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We generalize a theorem of Knuth relating the oriented spanning
trees of a directed graph G and its directed line graph LG . The
sandpile group is an abelian group associated to a directed graph,
whose order is the number of oriented spanning trees rooted at
a fixed vertex. In the case when G is regular of degree k, we show
that the sandpile group of G is isomorphic to the quotient of the
sandpile group of LG by its k-torsion subgroup. As a corollary
we compute the sandpile groups of two families of graphs widely
studied in computer science, the de Bruijn graphs and Kautz
graphs.
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1. Introduction

Let G = (V , E) be a finite directed graph, which may have loops and multiple edges. Each edge
e ∈ E is directed from its source vertex s(e) to its target vertex t(e). The directed line graph LG =
(E, E2) has as vertices the edges of G , and as edges the set

E2 = {
(e1, e2) ∈ E × E

∣∣ s(e2) = t(e1)
}
.

For example, if G has just one vertex and n loops, then LG is the complete directed graph on n
vertices (which includes a loop at each vertex). If G has two vertices and no loops, then LG is
a bidirected complete bipartite graph.

An oriented spanning tree of G is a subgraph containing all of the vertices of G , having no directed
cycles, in which one vertex, the root, has outdegree 0, and every other vertex has outdegree 1. The
number κ(G) of oriented spanning trees of G is sometimes called the complexity of G .

E-mail address: levine@math.mit.edu.
URL: http://math.mit.edu/~levine.

1 The author is supported by an NSF postdoctoral fellowship.
0097-3165/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2010.04.001

http://dx.doi.org/10.1016/j.jcta.2010.04.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
mailto:levine@math.mit.edu
http://math.mit.edu/~levine
http://dx.doi.org/10.1016/j.jcta.2010.04.001


L. Levine / Journal of Combinatorial Theory, Series A 118 (2011) 350–364 351
Our first result relates the numbers κ(LG) and κ(G). Let {xe}e∈E and {xv}v∈V be indeterminates,
and consider the polynomials

κedge(G,x) =
∑

T

∏
e∈T

xe,

κvertex(G,x) =
∑

T

∏
e∈T

xt(e).

The sums are over all oriented spanning trees T of G .
Write

indeg(v) = #
{

e ∈ E
∣∣ t(e) = v

}
,

outdeg(v) = #
{

e ∈ E
∣∣ s(e) = v

}
for the indegree and outdegree of vertex v in G . We say that v is a source if indeg(v) = 0.

Theorem 1.1. Let G = (V , E) be a finite directed graph with no sources. Then

κvertex(LG,x) = κedge(G,x)
∏
v∈V

( ∑
s(e)=v

xe

)indeg(v)−1

. (1)

Note that since the vertex set of LG coincides with the edge set of G , both sides of (1) are
polynomials in the same set of variables {xe}e∈E . Setting all xe = 1 yields the product formula

κ(LG) = κ(G)
∏
v∈V

outdeg(v)indeg(v)−1 (2)

due in a slightly different form to Knuth [11]. Special cases of (2) include Cayley’s formula nn−1 for the
number of rooted spanning trees of the complete graph Kn , as well as the formula (m + n)mn−1nm−1

for the number of rooted spanning trees of the complete bipartite graph Km,n . These are respectively
the cases that G has just one vertex with n loops, or G has just two vertices a and b with m edges
directed from a to b and n edges directed from b to a.

Suppose now that G is strongly connected, that is, for any v, w ∈ V there are directed paths in G
from v to w and from w to v . Then associated to any vertex v∗ of G is an abelian group K (G, v∗), the
sandpile group, whose order is the number of oriented spanning trees of G rooted at v∗ . Its definition
and basic properties are reviewed in Section 3. Other common names for this group are the critical
group, Picard group, Jacobian, and group of components. In the case when G is Eulerian (that is,
indeg(v) = outdeg(v) for all vertices v) the groups K (G, v∗) and K (G, v ′∗) are isomorphic for any
v∗, v ′∗ ∈ V , and we often denote the sandpile group just by K (G).

When G is Eulerian, we show that there is a natural map from the sandpile group of LG to the
sandpile group of G , descending from the Z-linear map

φ : ZE → ZV

which sends e �→ t(e).
Let k be a positive integer. We say that G is balanced k-regular if indeg(v) = outdeg(v) = k for

every vertex v .

Theorem 1.2. Let G = (V , E) be a strongly connected Eulerian directed graph, fix e∗ ∈ E and let v∗ = t(e∗).
The map φ descends to a surjective group homomorphism

φ̄ : K (LG, e∗) → K (G, v∗).

Moreover, if G is balanced k-regular, then ker(φ̄) is the k-torsion subgroup of K (LG, e∗).
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This result extends to directed graphs some of the recent work of Berget, Manion, Maxwell,
Potechin and Reiner [1] on undirected line graphs. If G = (V , E) is an undirected graph, the (undi-
rected) line graph line(G) of G has vertex set E and edge set

{{
e, e′} ∣∣ e, e′ ∈ E, e ∩ e′ �= ∅}

.

The results of [1] relate the sandpile groups of G and line(G). The undirected case is considerably
more subtle, because although there is still a natural map K (line G) → K (G) when G is regular, this
map may fail to be surjective.

A particularly interesting family of directed line graphs are the de Bruijn graphs DBn , defined recur-
sively by

DBn = L(DBn−1), n � 1,

where DB0 is the graph with just one vertex and two loops. The 2n vertices of DBn can be identified
with binary words b1 . . .bn of length n; two such sequences b and b′ are joined by a directed edge
(b,b′) if and only if b′

i = bi+1 for all i = 1, . . . ,n − 1.
Using Theorem 1.2, we obtain the full structure of the sandpile groups of the de Bruijn graphs.

Theorem 1.3.

K (DBn) =
n−1⊕
j=1

(
Z/2 jZ

)2n−1− j

.

Closely related to the de Bruijn graphs are the Kautz graphs, defined by

Kautz1 = ({1,2,3},{(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)
})

and

Kautzn = L(Kautzn−1), n � 2.

The Kautz graphs are useful in network design because they have close to the maximum possible
number of vertices given their diameter and degree [8] and because they contain many short vertex-
disjoint paths between any pair of vertices [6]. The following result gives the sandpile group of Kautzn .

Theorem 1.4.

K (Kautzn) = (Z/3Z) ⊕ (
Z/2n−1Z

)2 ⊕
n−2⊕
j=1

(
Z/2 jZ

)3·2n−2− j

.

The remainder of the paper is organized as follows. In Section 2, we prove Theorem 1.1 and state a
variant enumerating spanning trees with a fixed root. Section 3 begins by defining the sandpile group,
and moves on from there to the proof of Theorem 1.2. In Section 4 we enumerate spanning trees of
iterated line digraphs. Huaxiao, Fuji and Qiongxiang [10] prove that for a balanced k-regular directed
graph G on N vertices,

κ
(

LnG
) = κ(G)k(kn−1)N .

Theorem 4.1 generalizes this formula to an arbitrary directed graph G having no sources. This section
also contains the proofs of Theorems 1.3 and 1.4. Lastly, in Section 5 we pose two questions for future
study.
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2. Spanning trees

Let G = (V , E) be a finite directed graph, loops and multiple edges allowed. We denote its vertices
by v, w, . . . and edges by e, f , . . . . Each edge e ∈ E is directed from its source s(e) to its target t(e).
In this section we prove Theorem 1.1 relating the spanning trees of G and LG , and discuss some
interesting special cases.

If k is a field, we write kV and kE for the k-vector spaces with bases indexed by V and E re-
spectively. We think of the elements of kV or kE as formal k-linear combinations of vertices or of
edges.

Consider the field of rational functions Q(x) = Q((xe)e∈E , (xv )v∈V ). The edge-weighted Laplacian
and vertex-weighted Laplacian of G are the Q(x)-linear transformations

�edge,�vertex : Q(x)V → Q(x)V

sending

�edge(v) =
∑

s(e)=v

xe
(
t(e) − v

);
�vertex(v) =

∑
s(e)=v

xt(e)
(
t(e) − v

)
.

The sums are over all edges e ∈ E such that s(e) = v .
We will use the following form of the matrix-tree theorem for directed graphs. Here [t]p(t) de-

notes the coefficient of t in the polynomial p(t).

Theorem 2.1 (Matrix-tree theorem).

κedge(G,x) = [t]det
(
t · Id − �edge),

κvertex(G,x) = [t]det
(
t · Id − �vertex).

For a proof, see for example [4, Theorem 2] for the vertex-weighted version, and [3] for the edge-
weighted version.

Proof of Theorem 1.1. Consider the V × E matrix

Ave =
{

1, v = t(e),
0, else

and the E × V matrix

Bev =
{

xe, v = s(e),
0, else.

Let � be the edge-weighted Laplacian of G , and let �L be the vertex-weighted Laplacian of LG .
Then

� = AB − D

and

�L = B A − D L (3)

where D and D L are the diagonal matrices with diagonal entries

D v v =
∑

s( f )=v

x f , v ∈ V
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and

D L
ee =

∑
s( f )=t(e)

x f , e ∈ E.

Since AD L = D A, we have

A�L = A
(

B A − D L) = AB A − D A = (AB − D)A = �A. (4)

In particular, �L(ker(A)) ⊂ ker(A), so the vector space decomposition

Q(x)E = ker(A) ⊕ ker(A)⊥

exhibits �L in block triangular form. Hence the characteristic polynomial χ(t) of �L factors as

χ(t) = χ1(t)χ2(t)

where χ1 and χ2 are respectively the characteristic polynomials of �L|ker(A) and �L|ker(A)⊥ .
By hypothesis, G has no sources, so A has full rank. In particular, A AT is invertible. Hence the

restriction A|ker(A)⊥ is an isomorphism of ker(A)⊥ = Im(AT ) onto Q(x)V . By (4) it follows that

�L|ker(A)⊥ and � have the same characteristic polynomial

χ2(t) = det(t · Id − �).

Since the rows of � sum to zero, χ2(t) has no constant term. By the matrix-tree theorem,

κvertex(LG,x) = [t]χ(t) = χ1(0) · [t]χ2(t)

= det
(−�L∣∣

ker(A)

) · κedge(G,x).

It remains to find the determinant of −�L|ker(A) . For each vertex v ∈ V , fix an edge e0(v) with
t(e0(v)) = v . Then a basis for ker(A) is given by the vectors

αe = e − e0(v), v ∈ V , e ∈ E, t(e) = v, e �= e0(v).

By (3) we have

�Lαe = −
( ∑
s( f )=t(e)

x f

)
αe

so the vectors αe form an eigenbasis for �L|ker(A) . As each eigenvalue −∑
s( f )=v x f occurs with

multiplicity indeg(v) − 1, we conclude that

det
(−�L∣∣

ker(A)

) =
∏
v∈V

( ∑
s( f )=v

x f

)indeg(v)−1

. �

We remark that the idea of using the incidence matrices A and B to relate the adjacency matrices
of G and LG has appeared before. See, for example, Yan and Zhang [18, Proposition 1.4], who in turn
cite Lin and Zhang [12] and Liu [13].

Theorem 1.1 enumerates all oriented spanning trees of LG , while in many applications one wants
to enumerate spanning trees with a fixed root. Given a vertex v∗ ∈ V , let

κedge(G, v∗,x) =
∑

root(T )=v∗

∏
e∈T

xe
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and

κvertex(G, v∗,x) =
∑

root(T )=v∗

∏
e∈T

xt(e).

We will use the following variant of the matrix-tree theorem; see [3] and [17, Theorem 5.6.4].

Theorem 2.2 (Matrix-tree theorem, rooted version). Let �
edge
0 and �vertex

0 be the submatrices of �edge and
�vertex omitting row and column v∗ . Then

κedge(G, v∗,x) = det
(−�

edge
0

)
,

κvertex(G, v∗,x) = det
(−�vertex

0

)
.

The following variant of Theorem 1.1 enumerates spanning trees of LG with a fixed root e∗ in
terms of spanning trees of G with root w∗ = s(e∗).

Theorem 2.3. Let G = (V , E) be a finite directed graph, and let e∗ = (w∗, v∗) be an edge of G. If indeg(v) � 1
for all vertices v ∈ V , and indeg(v∗) � 2, then

κvertex(LG, e∗,x)

xe∗κedge(G, w∗,x)
=

( ∑
s(e)=v∗

xe

)indeg(v∗)−2 ∏
v �=v∗

( ∑
s(e)=v

xe

)indeg(v)−1

.

Proof. The proof is analogous to that of Theorem 1.1, except that it uses reduced incidence matrices

A0 : Q(x)E−{e∗} → Q(x)V

and

B0 : Q(x)V → Q(x)E−{e∗}.
The edge-weighted Laplacian of the graph G \ e∗ = (V , E − {e∗}) is given by

�G\e∗ = A0 B0 − D + M

where the matrix M has a single nonzero entry xe∗ in row and column w∗ . Expanding det(D − A0 B0)

along column w∗ we find

det(D − A0 B0) = det(−�G\e) + xe∗ det(−�0)

where �0 is the submatrix of the edge-weighted Laplacian of G omitting the row and column w∗ .
By Theorem 2.2 we have det(−�0) = κedge(G, w∗,x). Since the rows of �G\e∗ sum to zero, it follows
that

det(D − A0 B0) = xe∗κ
edge(G, w∗,x).

The submatrix �L
0 of the vertex-weighted Laplacian of LG omitting the row and column e∗ equals

B0 A0 − D L
0 , where D L

0 is the submatrix of D L omitting row and column e∗ . Since A0 D L
0 = D A0, we

have

A0�
L
0 = A0

(
B0 A0 − D L

0

) = A0 B0 A0 − D A0 = (A0 B0 − D)A0

hence �L
0 (ker(A0)) ⊂ ker(A0). Now by Theorem 2.2,

κvertex(LG, e∗,x) = det
(−�L

0

)
= det

(−�L
0

∣∣ )
det

(−�L
0

∣∣ ⊥
)
.
ker(A0) ker(A0)
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By hypothesis, the graph G \ e∗ has no sources, so A0 has full rank. The rest of the proof proceeds
as before, giving

det
(−�L

0

∣∣
ker(A0)⊥

) = det(D − A0 B0) = xe∗κ
edge(G, w∗,x)

and

det
(−�L

0

∣∣
ker(A0)

) =
( ∑
s(e)=v∗

xe

)indeg(v∗)−2 ∏
v �=v∗

( ∑
s(e)=v

xe

)indeg(v)−1

. �

Setting all xe = 1 in Theorem 2.3 yields the enumeration

κ(LG, e∗) = κ(G, w∗)
outdeg(v∗)

π(G) (5)

where κ(G, w∗) is the number of oriented spanning trees of G rooted at w∗ , and

π(G) =
∏
v∈V

outdeg(v)indeg(v)−1.

It is interesting to compare this formula to the theorem of Knuth [11], which in our notation reads

κ(LG, e∗) =
(
κ(G, v∗) − 1

outdeg(v∗)
∑

t(e)=v∗
e �=e∗

κ
(
G,s(e)

))
π(G). (6)

To see directly why the right sides of (5) and (6) are equal, we define a unicycle to be a spanning
subgraph of G which contains a unique directed cycle, and in which every vertex has outdegree 1. If
vertex v∗ is on the unique cycle of a unicycle U , we say that U goes through v∗ .

Lemma 2.4.

κedge(G, v∗,x)
∑

s(e)=v∗
xe =

∑
t(e)=v∗

κedge(G,s(e),x
)
xe.

Proof. Removing e gives a bijection from unicycles containing a fixed edge e to spanning trees rooted
at s(e). If U is a unicycle through v∗ , then the cycle of U contains a unique edge e with s(e) = v∗
and a unique edge e′ with t(e′) = v∗ , so both sides are equal to

∑
U

∏
e∈U

xe

where the sum is over all unicycles U through v∗ . �
Setting all xe = 1 in Lemma 2.4 yields

κ(G, v∗)outdeg(v∗) =
∑

t(e)=v∗
κ
(
G,s(e)

)
.

Hence the factor appearing in front of π(G) in Knuth’s formula (6) is equal to κ(G, w∗)/outdeg(v∗).
We conclude this section by discussing some special cases and interesting examples of Theo-

rem 1.1.
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2.1. Deletion and contraction

Fix an edge e ∈ E which is not a loop, i.e., s(e) �= t(e). Let

G \ e = (
V , E − {e})

be the graph obtained by deleting e from G . While there is more than one sensible way to define
contraction for directed graphs, the following definition is natural from the point of view of oriented
spanning trees. Let G/e be the graph obtained from G by first deleting all edges f with s( f ) = s(e),
and then identifying the vertices s(e) and t(e). Formally, G/e = (V /e, E/e), where

V /e = V − {
s(e),t(e)

} ∪ {e}
and

E/e = E − {
f

∣∣ s( f ) = s(e)
}
.

The source and target maps for G/e are given by p ◦s ◦ i and p ◦t ◦ i, where i : E/e → E is inclusion,
and p : V → V /e is given by p(s(e)) = p(t(e)) = e, and p(v) = v for v �= s(e),t(e).

With these definitions, the spanning tree enumerator κedge satisfies the following deletion-
contraction recurrence.

Lemma 2.5. Let G be a finite directed graph, and let e be a non-loop edge of G. Then

κedge(G,x) = κedge(G \ e,x) + xeκ
edge(G/e,x).

Proof. Oriented spanning trees of G \ e are in bijection with oriented spanning trees of G that do not
contain the edge e. With the above definition of G/e, one easily checks that the map T �→ T ∪ {e}
defines a bijection from oriented spanning trees of G/e to oriented spanning trees of G that contain
the edge e. �

Suppose now that we set x f = 1 for all f �= e. The coefficient of x�
e in κvertex(LG,x) then counts

the number of oriented spanning trees T of LG with indegT (e) = �. If v = s(e) has indegree k and
outdegree m, then by Theorem 1.1 and Lemma 2.5, this number is given by the coefficient of x�

e in
the product[

κ(G \ e) + xeκ(G/e)
]
(m − 1 + xe)

k−1
∏
w �=v

outdeg(w)indeg(w)−1.

Using the binomial theorem, we obtain the following.

Proposition 2.6. Let G = (V , E) be a finite directed graph with no sources. Fix a non-loop edge e ∈ E and an
integer � � 0. The number of oriented spanning trees T of LG satisfying indegT (e) = � is given by

∏
w �=v

outdeg(w)indeg(w)−1
((

k − 1
�

)
κ(G \ e)(m − 1)k−1−� +

(
k − 1
� − 1

)
κ(G/e)(m − 1)k−�

)

where v = s(e), k = indeg(v) and m = outdeg(v).

2.2. Complete graph

Taking G to be the graph with one vertex and n loops, so that LG is the complete directed
graph �Kn on n vertices (including a loop at each vertex), we obtain from Theorem 1.1 the classical
formula

κvertex( �Kn) = (x1 + · · · + xn)
n−1.

For a generalization to forests, see [17, Theorem 5.3.4]. Note that oriented spanning trees of �Kn are in
bijection with rooted spanning trees of the complete undirected graph Kn , by forgetting orientation.
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2.3. Complete bipartite graph

Taking G to have two vertices, a and b, with m edges directed from a to b and n edges directed
from b to a, we obtain from Theorem 1.1

κvertex( �Km,n) = (x1 + · · · + xm + y1 + · · · + yn)(x1 + · · · + xm)n−1(y1 + · · · + yn)
m−1,

where �Km,n = LG is the bidirected complete bipartite graph on m+n vertices. The variables x1, . . . , xm

correspond to vertices in the first part, and y1, . . . , yn correspond to vertices in the second part. As
with the complete graph, oriented spanning trees of �Km,n are in bijection with rooted spanning trees
of the undirected complete bipartite graph Km,n by forgetting orientation.

2.4. De Bruijn graphs

The spanning tree enumerators for the first few de Bruijn graphs are

κvertex(DB1) = x0 + x1;
κvertex(DB2) = (x00 + x01)(x10 + x11)(x01 + x10);
κvertex(DB3) = (x000 + x001)(x010 + x011)(x100 + x101)(x110 + x111)

× (x011x110x100 + x010x110x100 + x110x101x001 + x110x100x001

+ x100x001x011 + x101x001x011 + x001x010x110 + x001x011x110).

3. Sandpile groups

Let G = (V , E) be a strongly connected finite directed graph, loops and multiple edges allowed.
Consider the free abelian group ZV generated by the vertices of G; we think of its elements as formal
linear combinations of vertices with integer coefficients. For v ∈ V let

�v =
∑

s(e)=v

(
t(e) − v

) ∈ ZV

where the sum is over all edges e ∈ E such that s(e) = v . Fixing a vertex v∗ ∈ V , let LV be the
subgroup of ZV generated by v∗ and {�v}v �=v∗ . The sandpile group K (G, v∗) is defined as the quotient
group

K (G, v∗) = ZV /LV .

The V × V integer matrix whose column vectors are {�v}v∈V is called the Laplacian of G . By
Theorem 2.2, its principal minor omitting the row and column corresponding to v∗ counts the number
κ(G, v∗) of oriented spanning trees of G rooted at v∗ . Since this minor is also the index of LV in ZV ,
we have

#K (G, v∗) = κ(G, v∗).

Recall that G is Eulerian if indeg(v) = outdeg(v) for every vertex v . If G is Eulerian, then the groups
K (G, v∗) and K (G, v ′∗) are isomorphic for any vertices v∗ and v ′∗ [9, Lemma 4.12]. In this case we
usually denote the sandpile group just by K (G).

The sandpile group arose independently in several fields, including arithmetic geometry [14,15],
statistical physics [5] and algebraic combinatorics [2]. Often it is defined for an undirected graph G;
to translate this definition into the present setting of directed graphs, replace each undirected edge
by a pair of directed edges oriented in opposite directions. Sandpiles on directed graphs were first
studied in [16]. For a survey of the basic properties of sandpile groups of directed graphs and their
proofs, see [9].
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The goal of this section is to relate the sandpile groups of an Eulerian graph G and its directed
line graph LG . To that end, let ZE be the free abelian group generated by the edges of G . For e ∈ E
let

�e =
∑

s( f )=t(e)

( f − e) ∈ ZE .

Fix an edge e∗ ∈ E , and let v∗ = t(e∗). Let LE ⊂ ZE be the subgroup generated by e∗ and {�e}e �=e∗ .
Then the sandpile group associated to LG and e∗ is

K (LG, e∗) = ZE/LE .

Note that LG may not be Eulerian even when G is Eulerian. For example, if G is a bidirected graph
(i.e., a directed graph obtained by replacing each edge of an undirected graph by a pair of oppositely
oriented directed edges) then G is Eulerian, but LG is not Eulerian unless all vertices of G have the
same degree.

We will work with maps φ and ψ relating the sandpile groups of G and LG . These maps are
analogous to the incidence matrices A and B from Section 2, except that now we work over Z instead
of the field Q(x).

Lemma 3.1. Let φ : ZE → ZV be the Z-linear map sending e �→ t(e). If G is Eulerian, then φ descends to a
surjective group homomorphism

φ̄ : K (LG, e∗) → K (G, v∗).

Proof. To show that φ descends, it suffices to show that φ(LE) ⊂ LV . For any e ∈ E , we have

φ(�e) =
∑

s( f )=t(e)

(
t( f ) − t(e)

) = �t(e).

The right side lies in LV by definition if t(e) �= v∗ . Moreover, since G is Eulerian,
∑
v∈V

�v =
∑
e∈E

(
t(e) − s(e)

) =
∑
v∈V

(
indeg(v) − outdeg(v)

)
v = 0,

so �v∗ = −∑
v �=v∗ �v also lies in LV . Finally, φ(e∗) = v∗ ∈ LV , and hence φ(LE ) ⊂ LV .

Since G is strongly connected, every vertex has at least one incoming edge, so φ is surjective, and
hence φ̄ is surjective. �

Let k be a positive integer. We say that G is balanced k-regular if indeg(v) = outdeg(v) = k for
every vertex v . Note that any balanced k-regular graph is Eulerian; and if G is balanced k-regular,
then its directed line graph LG is also balanced k-regular. In particular, this implies

∑
e∈E

�e = 0

so that �e∗ ∈ LE .
Now consider the Z-linear map

ψ : ZV → ZE

sending v �→ ∑
s(e)=v e. For a group Γ , write kΓ = {kg | g ∈ Γ }.

Lemma 3.2. If G is balanced k-regular, then ψ descends to a group isomorphism

ψ̄ : K (G)
�−→ kK (LG).
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Proof. We have

ψ(v∗) = �e∗ + ke∗ ∈ LE

and for any vertex v ∈ V ,

ψ(�v) =
∑

s(e)=v

ψ
(
t(e)

) − kψ(v)

=
∑

s(e)=v

∑
s( f )=t(e)

f − k
∑

s(g)=v

g

=
∑

s(e)=v

( ∑
s( f )=t(e)

f − ke

)

=
∑

s(e)=v

�e.

Since LG is Eulerian, the right side lies in LE . Hence ψ(LV ) ⊂ LE , and ψ descends to a group homo-
morphism

ψ̄ : K (G) → K (LG).

If v is any vertex of G , and e is any edge with t(e) = v , then

ψ(v) = ke + �e,

so the image of ψ̄ is kK (LG).
To complete the proof it suffices to show that ψ−1(LE ) ⊂ LV , so that ψ̄ is injective. If k = 1 then

K (G) is the trivial group, so there is nothing to prove. Assume now that k � 2. Given η ∈ ZV with
ψ(η) ∈ LE , write

ψ(η) =
∑
e∈E

be�e + b∗e∗

for some coefficients be,b∗ ∈ Z. Then

ψ(η) − b∗e∗ =
∑
e∈E

be

( ∑
s( f )=t(e)

f − ke

)

=
∑
f ∈E

( ∑
t(e)=s( f )

be

)
f −

∑
e∈E

kbee

=
∑
f ∈E

( ∑
t(e)=s( f )

be − kb f

)
f .

Now writing η = ∑
v∈V av v , so that ψ(η) = ∑

f ∈E as( f ) f , equating coefficients of f gives

kb f =
∑

t(e)=s( f )

be − as( f ), f �= e∗. (7)

Note that the right side depends only on s( f ). For v ∈ V , let

F (v) = 1

k

∑
t(e)=v

be − 1

k
av .
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Then b f = F (s( f )) for all edges f �= e∗ . Since k � 2, for any v ∈ V there exists an edge f �= e∗ with
s( f ) = v . Moreover if v �= v∗ and t(e) = v , then e �= e∗ . From (7) we obtain

av =
∑

t(e)=v

be − kb f =
∑

t(e)=v

F
(
s(e)

) − kF (v), v �= v∗.

Hence

η − av∗ v∗ =
∑

v �=v∗
av v =

∑
e∈E,t(e) �=v∗

F
(
s(e)

)
t(e) −

∑
v �=v∗

kF (v)v

=
∑
v∈V

F (v)

( ∑
s(e)=v,t(e) �=v∗

t(e) − kv

)
+ kF (v∗)v∗

=
∑
v∈V

F (v)�v +
(

kF (v∗) −
∑

t(e)=v∗
F
(
s(e)

))
v∗.

The right side lies in LV , so η ∈ LV , completing the proof. �
Proof of Theorem 1.2. If G is Eulerian, then φ descends to a surjective homomorphism of sandpile
groups by Lemma 3.1. If G is balanced k-regular, then ψ̄ is injective by Lemma 3.2, so

ker(φ̄) = ker(ψ̄ ◦ φ̄).

Moreover for any edge e ∈ E

(ψ ◦ φ)(e) =
∑

s( f )=t(e)

f = ke + �e.

Hence ψ̄ ◦ φ̄ is multiplication by k, and ker(φ̄) is the k-torsion subgroup of K (LG). �
4. Iterated line graphs

Let G = (V , E) be a finite directed graph, loops and multiple edges allowed. The iterated line digraph
LnG = (En, En+1) has as vertices the set

En = {
(e1, . . . , en) ∈ En

∣∣ s(ei+1) = t(ei), i = 1, . . . ,n − 1
}

of directed paths of n edges in G . The edge set of LnG is En+1, and the incidence is defined by

s(e1, . . . , en+1) = (e1, . . . , en);
t(e1, . . . , en+1) = (e2, . . . , en+1).

(We also set E0 = V , and L0G = G .) For example, the de Bruijn graph DBn is Ln(DB0), where DB0 is
the graph with one vertex and two loops.

Our next result relates the number of spanning trees of G and LnG . Given a vertex v ∈ V , let

p(n, v) = #
{
(e1, . . . , en) ∈ En

∣∣ t(en) = v
}

be the number of directed paths of n edges in G ending at vertex v .

Theorem 4.1. Let G = (V , E) be a finite directed graph with no sources. Then

κ
(

LnG
) = κ(G)

∏
v∈V

outdeg(v)p(n,v)−1.
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Proof. For any j � 0, by Theorem 1.1 applied to L j G with all edge weights 1,

κ(L j+1G)

κ(L j G)
=

∏
(e1,...,e j)∈E j

outdeg
(
t(e j)

)indeg(s(e1))−1

=
∏
v∈V

outdeg(v)p( j+1,v)−p( j,v).

Taking the product over j = 0, . . . ,n − 1 yields the result. �
When G is balanced k-regular, we have p(n, v) = kn for all vertices v , so we obtain as a special

case of Theorem 4.1 the result of Huaxiao, Fuji and Qiongxiang [10, Theorem 1]

κ
(

LnG
) = κ(G)k(kn−1)#V .

In particular, taking G = DB0 yields the classical formula

κ(DBn) = 22n−1.

Since DBn is Eulerian, the number κ(DBn, v∗) of oriented spanning trees rooted at v∗ does not depend
on v∗ , so

κ(DBn, v∗) = 2−nκ(DBn) = 22n−n−1. (8)

This familiar number counts de Bruijn sequences of order n + 1 (Eulerian tours of DBn) up to cyclic
equivalence. De Bruijn sequences are in bijection with oriented spanning trees of DBn rooted at a fixed
vertex v∗; for more on the connection between spanning trees and Eulerian tours, see [7] and [17,
Section 5.6].

Perhaps less familiar is the situation when G is not regular. As an example, consider the graph

G = ({0,1},{(0,0), (0,1), (1,0)
})

.

The vertices of its iterated line graph LnG are binary words of length n +1 containing no two consec-
utive 1’s. The number of such words is the Fibonacci number Fn+3, and the number of words ending
in 0 is Fn+2. By Theorem 4.1, the number of oriented spanning trees of LnG is

κ
(

LnG
) = 2 · 2p(n,0)−1 = 2Fn+2 .

Next we turn to the proofs of Theorems 1.3 and 1.4. If a and b are positive integers, we write Za
b

for the group (Z/bZ) ⊕ · · · ⊕ (Z/bZ) with a summands.

Proof of Theorem 1.3. Induct on n. From (8) we have

#K (DBn) = 22n−n−1

hence

K (DBn) = Z
a1
2 ⊕ Z

a2
4 ⊕ Z

a3
8 ⊕ · · · ⊕ Z

am
2m

for some nonnegative integers m and a1, . . . ,am satisfying

m∑
j=1

ja j = 2n − n − 1. (9)

By Lemma 3.2 and the inductive hypothesis,
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Z
a2
2 ⊕ Z

a3
4 ⊕ · · · ⊕ Z

am

2m−1 � 2K (DBn)

� K (DBn−1)

� Z2n−3

2 ⊕ Z2n−4

4 ⊕ · · · ⊕ Z2n−2

hence m = n − 1 and

a2 = 2n−3, a3 = 2n−4, . . . , an−1 = 1.

Solving (9) for a1 now yields a1 = 2n−2. �
For p prime, by carrying out the same argument on a general balanced p-regular directed graph G

on N vertices, we find that

K
(

LnG
) � K̃ ⊕

n−1⊕
j=1

(Zp j )
pn−1− j(p−1)2 N ⊕ (Zpn )(p−1)N−r−1 ⊕

m⊕
j=1

(Zpn+ j )
a j

where

Sylowp

(
K (G)

) = (Zp)a1 ⊕ · · · ⊕ (Zpm )am ;
K̃ = K (G)/Sylowp

(
K (G)

);
r = a1 + · · · + am.

In particular, taking G = Kautz1 with p = 2, we have K (G) = K̃ = Z3, and we arrive at Theorem 1.4.

5. Concluding remarks

Theorem 1.2 describes a map from the sandpile group K (LG, e∗) to the group K (G, v∗) when G
is an Eulerian directed graph and e∗ = (w∗, v∗) is an edge of G . There is also a suggestive numerical
relationship between the orders of the sandpile groups K (LG, e∗) and K (G, w∗), which holds even
when G is not Eulerian: by Eq. (5) we have

κ(G, w∗) | κ(LG, e∗)

whenever G satisfies the hypothesis of Theorem 2.3. This observation leads us to ask whether
K (G, w∗) can be expressed as a subgroup or quotient group of K (LG, e∗).

The area of spanning trees, Eulerian tours, and sandpile groups is full of simple enumerative results
with no known bijective proofs. To give just one example, the number of de Bruijn sequences of
order n (Eulerian tours of DBn−1) with distinguished starting edge is 22n−1

. Richard Stanley has posed
the problem of finding a bijection between ordered pairs of such sequences and all 22n

binary words
of length 2n . This problem and a number of others could be solved by giving a bijective proof of
Theorem 1.1.
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