (A63)

	4
5 � h (A64)

	4
u2 �

j�
2 (A65)

	5
4 � g� h� (A66)

	5
5 � ��g� h�� (A67)

	5
u2 �

j�
2 (A68)

and, the following partial derivatives are derived from Eqs. A18–A21,

	f
	A2

� fLS
1
RZ

�e(v�1) � 1�2�1�
A20
RZ

�e(v�1) � 1�� (A69)

	f �
	A2

� f�LS
1
RZ

�e�(v�1) � 1�2�1�
A20
RZ

�e�(v�1) � 1��
(A70)

	f
	x1

� fLS
A10
RZ0
v� 1
x0

2�1�
A20
RZ0

�e(v�1) � 1�� (A71)

	f�
	x1

� f �LS
A10
RZ0
1� v
x0

2�1�
A20
RZ0 � 1

e(v�1) � 1�� (A72)

	f
	x2

� fLS
A20
RZ0
v� 1
x0

e(v�1) 2�1�
A20
RZ0

�e(v�1)� 1�� (A73)

	f �
	x2

� f �LS
A20
RZ0
1� v
x0

1
e(v�1) 2�1�

A20
RZ0 � 1

e(v�1)�1�� (A74)

	f
	LS

� f0
�

LSref
e��0 (A75)

	f �
	LS

� �f �0
�

LSref
e���0 (A76)

	kon
	A1

� konref
1
RZ

�u� 1�

� 2�1�
D0 � A10
RZ

�u� 1� �
A20
RZ

�ue(w�1) � 1��
(A77)

	koff
	A1

� koffref
1
RZ�1u� 1�

� 2�1�
D0 � A10
RZ �1u� 1� �

A20
RZ � 1

ue(w�1) � 1��
(A78)

	kon
	A2

� konref
1
RZ

�ue(w�1) � 1�

� 2�1�
D0 � A10
RZ

�u� 1� �
A20
RZ

�ue(w�1) � 1��
(A79)

	koff
	A2

� koffref
1
RZ � 1

ue(w�1) � 1�
� 2�1�

D0 � A10
RZ �1u� 1� �

A20
RZ � 1

ue(w�1) � 1��
(A80)

	kon
	D � konref

1
RZ

�u� 1�

� 2�1�
D0 � A10
RZ

�u� 1� �
A20
RZ

�ue(w�1) � 1��
(A81)

	koff
	D � koffref

1
RZ�1u� 1�

� 2�1�
D0 � A10
RZ �1u� 1� �

A20
RZ � 1

ue(w�1) � 1��
(A82)

	kon
	x1

� konref
w� 1
x0

A10
RZ0

� u2�1�
D0 � A10
RZ0

�u� 1� �
A20
RZ0

�ue(w�1) � 1��
(A83)
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	koff
	x1

� koffref
1� w
x0

A10
RZ0

1
u

� 2�1�
D0 � A10
RZ0 �1u� 1� �

A20
RZ0 � 1

ue(w�1) � 1��
(A84)

	kon
	x2

� konref u
w� 1
x0

e(w�1)
A20
RZ0

� 2�1�
D0 � A10
RZ0

�u� 1� �
A20
RZ0

�ue(w�1) � 1��
(A85)

	koff
	x2

� koffref
1

ue(w�1)
�1� w�

x0
A20
RZ0

� 2�1�
D0 � A10
RZ0 �1u� 1� �

A20
RZ0 � 1

ue(w�1) � 1��
(A86)

	kon
	Ca� �konCa � kon0 �� Ca50

�Ca50 � Ca0�2�
� �1�

D0 � A10
RZ

�u� 1� �
A20
RZ

�ue(w�1) � 1��2
(A87)

	koff
	Ca � �koffCa � koff0 �� Ca50

�Ca50 � Ca0�2�
� �1�

D0 � A10
RZ �1u� 1� �

A20
RZ � 1

ue(w�1) � 1��2
(A88)

	RZ
	LS

� 	
RT

LM � B
if LS  �2LA � B�

0 if �2LA � B�  LS  �2LA � B�

�
RT

LM � B
if LS � �2LA � B�

(A89)
	kon
	LS

� konref��
	RZ
	LS� 1

RZ02

� 2��D0 � A10��u� 1� � A20�ue(w�1) � 1��

(A90)
	koff
	LS

� koffref��
	RZ
	LS� 1RZ02

� 2��D0 � A10��1u� 1� � A20� 1
ue(w�1) � 1��

(A91)
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