
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 332 (2007) 1468–1476

www.elsevier.com/locate/jmaa

Cone metric spaces and fixed point theorems
of contractive mappings

Huang Long-Guang, Zhang Xian ∗

School of Sciences, Jimei University, Xiamen 361021, People’s Republic of China

Received 15 July 2004

Available online 22 December 2006

Submitted by G. Jungck

Abstract

In this paper we introduce cone metric spaces, prove some fixed point theorems of contractive
mappings on cone metric spaces.
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In this paper, we replace the real numbers by ordering Banach space and define cone
metric spaces (X,d). In Section 1, we discuss some properties of convergence of se-
quences. In Section 2, we prove some fixed point theorems for contractive mappings. Our
results generalized some fixed point theorems in metric spaces [1,2].

1. Cone metric spaces

In this section we shall define cone metric spaces and prove some properties.
Let E always be a real Banach space and P a subset of E. P is called a cone if and only

if:
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(i) P is closed, nonempty, and P �= {0};
(ii) a, b ∈ R, a, b � 0, x, y ∈ P ⇒ ax + by ∈ P ;

(iii) x ∈ P and −x ∈ P ⇒ x = 0.

Given a cone P ⊂ E, we define a partial ordering � with respect to P by x � y if and
only if y − x ∈ P . We shall write x < y to indicate that x � y but x �= y, while x � y will
stand for y − x ∈ intP , intP denotes the interior of P .

The cone P is called normal if there is a number K > 0 such that for all x, y ∈ E,

0 � x � y implies ‖x‖ � K‖y‖.
The least positive number satisfying above is called the normal constant of P .

The cone P is called regular if every increasing sequence which is bounded from above
is convergent. That is, if {xn} is sequence such that

x1 � x2 � · · · � xn � · · · � y

for some y ∈ E, then there is x ∈ E such that ‖xn − x‖ → 0 (n → ∞). Equivalently the
cone P is regular if and only if every decreasing sequence which is bounded from below
is convergent. It is well known that a regular cone is a normal cone.

In the following we always suppose E is a Banach space, P is a cone in E with intP �= ∅
and � is partial ordering with respect to P .

Definition 1. Let X be a nonempty set. Suppose the mapping d :X × X → E satisfies

(d1) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X,d) is called a cone metric space.

It is obvious that cone metric spaces generalize metric spaces.

Example 1. Let E = R2, P = {(x, y) ∈ E | x, y � 0} ⊂ R2, X = R and d :X × X → E

such that d(x, y) = (|x − y|, α|x − y|), where α � 0 is a constant. Then (X,d) is a cone
metric space.

Definition 2. Let (X,d) be a cone metric space. Let {xn} be a sequence in X and x ∈ X. If
for every c ∈ E with 0 � c there is N such that for all n > N , d(xn, x) � c, then {xn} is
said to be convergent and {xn} converges to x, and x is the limit of {xn}. We denote this by

lim
n→∞xn = x or xn → x (n → ∞).

Lemma 1. Let (X,d) be a cone metric space, P be a normal cone with normal constant K .
Let {xn} be a sequence in X. Then {xn} converges to x if and only if d(xn, x) → 0 (n → ∞).
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Proof. Suppose that {xn} converges to x. For every real ε > 0, choose c ∈ E with 0 � c

and K‖c‖ < ε. Then there is N , for all n > N , d(xn, x) � c. So that when n > N ,
‖d(xn, x)‖ � K‖c‖ < ε. This means d(xn, x) → 0 (n → ∞).

Conversely, suppose that d(xn, x) → 0 (n → ∞). For c ∈ E with 0 � c, there is δ > 0,
such that ‖x‖ < δ implies c − x ∈ intP . For this δ there is N , such that for all n > N ,
‖d(xn, x)‖ < δ. So c − d(xn, x) ∈ intP . This means d(xn, x) � c. Therefore {xn} con-
verges to x. �
Lemma 2. Let (X,d) be a cone metric space, P be a normal cone with normal constant K .
Let {xn} be a sequence in X. If {xn} converges to x and {xn} converges to y, then x = y.
That is the limit of {xn} is unique.

Proof. For any c ∈ E with 0 � c, there is N such that for all n > N , d(xn, x) � c and
d(xn, y) � c. We have

d(x, y) � d(xn, x) + d(xn, y) � 2c.

Hence ‖d(x, y)‖ � 2K‖c‖. Since c is arbitrary d(x, y) = 0; therefore x = y. �
Definition 3. Let (X,d) be a cone metric space, {xn} be a sequence in X. If for any c ∈ E

with 0 � c, there is N such that for all n,m > N , d(xn, xm) � c, then {xn} is called a
Cauchy sequence in X.

Definition 4. Let (X,d) be a cone metric space, if every Cauchy sequence is convergent
in X, then X is called a complete cone metric space.

Lemma 3. Let (X,d) be a cone metric space, {xn} be a sequence in X. If {xn} converges
to x, then {xn} is a Cauchy sequence.

Proof. For any c ∈ E with 0 � c, there is N such that for all n,m > N , d(xn, x) � c/2
and d(xm,x) � c/2. Hence d(xn, xm) � d(xn, x) + d(xm,x) � c. Therefore {xn} is a
Cauchy sequence. �
Lemma 4. Let (X,d) be a cone metric space, P be a normal cone with normal constant K .
Let {xn} be a sequence in X. Then {xn} is a Cauchy sequence if and only if d(xn, xm) → 0
(n,m → ∞).

Proof. Suppose that {xn} is a Cauchy sequence. For every ε > 0, choose c ∈ E with 0 � c

and K‖c‖ < ε. Then there is N , for all n,m > N , d(xn, xm) � c. So that when n,m > N ,
‖d(xn, xm)‖ � K‖c‖ < ε. This means d(xn, xm) → 0 (n,m → ∞).

Conversely, suppose that d(xn, xm) → 0 (n,m → ∞). For c ∈ E with 0 � c, there is
δ > 0, such that ‖x‖ < δ implies c − x ∈ intP . For this δ there is N , such that for all
n,m > N , ‖d(xn, xm)‖ < δ. So c − d(xn, xm) ∈ intP . This means d(xn, xm) � c. There-
fore {xn} is a Cauchy sequence. �
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Lemma 5. Let (X,d) be a cone metric space, P be a normal cone with normal constant K .
Let {xn} and {yn} be two sequences in X and xn → x, yn → y (n → ∞). Then

d(xn, yn) → d(x, y) (n → ∞).

Proof. For every ε > 0, choose c ∈ E with 0 � c and ‖c‖ < ε
4K+2 . From xn → x and

yn → y, there is N such that for all n > N , d(xn, x) � c and d(yn, y) � c. We have

d(xn, yn) � d(xn, x) + d(x, y) + d(yn, y) � d(x, y) + 2c,

d(x, y) � d(xn, x) + d(xn, yn) + d(yn, y) � d(xn, yn) + 2c.

Hence

0 � d(x, y) + 2c − d(xn, yn) � 4c

and ∥∥d(xn, yn) − d(x, y)
∥∥ �

∥∥d(x, y) + 2c − d(xn, yn)
∥∥ + ‖2c‖ � (4K + 2)‖c‖ < ε.

Therefore d(xn, yn) → d(x, y) (n → ∞). �
Definition 5. Let (X,d) be a cone metric space. If for any sequence {xn} in X, there
is a subsequence {xni

} of {xn} such that {xni
} is convergent in X. Then X is called a

sequentially compact cone metric space.

2. Fixed point theorems

In this section we shall prove some fixed point theorems of contractive mappings.

Theorem 1. Let (X,d) be a complete cone metric space, P be a normal cone with normal
constant K . Suppose the mapping T :X → X satisfies the contractive condition

d(T x,T y) � kd(x, y), for all x, y ∈ X,

where k ∈ [0,1) is a constant. Then T has a unique fixed point in X. And for any x ∈ X,
iterative sequence {T nx} converges to the fixed point.

Proof. Choose x0 ∈ X. Set x1 = T x0, x2 = T x1 = T 2x0, . . . , xn+1 = T xn = T n+1x0, . . . .

We have

d(xn+1, xn) = d(T xn,T xn−1) � kd(xn, xn−1)

� k2d(xn−1, xn−2) � · · · � knd(x1, x0).

So for n > m,

d(xn, xm) � d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

� (kn−1 + kn−2 + · · · + km)d(x1, x0) � km

d(x1, x0).

1 − k
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We get ‖d(xn, xm)‖ � km

1−k
K‖d(x1, x0)‖. This implies d(xn, xm) → 0 (n,m → ∞). Hence

{xn} is a Cauchy sequence. By the completeness of X, there is x∗ ∈ X such that xn → x∗
(n → ∞). Since

d(T x∗, x∗) � d(T xn,T x∗) + d(T xn, x
∗) � kd(xn, x

∗) + d(xn+1, x
∗),∥∥d(T x∗, x∗)

∥∥ � K
(
k
∥∥d(xn, x

∗)
∥∥ + ∥∥d(xn+1, x

∗)
∥∥) → 0.

Hence ‖d(T x∗, x∗)‖ = 0. This implies T x∗ = x∗. So x∗ is a fixed point of T .
Now if y∗ is another fixed point of T , then

d(x∗, y∗) = d(T x∗, T y∗) � kd(x∗, y∗).

Hence ‖d(x∗, y∗)‖ = 0 and x∗ = y∗. Therefore the fixed point of T is unique. �
Corollary 1. Let (X,d) be a complete cone metric space, P be a normal cone with normal
constant K . For c ∈ E with 0 � c and x0 ∈ X, set B(x0, c) = {x ∈ X | d(x0, x) � c}.
Suppose the mapping T :X → X satisfies the contractive condition

d(T x,T y) � kd(x, y), for all x, y ∈ B(x0, c),

where k ∈ [0,1) is a constant and d(T x0, x0) � (1 − k)c. Then T has a unique fixed point
in B(x0, c).

Proof. We only need to prove that B(x0, c) is complete and T x ∈ B(x0, c) for all
x ∈ B(x0, c).

Suppose {xn} is a Cauchy sequence in B(x0, c). Then {xn} is also a Cauchy sequence
in X. By the completeness of X, there is x ∈ X such that xn → x (n → ∞). We have

d(x0, x) � d(xn, x0) + d(xn, x) � d(xn, x) + c.

Since xn → x, d(xn, x) → 0. Hence d(x0, x) � c, and x ∈ B(x0, c). Therefore B(x0, c) is
complete.

For every x ∈ B(x0, c),

d(x0, T x) � d(T x0, x0) + d(T x0, T x) � (1 − k)c + kd(x0, x) � (1 − k)c + kc = c.

Hence T x ∈ B(x0, c). �
Corollary 2. Let (X,d) be a complete cone metric space, P be a normal cone with normal
constant K . Suppose a mapping T :X → X satisfies for some positive integer n,

d(T nx,T ny) � kd(x, y), for all x, y ∈ X,

where k ∈ [0,1) is a constant. Then T has a unique fixed point in X.

Proof. From Theorem 1, T n has a unique fixed point x∗. But T n(T x∗) = T (T nx∗) = T x∗,
so T x∗ is also a fixed point of T n. Hence T x∗ = x∗, x∗ is a fixed point of T . Since the
fixed point of T is also fixed point of T n, the fixed point of T is unique. �
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Theorem 2. Let (X,d) be a sequentially compact cone metric space, P be a regular cone.
Suppose the mapping T :X → X satisfies the contractive condition

d(T x,T y) < d(x, y), for all x, y ∈ X, x �= y.

Then T has a unique fixed point in X.

Proof. Choose x0 ∈ X. Set x1 = T x0, x2 = T x1 = T 2x0, . . . , xn+1 = T xn = T n+1x0, . . . .

If for some n, xn+1 = xn, then xn is a fixed point of T , the proof is complete. So we assume
that for all n, xn+1 �= xn. Set dn = d(xn, xn+1), then

dn+1 = d(xn+1, xn+2) = d(T xn,T xn+1) < d(xn, xn+1) = dn.

Therefore dn is a decreasing sequence bounded below by 0. Since P is regular, there is
d∗ ∈ E such that dn → d∗ (n → ∞). From the sequence compactness of X, there are
subsequence {xni

} of {xn} and x∗ ∈ X such that xni
→ x∗ (i → ∞). We have

d(T xni
, T x∗) � d(xni

, x∗), i = 1,2, . . . .

So ∥∥d(T xni
, T x∗)

∥∥ � K
∥∥d(xni

, x∗)
∥∥ → 0 (i → ∞),

where K is the normal constant of E. Hence T xni
→ T x∗ (i → ∞). Similarly T 2xni

→
T 2x∗ (i → ∞). By using Lemma 5, we have d(T xni

, xni
) → d(T x∗, x∗) (i → ∞) and

d(T 2xni
, T xni

) → d(T 2x∗, T x∗) (i → ∞). It is obvious that d(T xni
, xni

) = dni
→ d∗ =

d(T x∗, x∗) (i → ∞). Now we shall prove that T x∗ = x∗. If T x∗ �= x∗, then d∗ �= 0. We
have

d∗ = d(T x∗, x∗) > d(T 2x∗, T x∗) = lim
i→∞d(T 2xni

, T xni
) = lim

i→∞dni+1 = d∗.

We have a contradiction, so T x∗ = x∗. That is x∗ is a fixed point of T . The uniqueness of
fixed point is obvious. �
Theorem 3. Let (X,d) be a complete cone metric space, P a normal cone with normal
constant K . Suppose the mapping T :X → X satisfies the contractive condition

d(T x,T y) � k
(
d(T x, x) + d(T y, y)

)
, for all x, y ∈ X,

where k ∈ [0, 1
2 ) is a constant. Then T has a unique fixed point in X. And for any x ∈ X,

iterative sequence {T nx} converges to the fixed point.

Proof. Choose x0 ∈ X. Set x1 = T x0, x2 = T x1 = T 2x0, . . . , xn+1 = T xn = T n+1x0, . . . .

We have

d(xn+1, xn) = d(T xn,T xn−1) � k
(
d(T xn, xn) + d(T xn−1, xn−1)

)
= k

(
d(xn+1, xn) + d(xn, xn−1)

)
.

So

d(xn+1, xn) � k
d(xn, xn−1) = hd(xn, xn−1),
1 − k
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where h = k
1−k

. For n > m,

d(xn, xm) � d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

� (hn−1 + hn−2 + · · · + hm)d(x1, x0) � hm

1 − h
d(x1, x0).

We get ‖d(xn, xm)‖ � hm

1−h
K‖d(x1, x0)‖. This implies d(xn, xm) → 0 (n,m → ∞). Hence

{xn} is a Cauchy sequence. By the completeness of X, there is x∗ ∈ X such that xn → x∗
(n → ∞). Since

d(T x∗, x∗) � d(T xn,T x∗) + d(T xn, x
∗)

� k
(
d(T xn, xn) + d(T x∗, x∗)

) + d(xn+1, x
∗),

d(T x∗, x∗) � 1

1 − k

(
kd(T xn, xn) + d(xn+1, x

∗)
)
,

∥∥d(T x∗, x∗)
∥∥ � K

1

1 − k

(
k
∥∥d(xn+1, xn)

∥∥ + ∥∥d(xn+1, x
∗)

∥∥) → 0.

Hence ‖d(T x∗, x∗)‖ = 0. This implies T x∗ = x∗. So x∗ is a fixed point of T .
Now if y∗ is another fixed point of T , then

d(x∗, y∗) = d(T x∗, T y∗) � k
(
d(T x∗, x∗) + d(T y∗, y∗)

) = 0.

Hence x∗ = y∗. Therefore the fixed point of T is unique. �
Theorem 4. Let (X,d) be a complete cone metric space, P be a normal cone with normal
constant K . Suppose the mapping T :X → X satisfies the contractive condition

d(T x,T y) � k
(
d(T x, y) + d(T y, x)

)
, for all x, y ∈ X,

where k ∈ [0, 1
2 ) is a constant. Then T has a unique fixed point in X. And for any x ∈ X,

iterative sequence {T nx} converges to the fixed point.

Proof. Choose x0 ∈ X. Set x1 = T x0, x2 = T x1 = T 2x0, . . . , xn+1 = T xn = T n+1x0, . . . .

We have

d(xn+1, xn) = d(T xn,T xn−1) � k
(
d(T xn, xn−1) + d(T xn−1, xn)

)
� k

(
d(xn+1, xn) + d(xn, xn−1)

)
.

So

d(xn+1, xn) � k

1 − k
d(xn, xn−1) = hd(xn, xn−1),

where h = k
1−k

. For n > m,

d(xn, xm) � d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

� (hn−1 + hn−2 + · · · + hm)d(x1, x0) � hm

d(x1, x0).

1 − h



L.-G. Huang, X. Zhang / J. Math. Anal. Appl. 332 (2007) 1468–1476 1475
We get ‖d(xn, xm)‖ � hm

1−h
K‖d(x1, x0)‖. This implies d(xn, xm) → 0 (n,m → ∞). Hence

{xn} is a Cauchy sequence. By the completeness of X, there is x∗ ∈ X such that xn → x∗
(n → ∞). Since

d(T x∗, x∗) � d(T xn,T x∗) + d(T xn, x
∗)

� k
(
d(T x∗, xn) + d(T xn, x

∗)
) + d(xn+1, x

∗)
� k

(
d(T x∗, x∗) + d(xn, x

∗) + d(xn+1, x
∗)

) + d(xn+1, x
∗),

d(T x∗, x∗) � 1

1 − k

(
k
(
d(xn, x

∗) + d(xn+1, x
∗)

) + d(xn+1, x
∗)

)
,

∥∥d(T x∗, x∗)
∥∥ � K

1

1 − k

(
k
(∥∥d(xn, x

∗)
∥∥ + ∥∥d(xn+1, x

∗)
∥∥) + ∥∥d(xn+1, x

∗)
∥∥) → 0.

Hence ‖d(T x∗, x∗)‖ = 0. This implies T x∗ = x∗. So x∗ is a fixed point of T .
Now if y∗ is another fixed point of T , then

d(x∗, y∗) = d(T x∗, T y∗) � k
(
d(T x∗, y∗) + d(T y∗, x∗)

) = 2kd(x∗, y∗).

Hence d(x∗, y∗) = 0, x∗ = y∗. Therefore the fixed point of T is unique. �
Remark 1. Theorems 1–4 generalize the fixed point theorems of contractive mappings in
metric spaces to cone metric spaces.

We conclude with an example.
Let E = R2, the Euclidean plane, and P = {(x, y) ∈ R2 | x, y � 0} a normal cone in P .

Let X = {(x,0) ∈ R2 | 0 � x � 1}∪{(0, x) ∈ R2 | 0 � x � 1}. The mapping d :X×X → E

is defined by

d
(
(x,0), (y,0)

) =
(

4

3
|x − y|, |x − y|

)
,

d
(
(0, x), (0, y)

) =
(

|x − y|, 2

3
|x − y|

)
,

d
(
(x,0), (0, y)

) = d
(
(0, y), (x,0)

) =
(

4

3
x + y, x + 2

3
y

)
.

Then (X,d) is a complete cone metric space.
Let mapping T :X → X with

T ((x,0)) = (0, x) and T ((0, x)) =
(

1

2
x,0

)
.

Then T satisfies the contractive condition

d
(
T ((x1, x2)), T ((y1, y2))

)
� kd

(
(x1, x2), (y1, y2)

)
, for all (x1, x2), (y1, y2) ∈ X,

with constant k = 3
4 ∈ [0,1). It is obvious that T has a unique fixed point (0,0) ∈ X. On

the other hand, we see that T is not a contractive mapping in the Euclidean metric on X.
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