
PERGAMON 

Intcmiti~ml Journal 

computers & 
mathematics 
w.h q~bA~kXm 

Computers and Mathematics with Applications 39 (2000) 69-75 
www.elsevier .nl / locate/camwa 

Local Convergence of Inexact Newton-Like- 
Iterative Methods and Applications 

I.  K .  ARGYROS 
Department of Mathematics, Cameron University 

Lawton, OK 73505, U.S.A. 

(Received January 1999; accepted June 1999) 

A b s t r a c t - - W e  provide local convergence results in affine form for inexact Newton-like as well as 
quasi-Newton iterative methods in a Banach space setting. We use hypotheses on the second or on 
the  first and second Fr~chet-derivative of the operator involved. Our results allow a wider choice of 
s tart ing points since our radius of convergence can be larger than  the corresponding one given in 
earlier results using hypotheses on the first-Fr~chet-derivative only. A numerical example is provided 
to illustrate this fact. Our results apply when the method is, for example, a difference Newton- 
like or update-Newton method. Furthermore, our results have direct applications to the solution of 
autonomous differential equations. © 1999 Elsevier Science Ltd. All rights reserved. 
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tion, Fr~chet-derivative, Quasi-Newton method, Autonomous differential equation. 

1. I N T R O D U C T I O N  

In this study, we are concerned with the problem of approximating a locally unique solution x* 
of equation 

f (x )  = 0, (1) 

where F is a twice differentiable nonlinear operator defined on an open convex subset D of a 
Banach space E1 with values in a Banach space E2. 

In order to approximate a solution x* of equation (1), we use inexact Newton methods of the 
form 

xi+l = zi + si, (i > 0), (2) 

where xi E E1 (i > 0) satisfy the equation 

F'(x i )s i  = - F ( x i )  + ri, (i >_ O) (3) 

for some residual sequence {ri} C_ E1 (i > 0). In [1-4], the local convergence of iteration {xi} 
(i >_ 0) to x* was studied, under the assumption that  for some )u E [0,1] and some al  > 0, 
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f 

F • "P~,(al) = ~F:U(x*,al)--*RJ,  j • N, with U(x*,o'l) = {X • 

R J / [ [ x -  x*[[ < a l}  C_ D, where F(x*) = O, F is Fr6chet differ- 
entiable on U(x*,a) and F ' (x)  -1 exists for all x • U(x*,al), F' is (4) 
continuous on U(x*,al) and there exists # ~  >_ 0 such that for all 

y,z  • U(z*,al) F' (x*)-1(F' (y) - F' (z)) _<#~,[ ]y-z[ [  ~ } .  
% 

In [5], we proved similar results (see Theorem 1 that follows) for a different class of operators. 
In particular we considered for some A • [0, 1] and some a > 0, 

F • P~(a) - { F :  U(x*,a) ~ E1,U(x*,a) C D, where F(x*) = O, 
F is twice Fr~chet-differentiable on U(x*,a),F'(x) -1 exists for all 
x • U(x*,a) and there exist m~(x*), b(x*) such that for all x • 
U(x*,a) [[F'(x*) -1 (F"(x) - F"(x))[[ _< A(x*)IIx - x*[[ ~ and 
[[F'(x*)-lF'(x*)][ <_ b(x*)}. 

(5) 

Moreover, we proved similar results for operators 

F • P~,~, (a0) = P~ (a) n :P~, (or 1), where a0 = min{a, al  }. 

Here, we arrive at the conclusions derived in [4] but for the classes of operators P~(a) and 

P~,~,(ao). 
Our conditions differ from the ones in [4] unless if m~(x*) = 0 and condition (4) holds for x* 

replacing y. Hence, our results have theoretical as well as practical value. In particular, we 
show using a numerical example that  our results allow a wider range of starting points since the 
convergence radius for operators in classes P~(a) or P~.~I (a0) can be larger. Hence, it is also 
true that  there is a wider choice for the numerical sequences involved (see sequences {vi}, {ai}, 
{/?~}, {7i}, (i _> 0) that  follow). 

Our results find applications, if for example, the inexact Newton method is for example, a 
difference Newton-like o~ update Newton method. Our results find applications to the solution 
of autonomous differential equations (see the end of this s tudy for an example). 

2.  C O N V E R G E N C E  A N A L Y S I S  

We state the following semilocal result for inexact Newton iterates {xi} (i _> 0). The proof can 
be found in [5]. 

THEOREM 1. Let F • P~(a). Assume inexact Newton iterates {xi} (i > O) generated by (2),(3) 
satisfy 

IIs, + F'(X')-IF(x')H _ 

- _< v~, (i > o),  (6) 
IIF,(xi)-lF(xi)H - I iFt (x i ) - lF(x i ) l l  

for some sequence {vi} C_ E1 (i _> 0). I[xi  • U(x*,a), then the following hold for all i >_ O: 

I I x , + l  - x * l l  <_ ~ I 1 ~  - x * l l ,  (7) 

where, 

(1 -I- v , )  [ (1/ (A -'t- 1)(A -I- 2 ) )m ; , ( x * ) l l x~  - x* l l ; '  + O / 2 ) b ( x * ) ]  IIx~ - x * l l  

o,~ = v~ + 1 - b (x * ) l l z~  - x * l l  - ( m ~ ( x * ) l ( , X  + 1)) l lx~ - x * l l  "x+l (S) 

Moreover, assume vi < v < 1 (i > 0). Then, iteration {xi} (i > 0) converges to x* from any 
xo • U(x*, a) satisfying 

I lxo - x * l l  < ~0, (9) 
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where ~0 is the minimum positive zero of the function 

(1 + ~) + (1 - ~)(~ + ~ _  
(~+ 1)(~+2) 2)m~(~*)t~+~ + b(x*)t-(1-v). I(t) 

Furthermore, the following estimate holds for all i > 0: 

(10) 

I lx i+~ - z *  II ~ ,~] lx i  - x *  II, (11) 

where 

o~ --- v ÷ ( l + v )  [ ( 1 / ( A ÷ l ) ( A ÷ 2 ) ) m ; , ( x * ) l [ ~ o - ~ * l l ; ' + ( 1 / 2 ) b ( x * ) ]  I lxo - x * l l  (12)  
1 - b(x*)[]xo - x* l l  - (mx(x*) / (A + 1))Hxo - x * l ]  "x+l 

and a e (0, 1). 
Finally, if {xi} (i _> 0) converges to x*, then {xi} converges 

(a) Q-superlinearly if limi-~oo vi = 0; 

(b) with R-order at least 1 + A if lim,_.~ v~,(1+~)-1 < 1; 

where these rates of convergence are as defined in [2,6]. 
As in Theorem 4.1 in [4, p. 245] we can show the following local convergence result for opera- 

tors F • P~(a). Note that  the importance of inexact Newton-like method (13),(14) that  follows 
was explained in great detail in [4, p. 243]. 

THEOREM 2. Let F • P~(a). Also, let Ai,Bi, Ci • L(E1,E2) such that Ai = B~ - C~ (i _> 0) 
with Ai, B~ nonsingular. Consider the iteration {xi} (i > 0) generated by 

x~+l -- xi ÷ s~', (i > 0), (13) 

Bis~ +1 = Cis~ - F(x~), j = 0, 1 . . . .  , ki - 1, (14) 

where {ki} (i >_ 0) is a sequence of positive integers and {s °} C E1 (i > 0) is a sequence of 
starting values. Set Hi = B~-ICi and define 

÷ I11I- A"(1F'(xi)] F'(x,)-lF(x,)ll + H~' IlsO + F'(x,)- F(xi)ll 
'3'i ] lF'(xi)- l  F(xi) l] I IP ' ( x~ ) - lF (x i )  II 

If x~ E U(x*, a) (i _> 0), then the following hold for all i > 0: 

(15) 

I Ix~+l - x * l l  <_ e~[Ix~ - x * l l ,  (16) 

where 

(1 + 3'i) [ ( l / ( . x  + 1 ) (A  + 2 ) ) m ; , ( x * ) l l x i  - z * l l ; '  + (ll2)b(x*)] IIz~ - x * l l  
~i  = 7i  + 1 - b ( x * ) l l x ~  - x * l l  - ( m ~ ( x * ) / ( A  + 1 ) ) l l z ~  - x * l l  ~'+1 ( 1 7 )  

Moreover, suppose that  
~ i < - v i < - v < l ,  (i_>0) (18) 

for some sequence {vi} C [0, 1) (i >_ 0). Then, the sequence {xi} (i > 0) converges to x* from 
any xo E U(x*, a) which satisfies (9) and so that error estimates (11) hold for all i >_ 0. 

PROOF. The result follows immediately from Theorem 1 and the approximation 

s i ÷ F'(xi)- iF(x,)  ( I - H  k') [ I -A ' ( 'F ' (x i ) ]F ' (x , ) - IF(x i )  
(19) 

+H~'  [s 9 + F'(xi)- lF(x,)] ,  (i >_ 0). 

We finally show the following local convergence results for quasi-Newton-iterative methods. 
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THEOREM 3. Let F • Px(a) for some A • (0, 1]. Assume the following. 

(a) There exist sequences {Ai} • L(E1,E2) and {xi} C E1 (i > 0) satisfying approximations 
(13),(14) and such that for some fll > 0 and t32 > 0 

IIz- F'(=*)-IA,+,II-< (1 + ,l~lO'/~) IIs- F'(=*)- 'A,  II + n2o, ~, (20) 

(b) 

where 

,~i = m a x { l l x i  - a:*l l ,  I l x i + l  - x * l l } ,  ( i  > 0) .  

There exist 71 E [0, 1), fli E R, and fl < +co such that conditions 

(21) 

IIH~II < n < 1, (i _> O) (22)  

and IlsO + F'(z,)-'F(=,) H n' 
IIF,(x~)_IF(=~)II <_ <_ ~, (i >_ O) 

hold. 

Then, there exist/5 > O, ~ > 0 and a positive integer k = k(/5,e) such that i f  

(23)  

I1=o - =*11 < /5 ,  I1±- F ' ( = * ) - ' A o l l  < ~, 
k~ > k = k(/5, e), (i > 0), 

(24) 

(25)  

then the iteration {xi} (i >_ O) converges to x*. Moreover, i f  Bi = Ai (i >_ 0), then we can take 

k~ = k(/5, E) = 1, (i > o). 

REMARK 1. Note that  as in [4, p. 248] we are assuming Bi • L(E1,E2) (i _> 0) is nonsin- 
gular, whereas the invertibility of Ai • L(E1, E2) (i _> 0) will follow from the proof by using 
mathematical induction on the integer i. 

PROOF. Fix v • ( 0, 1). Let E, el be such that el > ~ and ~ • (O,v/(el + 2v)). Define real 
functions g, h by 

m~(x*) t~+l + b(x*)t - 1 (26) 
g(t) = A + 1 

and 
X* 

h(t) = "t ~+1 + b(x*)t + eie - (1 - 2e)v. (27) 
A + I  

Since g(0) = - 1  < 0, h(0) = ~, ¢ -  (1 - 2e)v < 0, and for t --~ +co, g(t), h(t) --* +co by the 
intermediate value theorem, there exist minimum positive numbers/$1,/52 such that 

g(/51) = h(/52) = 0, (28) 

g(t) < O, t • [0,/51), (29) 

and 
h(t) < O, t • [0,/52). (30) 

Set/53 E (0, min{/50,/51}) and define function 

where 

t.x 
q(t) = (2/716 + f12) 1 - 8o ~ e', (31)  

:0 = v + (1 + v) (1/(A q- 1)(A + 2))m,x(x*)/53 ~+1 + (1 /2)b(x*) /53  
1 - b(=*)/5~ - ( ,~ : , (= * ) / (~ ,  + 1))/5~+~ 

(32) 
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By the choice of 53, (10), (29), and (32), it follows that 0o e (0, 1). Moreover, we have q(0) = 
- e  < 0 and for t ~ +oc, q(t) --* +oo. Hence, there exists a minimum positive number 54 such 
that 

q(54) = O, (33) 

q(0 < o, t e [0, 54). (34) 

Define 5 E (0, 55), where 55 = min{a, 52, 53, 54}, and 

(m~(x*) / (A  + 1))5 ~+1 + b(z*)6 + ele  
P = 1 - 2e (35) 

By the choice of 5 and (35), we have 
; < v. (36) 

Define 0 as 9o but replace 53 by 5. Note that for xo e U(x*,5), it follows from (12) and the choice 
of 0 that  a _< 9. Let k = k(5, e) be such that 

(1 + •k) p + ,k~3 _< v. (37) 

Assume that  conditions (34) hold. 
By the Banach Lemma in invertible operators [7,8] and the estimate III - F ' (x*) - lAo l l  < ~ < 

2e < 1, it follows that Ao is nonsingular and 

I IAolF ' (x*)[I < [1-  [II - F ' ( x * ) - l A o [ I ]  - '  . ( 3 8 )  

Using (5), (35), (36), and (38) we get from the approximations 

A o l f ' ( x o )  - I = [Ao l f ' ( x* ) ]  f ' ( x* )  -1 [f ' (x0) - f ' ( x * )  + f ' ( x * )  - Ao], 

f '  (Xo) - F '  (x*) = F'  (xo) - F ' (x*)  - F"  (x*) (xo - x*) + F"  (x*) (xo - x*) 

= [F" Ix* + t (x0 - x*)] - F "  (x*)] (x0 - x*) dt + F"(x*) (xo  - x*), 

that  
I IAo l f ' ( xo )  - I{{ <_ (mx(x*) / (A  + 1))5 ~+1 + b(x*)5 + 

1 - ~ (39) 
(mx(z* ) / (A  + 1))/5 x+l + b(z*)5 + e le  

< = p < v .  
1 - 2e 

Let 7i, i >_ 0 be given by (15), then 

7o -< (1 + r} k°) p + r}k°f~ _< v < 1. (40) 

By Theorem 2, we have [[Xl - x*ll <_ 011xo - x*ll. Let us assume 

[ { I -F ' ( x* ) -XAi [ {  < 2e Ilxi+x-x*ll  <_ol ix~-x* l l ,  i = 0 , 1 , 2 , . . . , m -  1. (41) 

Hypothesis (20) can be rewritten as 

III - f ' ( x * ) - l A ' + ' l [ -  III - F'(x*)-XA'll -< ~ (f~l I - -  F t (X*) -1A~ + B2).  (42) 

Summing from i = 0 to i = m - 1, estimate (42) gives 

m - 1  

I -  F '  (x*) - I  Am < I -  F'  (x*) - I  Ao +(2f~lE+f~2)  Z a  ~ 

i=o (43) 
r n - I  5 ,  k 

<_ e + (2Z~ + &) ~ 0~5 ~ <_ ~ + (2Z~ + ~2) ~ < 2~. 
i=0  

and 
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As above it follows that  Am is nonsingular and 

IIA2F'(~)- ±11 < p < v. 

That is 7m -< v < 1, and hence, I1~+~ -x*l l  < 0 t t ~  -~*l l .  The induction is now complete. 
That  completes the proof of Theorem 2. | 

As in [4], if Bi = Ai, then Ci = 0, so Ai = 0 and we can choose ~7 = 0 in (22). Hence, (37) is 
satisfied for k = 1. 

REMARK 2. For F E P~,~ (a0) and the rest of the hypotheses of Theorems 1-3 the conclusions 
also hold. Indeed the proofs can be carried out if we simply replace functions f ,  g by 

(1 + v) 
7 ( t ) =  (A + l)(A + 2) m~(x*)t~+l + ~ b ( x * ) t  + # ~ ' ( 1 -  v)t ~ - ( l - v ) ,  

with 5o denoting the minimum positive zero of function 7, 

sequence ch by 

y(t) = 1 - # ~ , 5  A1, ()~1 E (0, 1]), 

(44) 

( 4 5 )  

(1 Jr v i )  [ ( 1 / ( A  -I" 1) (A -t- 2 ) )m ,x (x * ) I 1= ,  - = * l l  ~' + (1/2)b(=*)] I I x ,  - =*11 
~i = vi + 

1 - g ; , ,  tlx~ - z* l l ;"  ' (46)  

(i _> 0), 

point a by ~, and point a by 

(l+v) [(1/(A+l)(A+2))m;,(x*)llxo-x*ll;'+(1/2)b(x*)] I lxo - x * l l  (47) 
U = v -1- 1 - P,,x~ Ilxo - x* t l  "x' 

Note also that  the results of Corollary 4.1, Theorem 4.2, and Theorem 4.3 in [4] hold also for 
classes of operators F E P~(a) or F E P~,~I (a0). 

3. A P P L I C A T I O N S  

Consider operator F: D c_ E1 --* E2 which satisfies an autonomous differential equation of the 
form [7-9] 

F'(x) = Q(F(x)) ,  (x E D), (48) 

where Q: E2 --~ E1 is a known differentiable operator. Using (48) we get F'(x*) = Q(F(x*)) -- 
Q(0), and F"(x*) = F'(x*)Q'(F(x*)) = Q(0)Q'(0)). That  is, without actually knowing the 
solution x*, we can use the results obtained in this study. 

Below, we justify the claims made at the introduction with a numerical example. 

EXAMPLE. Let E1 = E2 = R,  D = U(0, 1), and define functions F, Q by 

and 

F ( x ) = e  x - 1, (49) 

Q(x) = x + 1. (50) 

For co = a = ch = 1, v = 0, using (4), (5), (10), (44), (49), (50), and the radius of convergence 
given in [4, p. 243] by 

~0 _ ( ( 2 +  A1)(1 - v) _1"~ l/A1 
+ , (51)  

= m~(x*) = e, b(x*) = 1, 6o = .5654448, 5o = .4364902, and we obtain A -- Ai = I, #A 

~o = .245253. That is, 

~o < ~o < 50. (52) 
Hence, our results provide a wider choice for initial guesses x0 than the corresponding ones 
in [i-4]. This observation is important in numerical computations [1-5,7,9-11]. 
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