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1. INTRODUCTION 

Let us consider the differential system 

x” = f(t, 6, x’), (1.1) 

where f F C[[O, l] x Rd x Rd, Rd], subject to the boundary conditions 

x(0) - l+‘(O) = 0, 11.2) 

X(1) + A&(l) = 0, (1.3) 

A, , A, being d x d matrices. 
Recently Lasota and Poke [4] studied the existence of solutions of the 

boundary vaIue problem (l.l), (1.2) and (1.3) utilizing Lerajr-Schauder’s 
alternative, while Hartman [l, 21 employed the modified function approach. 
Since the proofs in [4] are based on different geometric ideas from those of 
Hartman [I, 21, as stated in [4], it was possible to omit Nagumo’s condition 
and to assume less restrictive conditions. 

In this paper, we wish to show that whatever is achieved by the application 
of Leray-Schauder’s alternative, can also be realized by the modified function 
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technique under the same set of assumptions. Furthermore, our results are 
presented in a more general setup employing Lyapunov-like functions and 
the theory of differential inequalities. 

2. BASIC LEMMAS 

The proofs of our results utilize the following lemmas. 

LEMMA 1. Let f E C[[O, I] x Rd x Rd, Rd], h E C[R+, (0, co)] sati.$~~ 

llf (4 XT u>ll < 4 Y II>, (t, x, y) E [0, l] x R” x R*, 

and 

.c 
m sds 

() h(s)=CO* 

Suppose that y: R+ + R+ is the function defined by 

e E [O, 03). 

Let x(t) be any solution of (1.1) de$ned on [0, l] and let 0, be the arc length of x(t); 
that is 

O1 = o1 11 x’(s)II ds. 
s 

Then 

II .z.V)il d rm t E [O, I]. 

For proof of Lemma 1 see Lasota and Yorke [4]. 

LEMMA 2. Assume that 

(i) u E C(a)[[O, 11, R+], g E C[[O, I] x R+ x R, R-1, g(t, u, v) is non- 
increasing in u for each (t, v), and 

us > g(t, u, 24’); P-2) 

(ii) u’(1) < 0 and u(O) < mu’(O) for some a > 0; 

(iii) G E C[[O, l] x R+, R] and there exists anL > 0 such thatfor u > L, 

t E [O, 11, 
(l/u> g(t, a, ~1) - W>” 3 G(t, 44, (2.3) 
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and for any 7 E (0, 11, the left maximal solution r(t, T, 0) of 

Z’ = G(t, .z), Z(T) = 0, 

satisjes the estimate r(t, 7, 0) < oiD, t E [0, T], where 

01~ = min($, l/a), (a0 = g if a = 0); 
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(2.4) 

(iv) the left maximal solution r(t, 1, 0) and the right minimal solutiota 

At, 0, 0) of 

v’ = g(t, 2L, v) (2.5) 
exists on [0, 11. 

Then there exists a B, > 0 such that 

u(t) < B, and IW GB,, O<t<l* (2.6) 

ProoJ. Assume that the maximum of u(t) occurs at a point t, . From the 
condition (ii), u’(O) > 0 and -u’(l) < 0, and it follows that u’(tl) = 0. 
Clearly t, > 0. For otherwise we would have u(tJ < ati’ = 0 and 
consequently u(t) f 0. 

T;CTe shall show that u(t) < 2L, 0 < t < I. If not, let u(tl) > 2L. Define 
to = 0, if u(t) > L for t E [0, tl]. If not, define 

to = sup[t E [O, tl]: u’(t) > 4$(t)]. 

Since u(tJ > 2L, by the mean value theorem, to is well defined. It is then 
easily seen that 

2Wo) 3 ao4to), L < u(t), tE[f”,tll. (2.7) 

Setting z(t) = u’(t)/u(t) f or t E [to, tl] and using the assumption (2.3), 
we readily deduce that 

-I’@) 2 G(f, 4% t E [to ) t,]. 

Notice that z(tl) = 0 and .z(t ) > s , as > 0. By the theory of differential 
inequalities [3], we then infer that 

z(t) < r(t, t, > x(Q), t E [to I tll, 

where r(t, t1 , x(t,)) is the left maximal solution of (2.4) with T = t, . Since 
z(tl) = 0, we see that r(t, t, , 0) < 01s on [to , t,], and as a result, we are lead 
to the contradiction 

010 < @o) ,( +o , t1 , 0) < %J . 

This proves that u(t) < 2L on [0, l]. 
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Using this inequality and the nonincreasing nature of g(t, u, V) we obtain 

u” > g(t, 2L, u’). 

Again, using the fact u’(O) > 0, u’(l) < 0 and the theory of differential 
inequalities [3], we get 

and 

u’(t) > p(t, 0, O), O<t<l, 

where r(t, 1, 0), p(t, 0,O) are, respectively, the left maximal and right minimal 
solutions of (2.5) which are assumed to exist on [0, 11. Thus, we can find a 
B > 0 such that / zc’(t)l < B, for 0 < t < 1, where 

The conclusion of the Lemma now follows by choosing B, = max[2L, B]. 
The proof is complete. 

Remark. The functions g(t, u, V) = -k[l + (2u)lp + 1 v I], k > 0, 
G(t, z) = -(a + k j z 1 + ~a), are admissible in Lemma 2 where 

La =k(l +$+h), L =+eS’“-l’, h = ‘0 e-3/2(k+l) 

4 

(see also Ref. [4]). 

3. MODIFIED FUNCTION APPROACH 

Our aim is to prove the following result. 

THEOREM I. Assume that 

(a) f E C[[O, l] x R” x Ii”, Rd] and A, , A, are positive dejinite or 
identically zero; 

(b) V E C(“)[[O, l] x Rd, R+], V(t, x) -+ co as 11 x jl -+ 00 uniformb in 

t E [O, 11, g E C[[O, 11 x R+ x R, R-1, g(t, u, v) is nonincreasing in u for each 
(t, v); andfor (t, x, x’) E [0, l] x R” x Rd, 

qt, 4 3 B(C w 4, qt, 4) + 0 I1 f (4 x, 4/I, fJ > 0, (3.1) 

U(t, x, x’) = Vt,(t, x) + 2li;,(t, x) - x’ + V&t, a-) . x’ - x’ > 0, (3.2) 
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+ E’&, x) - f(t, x, x’); (3.3) 

(c) the boundaary conditions (1.2), (1.3) implit, for some 01 2 0, that 

V’(1, X(1)) < 0 and V(0, x(0)) < aY(0, r(0)); (3.4) 

(d) G E C[[O, l] x R+, R] and there exists anL > 0 such thatfor u > L, 

t E [O:o, 11 
(l/u) g(t, u, v) - (P/U)” >, G(t, v/u); 

and for any 7 E (0, I], the left maximal solution r(t, r, 0) of 

z’ = G(t, z), Z(T) = 0 

satisfies the itzequality r(t, 7, 0) < a0 , t E [0, 7-], where iyO = min($, l/a), 
(a0 = + aye! = 0); 

(e) the left maxim& solution r(t, 1, 0) alid the Fight mimkal solution 

pit, 07 0) of 
0’ = g(t, 2L, ZJ) 

exist on [0, I]. 

Theta there es&s a sol&on x E C@)[[O, I], Rd] of the boundary aalzleproblem 
(Ll), (1.2), (1.3). 

Proof. Let a(~, ZJ) E C[R+ x R+, [O, l]] have compact support with 
6(u, V) < I and S(u, V) = 1 for 0 < u, TJ < B, where B is a constant to be 
specified belaw. 

Nest define the modified function F off on [0, l] x R” x Rd by 

F(t, x, x’) = S(\[ x 11, 11 x’ 11) f (t, x, s’). (3.5) 

Clearly the function F is continuous and bounded on [0, I] x Ra x Rd. 
Hence [see 2, Chapter 121 there exists a solution x E C@)[[O, I], Rd] of the 
boundary value problem 

xn = F(t, x, x’), 

x(Oj - A,x’(O) = 0, x(l) + &X’(l) = 0. 
(3.6) 

Set m(tj = k’(t, x(t)) so that, because of the assumption (c), we have the 
reiations 

m’(l) < 0 and m(0) < am’(O). (3.7) 
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Since 

v;(f, 4 = S(ll x II, II a-’ II) v;<t, 4 + [1 - @iI x II, II N’ II>1 W, x, 4, (3.8) 

we get, in view of the facts 0 < a(~, V) < 1, g(t, u, V) < 0, U(t, X, E’) > 0, 
and the assumption (3.1), the inequality 

qt, 4 3 g(4 qt, 4, V’(t, 4) + u II qt, x, .1c’)ll, 

which leads to the further inequality 

m”(t) 3 g(t, fl@>, 4)) + 0 II qt>ll. 

Hence, by Lemma 2 it follows that there exists a B, > 0 such that 

m(t) < B, and I m’(t)1 G 4l 7 0<t<l. 

-4s a result, setting 

(3.9) 

--N = [ming(t, u, v): 0 < t < 1, u < B, , ] 2, I < B,], 

we have from (3.9) 

m”(t) > -N + u 11 x”(t)ll. 

Thus, for0 <s < t ,( 1, 

2B, 3 m’(t) - m’(s) > -N(t - s) + u 11 .r” x”(.f)d( )I 
s 

3 -N + u /I x’(t) - x’(s)II. 

Integrating this from 0 to 1, we obtain 

G%+N) > ’ 
u , IO II x’(t> - ~‘(OII dS 3 11 lo1 W(t> - x’(O) df I! 

a II X’(t)ll - II 4)ll - II e9ll. 

Since V(t, X) + co as 11 x 11 ---f co uniformly in t E [0, 11, it follows, from the 
estimate V(t, r(t)) = m(t) < B, , 0 < t < 1, that Ij ill < B*, 0 < t < 1, 
for some B* > 0. Consequently, we deduce that 

II 4t)ll < 2~3” + W, + W/4 = B, O<t,(l. 

Evidently, this implies that 

II 41 G B, and II x’P)ll G B> 0<t<l. (3.10) 
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This, in view of the definition of F, assures that x(t) is actually a solution of 
the boundary value problem (l.l), (1.2), (1.3). The proof is complete. 

If f satisfies a Nagumo’s condition, the assumption (3.1 j may be changed 
as the next theorem shows. 

Remark. Theorem 2 in Ref. [4] is a special case of Theorem 1 if we let 

T/(t, 2) = 11 x !jZ/3 ,-* 

THEOREM 2. Let the hypotheses (a), (b), and (c) of Theorem 1 hold except 
that the inequalities (3.1) and (3.2) be replaced by 

v;p, x) > g(t, v(t, x), v’(t, x)) + u 11 x’ I), u > 0, (3.11) 

U(t, x, x’) + 7 3 u I/ x’ /I) 7 > 0. (3.12) 

Assume moreover that hypotheses (d) and (e) of Theorem 1 hold with g and G 
replaced by g,, E g - 7 and G,, = G - (T/L) respectzkely. Suppose that 

IIf& x7 x’jll -C h(ll x’ lljfoy (4 I T, x’) E [0, l] x Rd x R”, where h E C[R+, (0, DJ)] 
and 

mCC sds 
J o h(s)=m* 

Then there exists a solution x E C@)[[O, I], Ra] of the boundary z.?abe problem 
(l.l), (1.2), (1.3). 

Proof. We proceed exactly as in the proof of Theorem 1 until we arrive 
at the inequalities (3.7). 

From (3.&j, by letting U = U + 7 - T and using (3.11), (3.12) we get 

T,‘z(t, x) > g(t, V(t, x), V’(t, x)) + [Sa + (1 - S)u] iI X’ I/ - ~(1 - 6) 

> g(t, vt, 4, w, 4) + 0 !I x’ II - i- 
= go(t, V(t, x), Tqt, x)) + u jl x’ jj. (3.13) 

Since by Lemma 2, we have, 

m(t) < Kl 3 I m’(t)1 G 4J 7 O<t<l, 

the inequality (3.13) leads to 

nf(t) 3 -(N + T> + G- II Wll 

where, as before, 
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Let 0(t) = si (( x’(s)11 ds. Th en, the preceeding inequality gives 

2B, b m’(l) - m’(0) > I’ [-(N + T) + cr /I x’(s)li] ds 
0 

It then follows that 0( 1) < (2B, + N + ~)/o = M. From Lemma 1, we then 
have 

Letting B = max[B*, r(M)], we obtain (3.10) which concludes the proof 
as before. 

Remark. The functionsg(t, u, V) = -k(l + (T/k) + (2u)l12 + 1 v I], k > 0 
G(t, z) = -(a + k 1 z j + x2), where La = k(l + (T/k) + (1/2h) + h), 
L = [4(1 + T)/cx~‘] e3(k+1) and h = [01,/(2(1 + T))‘/*] e--3/8(8+1) are admissible. 
By letting 7 = 1, V(i(t, x) = 11 x /12/2, and U(t, x) = 11 x’ j12, we obtain 
Theorem 3 in Ref. [4]. The proof of Theorem 3 in Ref. [4] needs to be 
modified in the light of our proof of Theorem 2. As it stands the inequality 
u” 3 EJ + u 1 x’(t)1 (see [4, p. 5171) does not follow as stated in the proof of 
Theorem 3 in [4]. In particular by redefining g, L, lz in Lemma 2 of [4], 
as above, the proof of Theorem 3 in [4] follows by using the inequality (3.13) 
with T’, U and V defined as above. 
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