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An inductive definition of the class of all 3-connected quadrangulations of the plane is given. 
The dual inductive definition determines the class of all 3-connected 4reguhu planar graphs. 

The induch’ve class 3 = Cn(@; a) is defined by giving the class 58 of initial 
objects-the basis of 3, and the class !R of generrrting nrles. Any such rule applied 
to an appropriate sequence of objects, already in 3, produces an object of 3. The 
inductive class 3 consists exactly of the objects which can be constructed from the 
basis by a finite number of applications of generating rules. 

In this paper an inductive definition of the class of all 3-connected quadran- 
gulations of the plane is given. 

A simple graph G is a quadrangulation of the plane iff it can be embedded in 
the plane in such a way that all faces are quadrangles. By Q we shall denote the 
class of all connected quadrangulations of the plane. Some graphs from E2 are 
presented in Fig. 1. From the last of these examples we can see that the 
quadrangulations of the plane are not necessarily 3-connected; even if there is no 
vertex of degree 2. 

BQ and PQ are given in Fig. 2. The base graph BQ and rule PQ should be 
understood as embedded in the plane (sphere). The small triangles attached to 
the vertices in the description of the rule denote any number (zero or more) of 
edges. It is easy to see that: 

Theorem 1. 0 = Cn(BQ; PQ). 

In the following we shall limit our attention to the class sS3 of all 3-connected 
quadrangulations of the plane, which have (essentially) unique embedding in the 
plane (sphere). 

Lemma 2. Every 3-connected quadrangulation of the plane contains at least 8 
vertices of degree 3. 
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Fig. 1. 

proof, Let G be a 3-connected quadrangulation of the plane %6th p vertices, q 
edges and f faces. Also, let F(G) denote the set of al! faces, F(e) the set of the 
two faces which have the edge e in common; and E(F) the set of edges on the 
boundary of the face F. Then it holds 

2 cardF(e)= c cardE(F). 
e&(G) FtsF(G) 

But, card F(e) =2 for each e l E(G) and card E(F) =4 for each FE F(G). 
Therefore we obtain the equality 

q=2f 
and from the Euler’s formula q + 2 =p + f Gully 

f +2=p. 

Because G is 3-connected it has no vertex of degree 1 or 2. Let t be the number of 
vertices of degree 3 in G. Then we have: 

c d(v)=2q=4(p-2) 
UEV(G) 

and 

c d(v)= c d(v)+ 2 d(v)a4(p-t)+3t 
wEV(cT) u: d(u)>4 u:d(u)=3 

from where the inequality t 2 8 follows. Cl 

Theorem 3. Q3 = Cn(B; Pl, P2, P3). 

Fig. 2. 
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B, Pl, P2 and P3 are given in Fig. 3. The halfedges in the figure indicate that 
there must be an edge. 

Proof. The proof of the theorem follows the standard pattern [2]. By inductive 
generalization we prove: 

(A) Cn(B; Pl, P2, P3) E 0,. 

By proving the existence of a construction in 3 for each G E Q3 we show: 

(B) Q3 c Cn(B; Pl, P2, P3). 

(A) The base graph B (l-skeleton of the 3-cube) is 3-connected quadrangula- 
tion. Obviously the rules Pl, P2 and P3 transform a quadrangulation into a 
quadrangulation. Let us prove that they also preserve 3-connectedness: 

The effect of an application of rule Pl to graph G is represented in Fig. 4. Let 
us suppose that the extended graph G* is 2-connected and not 3-connected. Then 
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the graph G* contains a (vertex) cut-set {U, V} which has a non-empty 
intersection with the set {A, B, C, D}; otherwise the set {U, V} would be a 
cut-set also in the original graph G. There are two possibilities: 

(a) The sets {U, V} and {A, B, C, D} have only one vertex in common. 
Because the vertices A, B, C, D lie on the cycle, the remaining three vertices 
belong to the same component with respect to the cut-set {U, V). Therefore the 
set {U, V} is a cut-set also in G. 

(b) The set {U, V} is a subset of {A, B, C, D}. Obviously there are six cases. 
We can easily see that in five of these cases G would also have to be 2-connected. 
The remaining case {U, V} = {A, C} requires a special argument: If {A, C} is a 
cut-set of G* then the set {A, B, C} is a cut-set of G, but this violates the 
condition of the applicability of the rule Pl. 

In all cases we obtained a contradiction. The extended graph G* has to be 
3-connected. 

The proof that rules P2 and P3 preserve 3-connectedness is simpler-we 
deduce these two rules in the class of all 3-connected planar graphs [7,1]: 

@ p3 = Cn(&; PPl, PP2, PP3). 

Graph K4 and rules PPl, PP2, PP3 are presented in Fig. 5. The deductions of 
rules P2 and P3 are given in Fig. 6 and Fig. 7. 

(B) The basic graph B is the only 3-connected quadrangulation on at most 8 
vertices. To prove that also Q3 c Cn(B; Pl, P2, P3), we must show that every 
3-connected quadrangulation G E Q3, different from B, can be reduced by the 
inverse rules Pl’, P2- and PZ- to a quadrangulation of the same type. 

In Lemma 2 we proved that every 3-connected quadrangulation of the plane 
contains at least 8 vertices of degree 3. In the following figures we shall represent 
the vertices of degree 3 by black circles. There are two cases to be considered: 

(a) There exists a vertex X of degree 3 which has at least two neighbours of 
degree at least 4. The situation is presented on the left half of Fig. 8. 

Fig. 7. 
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Fig. 8. 

If we do not destroy the 3-connectedness we can apply the rule Pl- to the 
quadrangle YXZW. Otherwise the reduced graph G’ is only 2-connected. The 
edges e and f are in different components of graph G’ with respect to the 
2-cut-set; otherwise G would also be only 2-connected. Therefore the vertex 
(WX) belongs to the 2-cut-set of graph G’, and vertices X and W belong to the 
3-cut-set of graph G. Since the vertices IV, Y, V, T, U, 2 lie on the same cycle, 
the third vertex of the cut-set has to be U, T, or V. Therefore the graph G has 
one of the two forms represented in Fig. 9 or the graph G has the form given on 
the right of Fig. 9 with the roles of U and V interchanged. Other forms are 
impossible because all cycles in a quadrangulation are of even length [6]. In both 
cases we can apply the rule Pl- to the quadrangle YVTX without destroying 
3-connectedness. 

(b) Each vertex of degree 3 has at least two neighbours of degree 3. Let X be 
one among them. The neighbourhood of X is represented in Fig. 10. There are 

Fig. 9. 

Fig. 10. 
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Fig. 11. 

two possibilities: 
(bl) There exists a vertex X such that the vertex T is of degree at least 4. In 

this case Fig. 10 can be uniquely extended to the situation presented on the left 
part of Fig. II. By the assumption of the case 6 the vertices U and V are of 
degree 3. The vertices P and Q are not adjacent, neither is vertex W their 
neighbour; otherwise we would get a cycle of length 3. Also P # Q because 
otherwise PTYV would bound a face, thus forcing T to have degree 3. Vertex W 
is of degree at least 4; otherwise the face with boundary . . . PUWV. . . would not 
be a quadrangle. Adjacent to P there exists a vertex R (of degree 3), different from Q 
and W. In this case we can apply the rule P2-. The reduced graph G’ is also 
3-connected because there is no pair of vertices, candidate for a 2-cut-set in the 
reduced graph, which is not a 2-cut-set already in G. 

(b2) Each vertex of degree 3 belongs to a quadrangle which has all of its 
vertices of degree 3. Again we can uniquely extend it to the situation represented 
in Fig. 12. Let us show that all four vertices S, U, V and W are of degree at least 
4. At least three of them are of degree at least 4 because otherwise there would 
exist a l- or 2-cut-set in graph G. Suppose now that one vertex among S, U, V 
and W is of degree 3. But, this vertex would have two neighbours of degree at 
least 4, in contradiction with the assumption of the case b. 

Let us show that among the quadrangles with all vertices of degree 3 we can 
always find one to which we can -pply the rule P3- obtaining a 3-connected 
reduced graph G’. 

Suppose the contrary - each application of the rule P3- produces a reduced 
graph which is not 3-connected. Let XYTZ be such a quadrangle. The reduced 
graph G’ is (only) 2-connected. Then either {S, W} or (U, V} is a 2-cut-set of 

Fig. 12. 
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W 

Fig. 13. 

G’-two adjacent vertices of S, W, W, V cannot form a 2-cut-set because this 
would be also a 2-cut-set in G. Let (because of symmetry) {S, W} be a cut-set of 
G’. Because in a quadrangulation there is no odd cycle the graph G has the form 
presented in Fig. 13. By :he assumption of case b the vertices P and Q are of 
degree at least 4. 

Let us now concentrate our attention to the subgraph consisting of the 
quadrangle PWUS and its interior. It is also a quadrangulation and by Lemma 2 
and other assumptions it contains in its interior at least one quadrangle with all 
vertices of degree 3. Because an application of the rule P3- to it destroys 
3-connectedness, graph G must have the form presented in Fig. 14. But now we 
can repeat the same argument on the subgraph determined by quadrangle PWIS, 
and so on, infinitely many times in contradiction with the finiteness of graph G. 

This completes the proof of Theorem 3. Cl 

In the dual form we can express Theorem 3 as follows: 

Theorem 3’. The inductive class Cn(b;pl, p2, p3) (see Fig. 15) is equal to the 
class of all 3-connected 4-regular planar graphs. 

This result complements the inductive definition of the class of all 4-regular 
graphs [3] and the inductive definition of the class of all 4regular planar graphs 

[% 41. 

Fig. 14. 
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