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1. INTRODUCTION

Let us consider the differential system

x" = f(t, » %7, (L.1)
where fe C[[0, 1] X R* x R?, R, subject to the boundary conditions

¥(0) — Ag'(0) = 0, (1.2)
x(1) + A (1) = 0, (1.3)

Ay, A, being d X d matrices.

Recently Lasota and Yorke [4] studied the existence of solutions of the
boundary value problem (1.1), (1.2) and (1.3) utilizing Leray—Schauder’s
alternative, while Hartman [1, 2] employed the modified function approach.
Since the proofs in [4] are based on different geometric ideas from those of
Hartman [1, 2], as stated in [4], it was possible to omit Nagumo’s condition
and to assume less restrictive conditions.

In this paper, we wish to show that whatever is achieved by the application
of Leray—Schauder’s alternative, can also be realized by the modified function
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technique under the same set of assumptions. Furthermore, our results are
presented in a more general setup employing Lyapunov-like functions and
the theory of differential inequalities.

2. Basic LEmmas

The proofs of our results utilize the following lemmas.

Lemva 1. Let fe C[[0, 1] X R® X R?, R, h e C[R¥, (0, co)] satisfy
1f@& e <A(ly]), (&xy)el0,1] X R X RY,

and

© sds —
o Hh(s)

Suppose that y: Rt — R* is the function defined by

0 ¢ ds
fe h(s)

Let x(¢) be any solution of (1.1) defined on [0, 1] and let 0, be the arc length of x(t);
that is

9, 6el0, ).

1
o= [ 1w s
Then
I @) <HB),  tefo, 1].

For proof of Lemma 1 see Lasota and Yorke [4].

Levma 2. Assume that
@) ueC®[0,1], R, g C[[0, 1] X Rt X R, R, g(t,u, v) is non-
increasing in u for each (t, v), and

w > glt,u, w'); 2.2)

(i) #'(1) < 0 and w(0) << o/'(0) for some « == 0;
(iii) GeC[[0, 1] x R*, R)] and there exists anL. > O such that foru = L,
te[0, 1],

(1) g(t, w, ©) — (@jup > Gz, ofu), (23)
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and for any 7 € (0, 1), the left maximal solution r(t, 7, 0) of
F =G 2), =zr)=0 (2.4
satisfies the estimate r(t, 7, 0) < oy, t € [0, 7], where
s = min(}, ), (a9 = }ifa = O);
(iv) the left maximal solution v(t, 1,0) and the vight minimal solution
p(,0,0) of
o = g(t, 2L, v) (2.5)
exists on [0, 1].

Then there exists a By > 0 such that
uty < B, and |u(t)) <By, O0<:t<<L (2.6)

Proof. Assume that the maximum of u#(t) occurs at a point # . From the
condition (ii), #'(0) > 0 and #'(1) < 0, and it follows that u'(f) = 0.
Clearly t; > 0. For otherwise we would have u{#;) <C au'(fy)) =0 and
consequently #(t) = 0.

We shall show that u(t) < 2L, 0 << ¢ < 1. If not, let u(#;) > 2L. Define
ty = 0, if #(z) > L for ¢ € [0, 4;]. If not, define

ty = sup[t [0, t,]: ' (#) = $u(d)].

Since #(t,) > 2L, by the mean value theorem, #; is well defined. It is then
easily seen that

W(ty) > oqulty), L <u(t), telt,t] 2.7)

Setting 2(2) = u'(f)/u(t) for te(ty, ] and using the assumption (2.3),
we readily deduce that

() = Gz, (1)), telty, {1

Notice that z(4;) = 0 and 2(#) > o > 0. By the theory of differential
inequalities [3], we then infer that

Z(t) < 7(tv tl » z(tl))’ te [t() 5 t]],

where 7(t, t; , 2(t;)) is the left maximal solution of (2.4) with + = ¢, . Since
2(t;) = 0, we see that (2, £, , 0) << o on [2y, ], and as a result, we are lead
to the contradiction

oy < 2(Hy) Sy, 6,0) < ap.
This proves that u(¢) << 2L on [0, 1].



106 BERNFELD, LADDE AND LAKSHMIKANTHAM

Using this inequality and the nonincreasing nature of g(2, %, v) we obtain
u' =gt 2L, u).

Again, using the fact %'(0) > 0, #'(1) < 0 and the theory of differential
inequalities [3], we get

W) <r@ 1,0, 0<eg],
and

W) > p(1,0,0), 0<t<],

where (%, 1, 0), p(z, 0, 0) are, respectively, the left maximal and right minimal
solutions of (2.5) which are assumed to exist on [0, 1]. Thus, we can find a
B > 0 such that | #'(¢)] < B, for 0 < ¢ < 1, where

B = max|| Joax r(t, 1, 0)}, | ()I<Ilti1<11 p(t, 0, 0)]].
The conclusion of the Lemma now follows by choosing B, = max[2L, B].

The proof is complete.

- Remark. The functions g(¢,u,v) = —K[1 + Qu)'24 |2}, k>0,
G(t, 2) = —(a + k| 2| + 2%), are admissible in Lemma 2 where

1 8 o
— — (41 — %0 3241
La_k(l—l—zh—{—h), L 0‘“295" s h 7 ¢

(see also Ref. [4]).

3. MopirFiep FUNCTION APPROACH
Our aim is to prove the following result.

Turorem 1. Assume that

(a) feC[0,1] X R* X R% R and A,, A, are positive definite or
identically zero;

(b) VeC?[0,1] X R, RY), V(t, x) — o0 as || x| —> oo uniformly in
te0,1], g€ C[[0, 1] x R* X R, R7), g(t, u, v) is nonincreasing in u for each
(¢, v); and for (8, x, ') € [0, 1] X R* X Rq,

Vie, x) = g(t, V(t, x), V'(t, x)) + ol ft, x, &), >0, (3.1)
Ut, %, &) = Vilt, 8) + 2Valt, 8) - & + Vgt 8) -8 - &' >0, (3.2)
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where V'(t, x) == V(t, x) + V¢, x) - &', and
Vit x) = Vilt, x) + 2V (8, x) - & + Vilt, x) - &' - &
+ Valt, ) - f(2, %, &); (3.3
(c) the boundary conditions (1.2), (1.3) imply, for some o = 0, that
(1, x(1)) <0 and V(0, x(0)) < «b7(0, 2(0)); 3.4
(d) GeCl0, 1] X R*, R} and there exists an L. > O such that for u = L,
tel0, 1]
(1) gt, 4, %) — (2l > Glt, olu);
and for any 7 € (0, 1], the left maximal solution r(t, =, 0) of
2 = G(t, 2), ) =0

satisfies the inequality v(t,7,0) << oy, 1[0, 7], where xy = min(4, 1/a),
(0 =3 = 0);
(e) the left maximal solution r(t, 1,0) and the right minimal solution

p(t, 0, 0) of
v = g(t, 2L, v)
exist on [0, 1].

Then there exists a solution x € C[[0, 11, R?] of the boundary value problem
(1.1), (1.2), (1.3).

Proof. Let 3(u, v)e C[R* X R+, [0, 1]} have compact support with
3(u, ©) << 1 and 8(u, v) = 1 for 0 < w, v <{ B, where B is a constant to be
specified below.

Next define the modified function F of fon [0, 1] x 8¢ x R? by

F(t, x, x7) = 8({| x [l | %" [)) f(& %, ¥). (3.5)

Clearly the function F' is continuous and bounded on [0, 1] X R x R4,
Hence [see 2, Chapter 12] there exists a solution x € C®[[0, 1], R¥] of the
boundary value problem

" = F(t, x, x'),

(3.6)
2(0) — A’ (0) =0,  x(1) + Ax'(1) = 0.

Set m(t) = V(¢ x(¢)) so that, because of the assurnption (c), we have the
relations

m(1) <0 and  m(0) < am'(0). (3.7)
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Since
Vit x) = 8(| = ||, | &' ) Vit, ) + [1 — 8 =i, | =" D] U, x, %), (3.8)

we get, in view of the facts 0 < 8(x, v) <C 1, g(¢, #, ) < 0, U(t, x, x") = 0,
and the assumption (3.1), the inequality

Vie(t, x) = 8@, V(t, 2), V(5 %)) + o F (2, %, &),
which leads to the further inequality
m'(t) = g(t, m(2), m'(8)) + o || ¥ (). (3.9)
Hence, by Lemma 2 it follows that there exists a B, > 0 such that
m(t) < B, and | m'(£)} < By, 0L

As a result, setting

—N =[ming(t,n,v): 0 <t < Lu < By, |v| < By,
we have from (3.9)

m'(f) = —N + o || ")

Thus, for 0 <s <t < 1,

2By, = mw'(t) —m'(s) =2 —N(t —s) + o

[ =@ e
> N 4o 2(F) — #(5)|.-

Integrating this from 0 to I, we obtain

CERAN > sty —wi@nae =] [ o) - x (e ae]
> [ (0 — (D] — || <O}

Since V{2, x) — o0 as || ®|| — oo uniformly in # € [0, 1], it follows, from the
estimate V(t, 2(t)) = m(t) < By, 0 <<t < 1, that | x(#)]| < B*, 0 <t < 1,
for some B* > 0. Consequently, we deduce that

&) < 2B* 4+ [(2By 4+ N)fo] =B, 0<t<1L
Evidently, this implies that

I»@)| <B, and |#@I<B, 0<:<l  (310)
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This, in view of the definition of F, assures that a(¢) is actually a solution of
the boundary value problem (1.1), (1.2}, (1.3). The proof is complete.

If f satisfies a Nagumo’s condition, the assumption (3.1) may be changed
as the next theorem shows.

Remark. Theorem 2 in Ref. [4] is a special case of Theorem 1 if we let
V(t, s) =[x 132,

TueoreM 2. Let the hypotheses (), (b), and (c) of Theorem 1 hold except
that the inequalities (3.1) and (3.2) be replaced by

Vi, x) =g, Vg, %), V(5 %)) +oll«'l], e >0, (3.1D)

U, %, 2+t =0l %], T > 0. (3.12)

Assume moreover that hypotheses (d) and (€) of Theorem | hold with g and G
replaced by go=g— 1 and Gy= G — (7[L) respectively. Suppose that

LF (8 x, &N < R X" 1) for (2, x, 8") €0, 1] X RY X R4, where he C[RY, (0, o0}]
and

' sd
JO h(s; =®

Then there exists a solution x € C®[[0, 11, R%] of the boundary value problem
{L.1), (1.2}, (1.3).

Proof. We proceed exactly as in the proof of Theorem 1 until we arrive
at the inequalities (3.7).
From (3.8), by letting U = U + = — 7 and using (3.11), (3.12) we get

Vi, x) = g(t, V(t, x), V'(t, x)) 4 [0 + (1 — 8)a] || &' || — #(1 — &)

> o(t, V(t, 8), V'(t, ) + ol 2 || — 7

= got, V(t, x), V'(t, x)) + ol &' |, (3.13)
Since by Lemma 2, we have,

m(t) < By, |[mM@B<By, 0O0x<t<],
the inequality (3.13) leads to
m'(t) Z —(N + 1) + o || (@)l

where, as before,

—N = [ming(t,u,2): 0 <t < Lu << By, 7] < Byl
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Let 0(t) = | (t) | #'(s)|| ds. Then, the preceeding inequality gives

2B, = m'(1) — m'(0) = f: [—(N +7) + ol %) ds

> (N +7) + ob(1).
It then follows that 8(1) < (2B + N -+ 7)/o = M. From Lemma 1, we then

have
O < 7)) <HM), 0<t<lL

Letting B = max[B¥*, y{(M)], we obtain (3.10) which concludes the proof
as before.

Remark. The functions g(¢, u, v) = —k(1 4 (r/k) + Qu)*? 4 |v (], >0
G(t,2) = —(a+ k| =]+ 2%), where La = k(1 + (7/k) + (1/2h) + h),
L = [4(1 + 7))oy} 3+ and b = [o{(2(1 -+ 7))/} e-3/28+1) are admissible.
By letting = =1, V(¢ %) =|«x|*}2, and U(t %) =| « [, we obtain
Theorem 3 in Ref. [4]. The proof of Theorem 3 in Ref. [4] needs to be
modified in the light of our proof of Theorem 2. As it stands the inequality
u = €4 o] %'(t)| (see [4, p. 517]) does not follow as stated in the proof of
Theorem 3 in [4]. In particular by redefining g, L, % in Lemma 2 of {4],
as above, the proof of Theorem 3 in [4] follows by using the inequality (3.13)
with 7, U and ¥ defined as above.
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