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a b s t r a c t

The square H2 of a graph H is obtained from H by adding new edges between every two
vertices having distance two in H . A block graph is one in which every block is a clique.
For the first time, good characterizations and a linear time recognition of squares of block
graphs are given in this paper. Our results generalize several previous known results on
squares of trees.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A graph H is a square root of a graph G and G is the square of H , written G = H2, if two distinct vertices are joined by an
edge in G if and only if they are of distance atmost two inH . Graph square is a basic operationwith a number of results about
its properties in the literature. Ross and Harary [20] characterized squares of trees and showed that tree square roots, when
they exist, are unique up to isomorphism. Mukhopadhyay [18] provided a characterization of graphs which have a square
root, but this is not a good characterization in the sense that it does not give a short certificate when a graph does have a
square root. In fact, such a good characterization may not exist as Motwani and Sudan [17] proved that it is NP-complete to
determine if a given graph has a square root. On the other hand, there are polynomial time algorithms to recognize squares
of trees [15,11,13,3,5], squares of bipartite graphs [13], and, very recently, squares of graphs having girth at least six [8] (the
girth of a graph is the smallest length of a cycle in the graph). Note that bipartite graphs, aswell as graphs having girth at least
six generalize trees in such a way that these do not have cliques of size larger than two. It should be remarked that known
polynomial time recognitions for squares of trees, of bipartite graphs, and of graphs having girth at least six depend partly
on this fact; chordal graphs also generalize trees but deciding if a graph is the square of a chordal graph is NP-complete;
see [14].
Another natural generalization of trees are block graphs; these are exactly the connected graphs in which every block

(i.e., every maximal 2-connected subgraph) is a clique. Powers of block graphs have been considered in [6] in context of
interval number, and in [2] in context of leaf powers and simplicial powers. To the best of our knowledge, the complexity of
recognizing powers of block graphs, as well as the characterization problem are not yet discussed in the literature.
In this paperwe consider the characterization and recognition problems of graphs that are squares of block graphs, i.e., for

a given graph G, to determine if G = H2 for some block graph H . We first give relevant properties of squares of block graphs
in Section 2. Then, based on these properties, we will provide in Section 3 good characterizations for graphs that are squares
of block graphs and in Section 4 a simple linear time algorithm to compute a square root that is a block graph (if any). In
Section 5 we will derive known results for squares of trees from our discussions.
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Definitions and notation. All graphs considered are finite, undirected and simple. Let G = (VG, EG) be a graph. We often
write xy ∈ EG for {x, y} ∈ EG. The neighborhood NG(v) in G of a vertex v is the set all vertices in G adjacent to v and the closed
neighborhood of v in G is NG[v] = NG(v) ∪ {v}. Set degG(v) = |NG(v)|, the degree of v in G. A universal vertex of G is one that
is adjacent to all other vertices.
Let dG(x, y) be the length, i.e., number of edges, of a shortest path in G between x and y. Let Gk = (VGk , EGk)with VGk = VG

and xy ∈ EGk if and only if 1 ≤ dG(x, y) ≤ k denote the kth power of G. If G = H
k then G is the kth power of the graph H and

H is a k-th root of G. Since the power of a graph H is the union of the powers of the connected components of H , we may
assume that all graphs considered are connected.
A set of vertices Q ⊆ VG is called a clique in G if every two distinct vertices in Q are adjacent; amaximal clique is a clique

that is not properly contained in another clique. A stable set is a set of pairwise non-adjacent vertices. Given a set of vertices
X ⊆ VG, the subgraph induced by X is written G[X] and G−X stands for G[V \X]. If X = {a, b, c, . . .}, we write G[a, b, c, . . .]
for G[X]. Also, we often identify a subset of vertices with the subgraph induced by that subset, and vice versa.
For ` ≥ 1, let P` denote a chordless path with ` vertices and ` − 1 edges, and for ` ≥ 3, let C` denote a chordless cycle

with ` vertices and ` edges. A complete graph is one in which every two distinct vertices are adjacent; a complete graph
on ` vertices is also denoted by K`. A graph is chordal if it contains no induced C`, ` ≥ 4. It is well known (see, e.g, [9])
that a graph is chordal if and only if each of its induced subgraph admits a simplicial vertex; here, a vertex is simplicial if its
neighborhood is a clique (equivalently, if it belongs to exactly one maximal clique).
For a positive integer k, a k-connected component in a graph G is a maximal (induced) k-connected subgraph of G; the

1-connected components of G are the usual connected components, and the 2-connected components of G are also called
blocks of G. A k-cut in a graph is a cutset with k vertices; a 1-cut is also called a cut-vertex. An endblock in a graph is a block
that contains at most one cut-vertex of the graph.
A connected graph is a block graph if its blocks are cliques. The following theoremcollects several known characterizations

of block graphs.

Theorem 1.1. For all graphs G, the following statements are equivalent
(i) G is a block graph;
(ii) G is the intersection graph of blocks of some connected graph;
(iii) G is a connected diamond-free chordal graph;
(iv) Between every two vertices in G there is exactly one chordless path.

Where the diamond is a K4minus an edge. The equivalence (i)⇔ (ii) is Theorem 3.5 in [10], and the equivalence (i)⇔ (iii)
can be easily seen, e.g., by [3, Observation 3]. The equivalence (i)⇔ (iv) can easily be seen as follows: The direction (i)⇒ (iv)
is obvious; (iv) implies that every 2-connected component of Gmust be a clique, hence (i).
Finally, we remark that block graphs can be recognized in linear time: By an algorithm in [22], the blocks of a given graph

G = (VG, EG) can be detected in linear time. Then, testing if all blocks of G are cliques can be done in an obvious way in
O(|VG| + |EG|) time.

2. Basic facts

In this section we give basic properties of squares of block graphs which form a starting point for our characterizations
of such graphs in Section 3.
Let x, y be two non-adjacent vertices in a graph G = (VG, EG). A subset S ⊆ VG is an x, y-separator if x and y belong to

different connected components of G − S. A separator is an x, y-separator for some non-adjacent vertices x, y. A minimal
separator is an x, y-separator that is not properly contained in other x, y-separator.

Observation 2.1. Let G = H2 for some block graph H. Let B be a non-endblock of H and let u 6= v be two cut-vertices of H in
B. Let X and Y be two connected components of H − B such that NH(u) ∩ X 6= ∅ and NH(v) ∩ Y 6= ∅. Then B is a minimal
x, y-separator in G for any pair of vertices x ∈ X, y ∈ Y .

Proof. Clearly, B is a separator in G disconnecting any pair of vertices x ∈ X, y ∈ Y . Moreover, in G, every vertex w ∈ B is
adjacent to a vertex in X and to a vertex in Y , implying B−w does not separate X and Y . Thus, B is a minimal x, y-separator
in G for any pair of vertices x ∈ X, y ∈ Y . �

The following fact is the key observation for further discussions.

Proposition 2.2. Let G be a connected, non-complete graph such that G = H2 for some block graph H. Then the maximal cliques
in G are exactly the closed neighborhoods NH [v] for cut-vertices v in H.

Proof. (i) Let v be a cut-vertex in H . Clearly, Q = NH [v] is a clique in G. Consider an arbitrary vertex x ∈ VH \ Q (note
that such a vertex exists as G is not complete), and let B be a block of H containing v such that x does not belong to the
connected component ofH−v containing B−v. Then dH(x, y) ≥ 3 for all vertices y ∈ B−v, hence x cannot be adjacent,
in G, to all vertices in Q . Therefore, Q is a maximal clique in G.

(ii) Let Q be a maximal clique in G. Among all vertices in Q , let v ∈ Q be a vertex with inclusion-maximal Q ∩ NH [v]. We
will see that v is a cut-vertex of H and Q = NH [v].
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Assume first, by way of contradiction, that v is a simplicial vertex in H and let B be the unique block of H containing
v. Then, as G is not complete, B contains at least one cut-vertex. Clearly, for all cut-vertices u of H in B and for all vertices
x ∈ VH , if dH(v, x) ≤ 2, then dH(u, x) ≤ 2. In particular dH(u, q) ≤ 2 for all q ∈ Q . Hence, by the maximality of Q , u ∈ Q .
Moreover, Q ∩ NH [v] = Q ∩ B ⊆ Q ∩ NH [u], and therefore, by the choice of v, Q ∩ B = Q ∩ NH [u] ⊆ B for all cut-vertices u
of H in B. This implies that Q ⊆ B, contradicting the maximality of Q .
Hence v must be a cut-vertex in H . Next, we claim that Q \ NH [v] = ∅. If not, consider a vertex w ∈ Q \ NH [v]. As

dH(w, v) = 2, there exists a cut-vertex u such that vu, uw ∈ EH . Note that, in H , u separates v and w. Hence Q ⊆ NH [u]
because dH(q, v) ≤ 2 and dH(q, w) ≤ 2 for all q ∈ Q . By the maximality of Q , Q = NH [u]. But then Q ∩ NH [v] is the block
in H containing vuwhich is properly contained in NH [u] = Q ∩ NH [u], contradicting the choice of v. Hence Q \ NH [v] = ∅,
as claimed.
Thus Q ⊆ NH [v], and by the maximality of Q , Q = NH [v]. �

Minimal separators in squares of block graphs can be characterized as follows.

Proposition 2.3. Let G be a connected, non-complete graph such that G = H2 for some block graph H. Then the following
conditions are equivalent:

(i) S is a minimal separator of G;
(ii) S is a non-endblock of H;
(iii) |S| ≥ 2 and S is the intersection of two maximal cliques of G.

Proof. (i)⇒ (ii) Let S be a minimal x, y-separator of G. Let xv1 . . . v`y be the shortest path in H connecting x and y. Since
dH(x, y) ≥ 3, ` ≥ 2. Note that all vi are cut-vertices of H . For each 1 ≤ i < `, let Bi be the block of H containing
vivi+1. By Observation 2.1, each Bi is a minimal x, y-separator of G. If S 6= Bi for all i, then, by the minimality of
the x, y-separators S and Bi, Bi − S 6= ∅ for all i. Let bi ∈ Bi − S, 1 ≤ i < ` (possibly bi = bj for some i 6= j).
Now by noting that x and b1, b`−1 and y are adjacent in G, as well as G[{bi | 1 ≤ i < `}] contains a path with
endpoints b1, b`−1, we get the contradiction that S does not separate x and y. Thus, we conclude that S = Bi for
some i, hence (ii).

(ii)⇒ (iii) Let S be a non-endblock ofH . Then |S| ≥ 2, and S contains at least two cut-vertices u 6= v ofH . By Proposition 2.2,
Q = NH [u] and Q ′ = NH [v] are maximal cliques in G. Clearly, S = Q ∩ Q ′.

(iii)⇒ (i) LetQ ,Q ′ be twomaximal cliques inG such that S = Q∩Q ′ has at least two vertices. By Proposition 2.2,Q = NH [u]
and Q ′ = NH [v] for some cut-vertices u 6= v in H . Since |NH [u] ∩ NH [v]| = |S| ≥ 2, u and v must be adjacent in
H . Hence S is the non-endblock in H containing uv, and (i) follows from Observation 2.1. �

As a corollary of Proposition 2.3, allminimal separators of the square of a block graph are cliqueswith at least two vertices,
hence squares of block graphs are chordal (indeed, it is well known that a graph is chordal if and only if each of its minimal
separators is a clique; see, e.g., [9]) and 2-connected.
Recall that a chordal graph is strongly chordal if it does not contain any `-sun as an induced subgraph; here an `-sun, ` ≥ 3,

consists of a clique {u1, u2, . . . , u`} and a stable set {v1, v2, . . . , v`} such that for i ∈ {1, . . . , `}, vi is adjacent to exactly ui
and ui+1 (index arithmetic modulo `). Clearly, block graphs are strongly chordal. It was shown in [7,16,19] that all powers
of strongly chordal graphs are strongly chordal. In particular, squares of block graphs (hence of trees) are strongly chordal;
later, unknowing this fact, [15,1] proved that the square of a tree is chordal. As another consequence of Proposition 2.3, we
give a new and short proof for this fact:

Corollary 2.4 ([7,16,19]). Squares of block graphs are strongly chordal.

Proof. Let G be a non-complete graph that is the square of a block graph H . As pointed out, G is chordal. Suppose G contains
an induced `-sun with clique {u1, u2, . . . , u`} and stable set {v1, v2, . . . , v`}. Let Q be a maximal clique in G containing
{u1, u2, . . . , u`}, and for each i ∈ {1, . . . , `}, let Qi be amaximal clique of G containing vi, ui and ui+1. Now, Q ∩Qi, 1 ≤ i ≤ `,
contains ui and ui+1 but none of {u1, u2, . . . , u`} \ {ui, ui+1}, hence they are pairwise distinct blocks in H . But then the cycle
in H with edges u1u2, u2u3, . . . , u`−1u`, u`u1 belongs to distinct blocks of H , a contradiction. Thus, G is a strongly chordal
graph. �

The structure of the minimal separators in squares of block graphs is now described in the following proposition. Given
a block graph H , a simplicial vertex of H belonging to an endblock of H is called a leaf.

Proposition 2.5. Let G be a connected, non-complete graph such that G = H2 for some block graph H.Let F be the subgraph of
G formed by all minimal separators of G. Then

(i) F is obtained from H by deleting all leaves of H. In particular, F is a block graph whose blocks are exactly the minimal
separators of G;

(ii) For all maximal cliques Q and Q ′ of G with |Q ∩ Q ′| ≥ 2, Q ∩ Q ′ is a block of F ;
(iii) Every block S of F belongs to at least two and at most |S|maximal cliques of G;
(iv) Every two non-disjoint blocks of F belong to a common maximal clique of G;
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(v) For all maximal cliques Q of G, Q ∩ VF = NF [v] for some vertex v of F ;
(vi) VG \ VF is the set of all simplicial vertices of G. Moreover, for every vertex v ∈ VG \ VF , |NH(v) ∩ VF | = 1, and if

NH(v) ∩ VF = {u}, then NG(u) \ VF = NH(u) \ VF .

Proof. (i) and (ii) follow from Proposition 2.3.
(iii) follows from Propositions 2.2 and 2.3, by noting that any block S in H clearly contains at most |S| cut-vertices,

and if S is a non-endblock, S contains at least two cut-vertices.
(iv) Two non-disjoint minimal separators S and S ′ of G are two non-endblocks of H (by Proposition 2.3) having a

common cut-vertex, say v. Hence S ∪ S ′ ⊆ NH [v], and (iv) follows from Proposition 2.2.
(v) Let Q be amaximal clique in G. By Proposition 2.2, Q = NH [v] for some cut-vertex v ofH . Since G is not complete,
some block of H in NH [v]must be a non-endblock, hence v ∈ VF , and by (i), NF [v] = Q ∩ VF .

(vi) If v has two non-adjacent neighbors x 6= y, then any minimal x, y-separator in Gmust contain v, hence v ∈ VF .
Thus, every vertex in VG \ VF must be simplicial in G. On the other side, by (iii), every vertex in F belongs to
at least two maximal cliques. Thus, VG \ VF consists of exactly the simplicial vertices of G. The second part
follows directly from the following observation: By (i), any vertex v ∈ VG \ VF is a leaf of H and belongs to
an endblock Bv of H . As G is not complete, the cut-vertex u of H in Bv must belong to a non-endblock of H , hence
NH(v)∩ VF = (Bv \ {v})∩ VF = {u}, and NG(u) \ VF consists of exactly the leaves of H that belong to an endblock
containing u. �

Unlike tree roots, block graph roots are not unique in general. Indeed, if H is a block graph and H ′ is the block graph
obtained from H by deleting all edges joining two simplicial vertices in an endblock of H (thus, every endblock in H ′ is an
edge), then clearly H2 and (H ′)2 coincide; see also Fig. 1.

Fig. 1. Two block graphs (left and middle) with the same square (right).

Theorem 2.6. Block graph square roots in which every endblock is an edge are unique up to isomorphism.
Proof. LetH1,H2 be two block graphs in which every endblock is an edge, and assume that f : H21 → H22 is an isomorphism.
We will show that H1 and H2 are isomorphic by pointing out that the restriction f : H1 → H2 of f is an isomorphism.
Write Gi = H2i , i = 1, 2. If G1 or G2 is a clique, then Hi must be stars (as every endblock in Hi is an edge) with the same

vertex number, hence they are isomorphic. So, assume that Gi are non-complete, and let Fi be the subgraph of Gi formed by
the minimal separators of Gi. By Proposition 2.5(i), Fi is a block graph and each block of Fi is a non-endblock of Hi.
Claim 1: The restrictions f : VF1 → VF2 and f : VH1 \ VF1 → VH2 \ VF2 of f are bijections, and VHi \ VFi is a stable set in Hi,
i = 1, 2.
Proof of Claim 1: The first part follows from Proposition 2.5(vi), the second part follows from our assumption on the block
graphs Hi.
Claim 2: For all v, v′ ∈ VF1 : vv

′
∈ EF1 if and only if f (v)f (v

′) ∈ EF2 .
Proof of Claim 2: Note that, by Claim 1, f (v), f (v′) ∈ VF2 . Let vv

′
∈ EF1 . Then f (v)f (v

′) is an edge in G2. If f (v)f (v′) 6∈ EF2 , then
f (v) and f (v′)must belong to different blocks B2 6= B′2 in F2 with B2 ∩ B

′

2 6= ∅. Consider the block B in F1 containing vv′. As
B is a non-endblock of H1, there are different blocks B1, B′1 of H1 with ∅ 6= B ∩ B1 6= B ∩ B′1 6= ∅. Let x ∈ B1 \ B, x′ ∈ B′1 \ B.
Then xx′ 6∈ EG1 but f (x)f (x

′) ∈ EG2 because f (x) and f (x
′) are adjacent in G2 to both f (v) and f (v′), hence f (x) and f (x′)must

belong to some blocks inH2 containing the cut-vertex B2∩B′2. This contradiction shows that f (v)f (v
′) ∈ EF2 . Along the same

line, it can be seen that f (v)f (v′) ∈ EF2 implies vv
′
∈ EF1 .

Claim 3: For all v ∈ VF1 , v
′
∈ VH1 \ VF1 : vv

′
∈ EH1 if and only if f (v)f (v

′) ∈ EH2 .
Proof of Claim 3: Note that, by Claim 1, f (v) ∈ VF2 , f (v

′) ∈ VH2 \ VF2 . Let vv
′
∈ EH1 . Then f (v)f (v

′) ∈ EG2 . Assume that
f (v)f (v′) 6∈ EH2 . Then there exists vertex u ∈ VH1 such that f (v)f (u) and f (v

′)f (u) are edges of H2. As f (v) is a cut-vertex of
H2, there exists w ∈ VH1 such that f (w)f (v) ∈ EH2 and f (w), f (u) belong to different blocks of H2. Hence f (w)f (v

′) 6∈ EG2 ,
and by Proposition 2.5(vi) (second part), f (w) ∈ VF2 . Therefore, w ∈ VF1 (by Claim 1) and wv ∈ EH1 (by Claim 2), implying
wv′ ∈ EG1 . This contradicts f (w)f (v

′) 6∈ EG2 . Thus, f (v)f (v
′) ∈ EH2 , as claimed. Similarly, it can be seen that f (v)f (v

′) ∈ EH2
implies vv′ ∈ EH1 .
It follows from Claim 1, Claim 2 and Claim 3 that the restriction f : H1 → H2 of f is an isomorphism. �
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3. Good characterizations of squares of block graphs

We are now ready to characterize graphs that are squares of a block graph. Our characterizations are good in the sense
that they lead to polynomial time recognition algorithms for such graphs.

Theorem 3.1. Let G be a connected non-complete graph and let F be the subgraph of G formed by all minimal separators of G.
Then G is the square of a block graph if and only if the following conditions hold.

(i) F is a block graph whose blocks are exactly the minimal separators of G;
(ii) For all maximal cliques Q and Q ′ of G with |Q ∩ Q ′| ≥ 2, Q ∩ Q ′ is a block of F ;
(iii) Every block S of F belongs to at least two and at most |S|maximal cliques of G;
(iv) Every two non-disjoint blocks of F belong to a common maximal clique of G;
(v) For all maximal cliques Q of G, Q ∩ VF = NF [s] for some vertex s of F .

Proof. The only if-part follows directly from Proposition 2.5.
For the if-part, let G be a connected, non-complete graph satisfying (i)–(v). Then note that VG\VF is the set of all simplicial

vertices of G (cf. also the proof of Proposition 2.5 (vi)): If v has two non-adjacent neighbors x 6= y, then any minimal x,
y-separator in Gmust contain v, hence v ∈ VF . On the other side, by (iii), every vertex in F belongs to at least two maximal
cliques.
Now, we will construct a spanning subgraph H of G such that H is a block graph and G = H2 by attaching the simplicial

vertices in VG \ VF to F in a suitable way (see also Fig. 2): For each v ∈ VG \ VF , Q = NG[v] is a maximal clique of G (as v is
simplicial in G). By (v) we have two cases. If Q ∩ VF = NF [s] for some cut-vertex s of F , then Q ∩ VF consists of all blocks of F
at s. Since H should be a square root of G, dH(v, s) ≤ 2 for all v ∈ Q . Hence we must attach all v ∈ Q \ VF to F at the vertex
s. In other case, S = Q ∩ VF is a block of F . Then we take a simplicial vertex s ∈ S of F and attach all v ∈ Q \ VF to F at the
vertex s. A simplicial vertex of F in S always exists: If s ∈ S is a cut-vertex of F , i.e., there is another block S ′ of F at s, then by
(iv), NF [s] = Q ′ ∩ VF for another maximal clique Q ′ 6= Q (hence we cannot join v ∈ Q \ VF to s). Thus, letting q1 be number
of the maximal cliques C of Gwith C ∩ VF = S and q2 be the number of cut-vertices of F in S, we have q1 ≤ |S| − q2 because
of (iii) at most |S|maximal cliques may contain S.

Fig. 2. An input graph G (left), the subgraph F of G (middle) and a square root H constructed by Algorithm BlockGraphRoot.

To sum up, a block graph H that will be a square root of G is constructed by the following Algorithm BlockGraphRoot:

Algorithm BlockGraphRoot

1. H := F
2. let X be the set of all cut-vertices of F
3. for each v ∈ VG \ VH do
4. Q := NG[v] //note: Q is a maximal clique in G
5. if Q ∩ VF is a block of F then
6. choose an arbitrary vertex sQ ∈ (Q ∩ VF ) \ X
7. X := X ∪ {sQ }
8. else let sQ be the universal vertex of F [Q ∩ VF ]
9. //note: Q ∩ VF = NF [sQ ] by (v)
10. VH := VH ∪ Q
11. EH := EH ∪ {vsQ | v ∈ Q \ VH}

The output graph H of Algorithm BlockGraphRoot has the following properties:
Claim 1: The following facts hold:

(a) H is a spanning subgraph of G and contains F as an induced subgraph;
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(b) Every vertex v ∈ VG \ VF has exactly one neighbor in H , and if NH(v) = {u}, then u ∈ VF ;
(c) If v ∈ VG \ VF with NH(v) = {u}, then vw ∈ EG for each w ∈ NF (u), and for all v 6= v′ in VG \ VF : vv′ ∈ EG if and only if
NH(v) = NH(v′);

(d) H is a block graph.

Proof of Claim 1: (a) As discussed before, by Conditions (iii)–(v), the vertex sQ chosen in the for-loop at line 6, respectively,
line 8 always exists, hence H is a spanning subgraph of G. Since the algorithm only attaches vertices outside F to F to obtain
H , F is an induced subgraph of H .
(b) is obvious by construction; c.f. lines 6, 8 and 11 of the algorithm: Every v ∈ VG \ VH is contained in a unique maximal

clique Q of G and, by construction, NH(v) = {sQ } and sQ ∈ VF .
(c) First, let v ∈ VG \ VF with NH(v) = {u}. Then, by (b), u ∈ F , and by construction, Q ∩ VF = NF [u] where Q is the

unique maximal clique of G containing v. Hence the first assertion holds.
Next, let v 6= v′ in VG \ VF . If vv′ ∈ EG, then v and v′ belong to a unique maximal clique Q of G, hence by construction

NH(v) = NH(v′) = {sQ }. Conversely, if vv′ 6∈ EG, then the maximal cliques Q ,Q ′ of G containing v, respectively v′, are
distinct. By construction, sQ 6= sQ ′ whenever sQ or sQ ′ is a simplicial vertex of F . So, let us consider the case Q ∩VF = NF [sQ ],
Q ′ ∩ VF = NF [sQ ′ ]with cut-vertices sQ , sQ ′ in F . If sQ = sQ ′ , then Q ∩ Q ′ ∩ VF = NF [sQ ] ⊆ Q ∩ Q ′, contradicting (ii) because
NF [sQ ] contains at least two blocks of F . Thus, sQ 6= sQ ′ , i.e., NH(v) 6= NH(v′).
(d) Since F is a block graph (by (i)), (c) directly follows from (a) and (b). (It should be remarked that every endblock in H

is an edge.)
Claim 2: EH2 ⊆ EG.
Proof of Claim 2: Let vv′ ∈ EH2 \ EH . Then there exists a vertex u such that vu, v

′u ∈ EH . We distinguish three cases. First,
if v, v′ ∈ VF , then also, by Claim 1(b), u ∈ VF , and hence by Claim 1(a), vu, v′u ∈ EF . Now, as vv′ 6∈ EH , uv and uv′ belong
to different blocks of F , and by (iii), v and v′ are contained in a common maximal clique of G, hence vv′ ∈ EG. Second, if
v, v′ ∈ VG \ VF , then by Claim 1(c), vv′ ∈ EG. Third, without loss of generality, we may assume that v ∈ VG \ VF and v′ ∈ VF .
Then by Claim 1(b), u ∈ VF is the unique neighbor of v in H , and by Claim 1(a), v′u ∈ EF . Now, again by Claim 1(c), vv′ ∈ EG.
Claim 3: EG ⊆ EH2 .
Proof of Claim 3: Let vv′ ∈ EG \ EH and let Q be a maximal clique in G containing vv′. First assume that Q ∩ VF = NF [s] for
some cut-vertex s of F . Then, as vv′ 6∈ EH , s 6∈ {v, v′}. Hence sv, sv′ ∈ EF (if v, v′ ∈ VF ), or by construction sv, sv′ ∈ EH (if
v, v′ 6∈ VF ) or one of sv, sv′ is in EF and the other is in EH (otherwise). Thus vv′ ∈ EH2 . Next, if Q ∩ VF is a block of F , then
Q \ VF 6= ∅ (by (iii)), and hence by construction sv, sv′ ∈ EH for some s ∈ Q ∩ VF , s 6= v, v′. Thus vv′ ∈ EH2 .
It follows by Claims 2 and 3 that G = H2, and Theorem 3.1 is proved. �

Another formulation of Theorem 3.1 is:

Theorem 3.2. Let G be a connected graph. Then G is the square of a block graph if and only if G is 2-connected, chordal, and
satisfies the following conditions:

(i) Every two distinct minimal separators of G have at most one vertex in common;
(ii) For all maximal cliques Q and Q ′ of G with |Q ∩ Q ′| ≥ 2, Q ∩ Q ′ is a minimal separator of G;
(iii) Every minimal separator S belongs to at least two and at most |S|maximal cliques of G;
(iv) Every two non-disjoint minimal separators belong to a common maximal clique of G;
(v) All minimal separators belonging to the same maximal clique have exactly one vertex in common.

Proof. For complete graphs is the theorem trivially true. So, let us assume that G is non-complete. The if-part then follows
from Observation 2.1, Corollary 2.4, and Theorem 3.1.
For the only if-part, let G be a 2-connected, non-complete, chordal graph satisfying (i)–(v). Let F be the subgraph of G

formed by all minimal separators. We will show that F is a block graph in which each block is a minimal separator, and thus
G satisfies the conditions in Theorem 3.1 and we are done.
To this end, we first note that for every maximal clique Q of G there exists another maximal clique Q ′ with |Q ∩ Q ′| ≥ 2

(this is because G is non-complete, chordal and 2-connected). This together with (ii) and (v) imply that F is connected.
Next we show that F is chordal. Suppose not. Then there exists an induced cycle v1v2 . . . v`v1 in F , ` ≥ 4. Since

every minimal separator is a clique (by (iii)), all edges vivi+1 (indices taken modulo `) belong to pairwise distinct minimal
separators. Hence, by (iv),

vivi+2 ∈ EG \ EF for all i. (1)

Therefore, by (v),

vivi+3 6∈ EG for all i. (2)

In particular, ` ≥ 6. Consider the cycle C in G, C = v1v3v5 . . . v`v1 if ` is odd and C = v1v3v5 . . . v`−1v1 otherwise.
If ` = 6, let Q be a maximal clique of G containing v1v3v5, Q ′ be a maximal clique containing v1v2v3. By (2), Q 6= Q ′.

Now v1v3 ∈ Q ∩ Q ′, hence by (ii), v1v3 ∈ F , contradicting (1).
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If ` ≥ 7, C has length d `2e ≥ 4. Since G is chordal, C has a short chord, say v1v5 ∈ EG. As before we conclude v1v3 ∈ F , a
contradiction to (1).
Thus, F is chordal. Furthermore, (i) and (v) imply that F cannot contain an induced diamond, hence F is a block graph.

Finally, (i) implies that the blocks of F are exactly the minimal separators of G. �

Note that all conditions in Theorem 3.2, respectively, Theorem 3.1, can be tested in polynomial time (in fact, it is
straightforward to do this in O(nm) steps). Hence these characterizations give polynomial time recognition algorithms for
squares of block graphs.

4. A linear time recognition for squares of block graphs

In this section we will describe how to recognize squares of block graphs in linear time. Instead of testing the Conditions
(i)–(v) given in the characterizations explicitly, we will need the following fact:

Lemma 4.1. Given a graph G and a block graph H on the same vertex set, testing if G = H2 can be done in O(m) time.

Proof. The argument is similar to the case of tree squares given in [13, Lemma 6.1]. For the sake of completeness, we give
the proof here.
Recall that leaves in a block graph H are simplicial vertices of H belonging to an endblock of H . Pick an arbitrary leaf v

of H , and let B be the endblock of H containing v. Let u be the cut-vertex of H in B if H 6= B. Otherwise let u be an arbitrary
vertex in B − v. Obviously, NH2 [v] = NH [u]. Therefore, if G = H

2, then NG[v] = NH [u]. Thus, if NG[v] 6= NH [u], we return
‘NO’, meaning G 6= H2. Otherwise, we replace G and H by G− v and H − v, respectively, and repeat the process. If only one
vertex is remained in H and G, it implies that NH2 [w] = NG[w] for all vertices w. In this case H

2
= G and we return ‘YES’.

The total time complexity is bounded by
∑

v∈VG
O(degG(v)) = O(

∑
v∈VG

degG(v)) = O(m). �

Theorem 4.2. Given a graph G, it can be recognized in O(n+ m) time if G is the square of a block graph, and if so, such a block
square root can be computed in the same time.

Proof. It is well known that 2-connectedness can be tested in linear time O(n + m) (see [22]). It is also well known that
testing chordality and listing all maximal cliques, as well as all minimal separators of a given chordal graph can be done in
linear time (see, for example, [4,9,12,21]).
So, given G = (VG, EG), we assume that G is chordal and 2-connected, otherwise we just return ‘NO’, meaning that

G is not the square of a block graph. We may also assume that all maximal cliques and all minimal separators of G are
available, and that there are at most n = |VG|maximal cliques (cf. Proposition 2.2) and at mostm = |EG|minimal separators
(cf. Proposition 2.3). In particular, we may assume further that the subgraph F of G formed by all minimal separators is a
block graph, otherwise we return ‘NO’ (cf. Proposition 2.5(i)).
Next, construct the block graph H from F according to Algorithm BlockGraphRoot in the proof of Theorem 3.1; with

small modifications: In line 5 instead of testing if Q ∩ VF is a block of F we just test if Q ∩ VF is a clique. Then, in line 6,
respectively, line 8, if the vertex sQ does not exists, we return ‘NO’ and stop. This takes

∑
v∈VG\VF

O(deg(v)) = O(m) steps.
Note that if G is indeed the square of a block graph, then all Conditions (i)–(v) are satisfied, hence the so constructed

block graph H is indeed exactly the block graph obtained from Algorithm BlockGraphRoot, and therefore, H is a square
root of G (cf. proof of Theorem 3.1). Thus, we have to check if H is really a square root of G. If not, we correctly return ‘NO’.
This last check takes O(m) steps as pointed out by Lemma 4.1, and Theorem 4.2 follows. �

5. Squares of trees revisited

Given the fact that the squares of trees have beenwidely discussed in the literature, wewill derive from our results some
previous known results for tree squares.
First, tree squares are strongly chordal by Corollary 2.4. Second, as every endblock in a tree is an edge, Theorem2.6 implies

directly:

Theorem 5.1 ([3,13,20]). The tree roots of squares of trees are unique up to isomorphism.

Third, observe that Proposition 2.3 shows that each minimal separator in a tree square consists of exactly two vertices,
and therefore, in tree squares minimal separators and 2-cuts coincide. Hence, in Theorem 3.2, applied for tree squares, (i) is
trivially satisfied, (ii) means that every two maximal cliques have at most two vertices in common (this plus chordality and
2-connectedness implies that if |Q ∩Q ′| = 2 then Q ∩Q ′ is a 2-cut), and (iii) means that every 2-cut belongs to exactly two
maximal cliques. Thus, we obtain:

Theorem 5.2 ([3]). Let G be a connected graph. Then G is the square of a tree if and only if G is 2-connected, chordal and satisfies
the following conditions:

(i) Every two distinct maximal cliques of have at most two vertices in common;
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(ii) Every 2-cut belongs to exactly two maximal cliques;
(iii) Every pair of non-disjoint 2-cuts belongs to a common maximal clique;
(iv) All 2-cuts contained in the same maximal clique have a common vertex.

Furthermore, in the proof of Theorem 4.2, if F is a tree, then H is also a tree. Hence we obtain:

Theorem 5.3 ([3,5,11,13,15]). Given a graph G = (VG, EG), it can be recognized in O(|VG| + |EG|) time if G is the square of a
tree. Moreover, a tree root of a square of a tree can be computed in the same time.

6. Conclusion

Block graphs generalize trees in a very natural way, and in a sense, they are not too far from trees. Discussing powers
of block graphs is motivated by a number of results on tree powers in the literature. In this paper we have found good
characterizations for squares of block graphs and a linear time recognition algorithm for such squares. Our algorithm also
constructs a square block graph root if one exists. Furthermore, our discussion on squares of block graphs generalizes some
previous known results on squares of trees.
For k ≥ 3, the complexity status of recognizing kth powers of block graphs is not yet determined. However, we strongly

believe that k-th power of block graph should be efficiently solvable for all fixed k:
k-th power of block graph

Instance: A graph G.
Question: Does there exist a block graph H such that G = Hk?

Also, it would be interesting to see if there exists a good graph-theoretic characterization for kth powers of block graphs
for all k.
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