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Abstract

We study the sharp order of integrability of the exit position of Brownian motion from
the planar domains?, = {(x,y) € R x R:x >0, |y| <Ax"}, O0<o < 1. Together with some
simple goodi type arguments, this implies the order of integrability for the exit time of these
domains; a result first proved far =1/2 by Bafiuelos et al. (Ann. Probab. 29 (2001) 882)
and for generab: by Li (Ann. Probab. 31 (2003) 1078). A sharp version of this result is also
proved in higher dimensions.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

For y with 0 < y<m, we denote byI", the right circular cone inR" of angle
7. We let {B; : t >0} be n-dimensional Brownian motion and denote Iy and P,
the expectation and the probability associated with this motion startixg \&e write
T, =inf{t > 0: B, £ I'y}, so thatT, is the first exit time of the Brownian motion
from I',. In 1977, Burkholder3] found the sharp order of integrability df,. More
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precisely, he showed the existence of a critical conspamt n) (given explicitly in
terms of zeros of certain hypergeometric functions) such thatz tod",,

E. T/ < oo, (1.1)

if and only if p < p(y,n). In particular, for a cone in two dimensions (a case that had
already been solved ifiL4]) EZT;D/2 < oo if and only if p < n/(2y). Notice that by
making the angle of the cone arbitrarily small we can mplkarbitrarily large.

The cone in two dimensions can be thought of as the domain above the graph of the
functiony = a|x|. It is then natural to study the order of integrability of exit times from
other unbounded regions, in particular parabolas. Since any parabola is contained in a
cone of arbitrarily small angle, the exit time for a parabola has finite moments of all
orders. On the other hand, by comparing with rectangles, it is also easy to show that the
exit time is not exponentially integrable. Bafiuelos, et al., showdd]ithat if zp is the
exit time of the Brownian motion from the paraboR= {(x, y):x > 0, |y| < A/x}
and z € P, then there exist positive constamg and A, such that

—Ar<liminf =3 log[P.{tp > 1}] (1.2)
11— 00

<limsups~3 log[P.ftp > 1}] < — Aa.

—0o0

Thus if a < 1/3, then E;[exp(bt3)] < oo for eachd > 0 and, ifa > 1/3, then
Ez[exp(br‘;))] = oo for eachb > 0. This result was extended to all dimensions and to
other unbounded regions by [9]. More recently, Lifshits and SHiLO] found the limit

I of 13 log[P.{tp > 1}], ast — oc. Then, if b < then Ez[exp(br;f)] < oo and

if b >1 then Ez[exp(br;,/s)] = 00, (it is not known whether or noEZ[exp(lv:%)/?’)] is

finite or infinite), so that Lifshits and Shi determine the sharp order of integrability of
the exit timetp (see the proof of Theorem 2). Their result holds for the more general
parabolic regions studied if®] in any dimension. If2], van den Berg used the sharp
results of Lifshits and Shi to obtain analogues of these results for the Dirichlet heat
kernel. Finally, similar results have been obtained recently by DeBlassie and [Siits
for “twisted parabolas” in two dimensions.

In the case of the cong, in R", the sharp order of integrability of the exit position
Br, is known. For any domai> in R" we write Bf for the maximum distance of
Brownian motion from the origin up to the exit timg, for D. More precisely, we set

B;, = Suf|B;|:0<1 < tp).

Then, by Burkholder’s inequality (Theorem 2.1 [i8]), for any finite, positivep there

1 2
are constantg”, , and C;, , such that

p/2 p/2
Cl,E. [n‘cD+|z|2] <E.[B: 1P <C2,E, [nrp+|z|2] . (1.3)
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Thus it follows from (.1) that
E.[B} 17 < o0 (1.4)

if and only if p < p(y,n). We always haveBr,|< B7. . On the other hand, ip > 1
and '

E.|Br | < o0 (1.5)

then by Doob’s maximal inequality (1.4) holds, and hence so does (1.1). This gives
the sharp order of integrability/2y of By, in two dimensions. FofR", n>3, since
T, is finite a.s., it is a consequence of Burkholder's Theorem 2 Bjirthat E.[B} 17
is finite if E;|Br|” is finite and this gives the sharp order of integrability Bf
in all dimensions. The results of Burkholder generated considerable interest amongst
probabilists and analysts. In particular, Essén and Halgjtaused harmonic measure
technigues to obtain some generalizations of Burkholder's results.

The problem of obtaining the sharp order of integrability of the exit positp
for the parabolaP, and of the related random variabl , suggest themselves—a
problem that we address in this paper. As we shall see below, the order of integrability
of Bf, andtp are, as in the case of cones, also closely related. We consider, as in
[9,10], more general regions iR" of the form

Py={(x,Y)eRxR"Lx >0, Y| < Ax*}, (1.6)

with 0 <o <1 andA > 0. (The caser = 1 is the cone for which, as described above,
we know everything.) We write, for the exit time fromP,.

We begin with a very simple result which shows that the random variablgsand
B;, share the same integrability properties. More precisely,

Theorem 1. Suppose thatz and b are positive constants and that € P,. Then
E_ [expib|B,|%]] < oo if and only if E, [explb (BE)?]] < oo.

Naturally, we will need to estimate the distribution functionsBef, and B;, for large
t in the manner of 1.2). The probability that the Brownian motion exits a parabola-
shaped domairP,, outside the ball of radius, that is P,{|B.,| > ¢}, is the harmonic
measure of that part of the boundary Bf lying outside the ballB(0, ) of radiust,
taken w.rt. the domairP,. The larger quantityP.{B; > t} is the harmonic measure
of the intersection ofP, with the sphere of radiustaken w.r.t. the intersection &®,
with the ball B(0,1). In fact, 1— P,{B} > t} is the probability of exitingP, without
ever exiting the ballB(0, r). These interpretations of the distribution functions B
and B} facilitate the use of some well known and quite precise estimates of harmonic
measure.

Our result for parabola-shaped regions in the plane provides a complete solution to
the problem and we state it separately.
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Theorem 2. For the exit positionB,, from the parabola-shaped domaiR, in the
plane

timootc‘*llog[PzﬂBM >1)] = —m. (1.7)
Furthermore

E. [exp[b |Bra|1’“]] <00 (1.8)
if and only if

b < ﬁ.

Then E_[expb|B,|"]] is integrable for each positivé if a < 1 — «, and is not
integrable for any positiveb if a > 1 — .

We note that we can determine whether or not[&xp-,|“] is integrable in all cases,
including the critical case = 1—a, b = 1/[2A(1 — o)].
For parabola-shaped regions Y, it is proved in[9] that

—Bi<liminf ¢35 log [ P.{t, > 1}] (1.9)
11— 00

<limsup 7571 log[P.fty > t}] < — B2

—00
for two positive constant®1 and B, depending oM, on « and on the dimension. In

[10], the limit of tﬁ Iog[Pz{ra > t}] is shown to exist and its value is determined

explicitly. For comparison purposes we observe that i 2, o = % and A = 1, the

case of the parabola in the plane, the resultfld] give

lim =3 log[P _ 3 1.10
thoot 09[ z{T1/2>f}]——?, (1.10)
while it follows from Theorem 2 that
. _1
Jlim 72 log [ P-{|Bry),| > 1}] = —m. (1.12)

We stated Theorem 2 in terms of limits of logs of distributions to draw a parallel
with the previously cited work on exit times. However, our results are sharper than
that, as we obtain sharp estimates for the distribution itself, (see Proposition 1 below).

We prove an extension of Theorem 2 to parabola-shaped regions in higher dimensions.
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Theorem 3. We let 11 be the smallest eigenvalue for the Dirichlet Laplacian in the
unit ball of R"~1. For the exit positionB,, from the parabola-shaped regioR, of
(1.6), and for z € Py,

. _ VA1
oa—1 - Y -
tl|m 1*“tlog[P.{|B;,| > t}] = A (1.12)

Furthermore
E. [exp[b |BH|1_°‘]]

is finite if b < V/21/[A(1— o)] and is infinite ifb > +/71/[A(1 — o)].

Our estimates on the distribution function 8f, in higher dimensions are not suf-
ficiently precise to determine whether or not (ﬁkﬂ)BM”] is integrable in the critical
casea = 1— o, b = J/1/[A(1 — o)]. This is one reason why we state the two-
dimensional result separately as Theorem 2. Moreover, though the method we use to
obtain the distribution estimates fa&;, in the planar case are relatively standard in
complex analysis, it forms the general outline of the method used to obtain lower
bounds for the distribution in higher dimensions. For this reason also, it seems helpful
to present the two-dimensional case separately.

A large part of this paper is devoted to adapting the conformal mapping techniques
that have led to such precise harmonic measure estimates in planar domains to the
parabola-shaped regiord, in R". The so-called ‘Carleman method’ can be adapted
to estimate harmonic measure in these domains from above, as we do in Section 4.1.
All else being equal, harmonic measure is generally largest in the most symmetric
case, and so one would expect the upper bounds given by the Carleman method to be
reasonably precise. However, we were not able to use the Carleman method to obtain
the lower bounds for harmonic measure that we need to determine the exact order
of exponential integrability of the exit positioB;,. For this, we adapt the conformal
mapping techniques used to prove Theorem 2. Our parabola-shaped domains being
symmetric, we can rewrite the distribution estimates Byy as a distribution estimate
in the corresponding planar parabola-shaped domain, but at the cost of having to deal
with a Bessel-type operator rather than the Laplacian. Conformal invariance is lost, but
the conformal mapping techniques can still be made to work with considerably more
effort. An outline of our method for obtaining these relatively precise estimates from
below for the distribution of the exit position in parabola-shaped regions can be found
at the beginning of Section 4.2.

Burkholder’s inequality 1.3), as outlined earlier, allows one to deduce the integra-
bility properties of the random varlabIB* for the conel’,, from those for the exit
time T, for the cone, and vice versa. In the case of parabola-shaped domains, we can
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partially pass from integrability results for the exit position to integrability results for
the exit time and conversely. The proof provides a partial explanation of the connec-
tion between the two critical exponents,—lo in the case of the exit position and
(1—o)/(1+ a) in the case of the exit time.

Theorem 4. We may deduce from
E; [exby (B1)] < oo, (1.13)
with b1 positive that there is some positivie, for which
1—u
E, [exp[bg ram]] < 0. (1.14)

Conversely we may deduce fron(il.14), with b, positive that (1.13 holds for some
positive b1.

2. Proofs of Theorems 1 and 4

Proof of Theorem 1. Clearly |B,,|< B}, and hence ifE_ [explb (B})"]] < oo, then
E. [explb | Bz, |]] < oo, with the samea and b.

We turn to the proof of the converse. As observed in the Introductibnl < oo,
for each finitep. By (1.3) we also havet; (B; )? < oo for p finite. By Doob’s maximal
inequality,

P
E.(B:)’ < <L1> E.|B,|P for 1< p < oo.
Py

Thus there exists @g such that for allp > po,
E;(B; )" <4E|B.,|". (2.1)

We choose an integéty, depending onpg and a, such thatpg < ka for all k > ko.
Then

ko
E. [exdb (B} )] 1+ZZE(B yek 4 Z E(B

k=1 k= ko+l

<1+Z E(B*)“k+4 Z —E 2| By, |9
k= ko+1
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bk

ko
<1+) FEZ(B;;)“" +4E, [explb |Be, 1]
k=1 """

<00,

which proves the theorem.[d

Proof of Theorem 4.We argue as in the proof of the classical gobiiequalities, see
[3] for example. Supposel(14 holds for someb, > 0. We setff = 1+ o and note

that 0< /2 < 1. Then

P(B} >t} < PAB; > 1, ta<tP) + P.{zy > 1P},

For the second terml(14), together with a Chebyshev style argument, gives

PB: > 1, ,<tPy<p,

P, > thy<cC exp[—bztﬁ(%)] =C exp[—bztl‘“] .
Taket > 2|z|, so thatr — |z| > /2. By our assumption ot and by scaling,
! B
sup By —z| > =, 14 <t
0<s<1y 2

<P

t
sup |Bs —z| > 5}

0<s<th

t
sup |Bs| > E}

0<s<th

1
sup |Bs| > Etl_ﬁ/z}

0<s<1

1 1
<C exp[—é tz‘/f} =C exp[—gtl‘“].

In the last inequality we used the well-known fact (§8f inequality (2.15)) that

Po{ sup |B,| > ,1} <C exp[—zz/z].
0<s<1

It now follows from Q.2 and @.3) that

P.{B} >1}<C exp[—Zbltl‘“],

225

2.2)

(2.3)
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for all larget, where &1 = min{1/8, b»}. Since

o
E, [exp[b (B;Z)l_“]] =1+b / " P{B; > 1Y ar,
o :

we obtain (.13.
Conversely, suppose that.L3 holds, so that

PAB: > 1}<C exp[—bltH]. (2.4)
Let f=1/(1+ a). We assume, as we may, thais very large and set
P(t) = P, N B, t%)

and write7 for its exit time. Clearlyt <7, and

Pty >t} < Pty > 1,14 =7+ Pty > 1,14 > T}. (2.5)

Let us denote the ball centered at 0 and of radiie R"* ! by B,_1(0,r) and the
exit time of Brownian motion from it byrg, ,(0.~. We recall that forr > 1,

Poltp, 40,1 > 1}<C exp[—iat],

where C is a constant independent ofand 4y is the first Dirichlet eigenvalue of
B,_1(0, 1). By our definition of the regiornP(z),

Pty > 1,74 = T} < P% > 1} (2.6)
< Poftg, j0.08) > 1}
= Polts, 01 > 1*72F)
<C exp[—}vl tl_z“ﬁ]
=C exp[—}vltﬁ],
where we used scaling for the first equality above. On the other hand, usig (

Pty > 1,7, > )< P{B} > tF) (2.7)

<C exp[—bltﬁ(l““)]
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Estimates 2.5—(2.7) prove that (.14 may be deduced from1(13. This completes
the proof of Theorem 4.0

We note that our argument above proves thaiE;f[exr{bz 11“]] < oo for some
0 <a <1 andby > 0, thenE, [expby (B;Z)z“/(”“)]] < oo for someb; depending on
by. Conversely, ifE; [explb1 (B} )*]] < oo for somea and b1, then

E, [eX[:Ibz 7:3(“/(“4“2“)]] < 00
for someb, depending orb1. Thus by Theorems 2 and 3 we see that
E, [exp[b ‘L'ap]] <00 (2.8)

for someb > 0 if and only

1—o
1+a

P<

’

as was already proved ii] for « = 1/2 and in[9] for generalx in (O, 1).

3. Parabola-shaped domains in the plane
3.1. Harmonic measure estimates

For the moment we restrict ourselves to two dimensions. The key estimate for the
distribution function forB;,, of which limit (1.7) is a direct consequence, is Proposition
1. As we shall see below, we may suppose without loss of generality, thafy, where
zo is the point(1, 0).

Proposition 1. There are constant§; and C2 depending only orx and A such that
ast — oo,

n 1-a
Crexp| ————-t < P {| By, t
. p[ TY } ol1Be, | > 1)

T
s G eXp[_ 2A4(1— a)

4 o(tl‘“)] )

The first step in the proof of Proposition 1 is to show that there is a negligible
difference betweerP,,{|B:,| >t} and on{Brli > 1}, where forz = (x,¥) € Rx R"1
we write z1 for x, the projection onto the first coordinate. This will follow from a
simple estimate that holds in all dimensions.
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Lemma 1. For the exit positionB,, of Brownian motion fromP, in R", and for
sufficiently larget,

Poo{BL > 1} < Pyf|Bs,| > 1} < Py{BL >1— A1)

Proof. For fixedt positive, we writeS(0, r) for the sphere center 0 and radiuand we
write x(r) for the common first coordinate of the points of intersection of the boundary
of P, with S(0, 7). Then

Py {IBs,| > t} = P.o{BL > x(1)}. (3.1)
We also have, for all sufficiently large
1— A% < x(@) <1 (3.2)

The upper bound is clear. For the lower bound, we observe that any @giH) with
x=1t— A% 1and|Y| = A(r — A%%*1)* Jies inside the spher§(0, 7). Indeed,

(t — A2t20<—1)2+A2(t _ A2t2fx—1)20< _ 42
=A4t4oc—2 _ 2A2t2a + Az(t _ A2[2a—l)2u
<A4t4oc72 _ 2A2t2a + A2t2a
=A2t2zx(A2t2(ocfl) -1
<0,

where we use the assumption thak® < 1 and note that & r — A%%~ 1 <. O

1—

Since(r — A%2*~1)"" = 11=*[1+0(1)], Proposition 1 would follow from Lemma 1

together with

C1 exp[ __T ) tl‘“] < P,{BL > 1} (3.3)

2A(1— «

< _ L 1-a
< Co exp 24— ) t .

3.2. Proof of (3.3) by conformal mapping
We wish to use the Ahlfors—Warschawski estimates on conformal mappings. Follow-
ing the standard notation in this area, we introduce the functipn&) = —¢_(x) =

Ax* for x > 0 and0(x) = ¢ (x) — ¢_(x), so thatd(x) = 2Ax* for x >0. ThenP,
has the form

Py = {z=x+iy:x>0ande_(x) <y < @, (x)}.
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We write f(z) for the conformal mapping oP, onto the standard strip
S ={w:|Imw| < n/2}

for which f(zp) = 0 and f’(z0) > 0. The mappingf is then symmetric in the real
axis. We write E; for 0P, N {Rez > ¢} and write F; for S N {Rew > s}. Fort > 0,
E, corresponds under the mappihdo F;, for somes that we denote by = s(¢).

B s _Fi(s=s(1)
Z0 \ 0
. Pa L S
\
- g

Then, by conformal invariance of harmonic measufgo{B}x > t} is the harmonic
measure at 0 of(,) with respect toS that is

Po{BL >t} = 0(0, Fyq): S). (3.4)

Harmonic measure in the strip is easy to estimate, for example by mapping the strip
onto the unit disk where harmonic measure at the origin coincides with normalized
angular measure on the circle. One may show that

1
(0, Fy; S) = — arg[ezs -1+ 2ies] ,
Y
whence, fors large,
1 4
—e*<w(, Fy; )< —e~*. (3.5)
T T

Warschawski’s estimatgd5, Theorem Vll]for the real part of the mappinfjinvolve
an error termf°° 0 (x)2/0(x) dx for which, in our case,

oo Y2 2 o0 a—1\2 o
/ [0'(x)] dx:A/ (zwc—)dxzzazA/ x*2dx < 0.
1 H(x) 1 2x* 1

From [15, Theorem VIl]we deduce that, for1 = x1 +iy; andzz = x2 + iy2,

X2

d
Ref(z2) —Ref(z) =7 | —— +o(d),
X1 0(x)
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as x1, x2 — +o00, uniformly with respect toy; and y,. As a consequence we obtain
that ast — oo,

. _ dx _ Y 1—g
Ref(t+iy)=mn . %+O(l)_—2A(l—oc)t + O(D).

Since this estimate is uniform iy, it follows that

_ T 1—o
s(t) = —ZA(l— m t~*4+0(@) ast— oo. (3.6)

We will use this estimate on the boundary correspondence unagain in Section 4.
Together 8.4), (3.5 and @.6) yield (3.3). Thus Proposition 1 is proved.

Note: It is possible to shortcut the above explicit calculations by using Haliste’s
estimates for harmonic measufeé, Chapter 1.2] that are themselves based on the
Ahlfors—Warschawski approximations. Haliste formulates her estimates in terms of the

harmonic measure of a vertical cross @ut= [r — i At*, t + i At*] with respect to the
truncated domairP,(r) = {(x, y):0 < x < t, |y| < Ax*}. We set

BX* = sup(|B}:0<1 < 1,}.
Then,
@(z0, 015 Py(1)) = PZO{B};* > 1},

for which Haliste prowdes estimates similar t8.3). A version of Lemma 1 for the
maximal funcuonsB * and B7 yields Proposition 1 withB,| replaced byB; . At
this point, it suffices foIIow the argument in the next section wath instead of|BT |
and to recall thatB;,| and B} have the same integrability properties (Theorem 1).
3.3. Proof of Theorem 2

As above, we assume for the moment that zo = (1, 0). First, the limit (..7) is a
direct consequence of Proposition 1. Next, we observe that

E., [expib|B:,|"1] = 1+b/ e Po(|B,,| > 1Y) dr. (3.7)

Proposition 1 yields that

C1 exp[(b— L) i|<ebtPO{|BT | > (Y-

2A(1— )
§ C2 exp|:(b - ﬁ)t + 0(f)i|.
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We suppose first thai < n/[2A(1 — «)] and set

” b
= —— —
2A(1— )

Then ¢ is positive and we observe thater + o(r) < — et/2 for sufficiently larget.
Hence, fort large,

1
P {|B.,| > 1YY Ce 2%,

It follows from the case: = 1—o of (3.7) that E,[expb | B, |*~*]] < oo in this case.
In the caseb >n/[2A(1 — w)],

bt 1/(1~) -
Pool|Bs,| > 1 zlrep \b-oia ) 1|7
e” P, {|By,| > 12 C1 p[( 2A(1—a)) } '

This gives E,[expib |B;,|1*]] = oo, for suchb.

The cases < a <1—ao, b > 0 anda > 1— o, b > 0 may be handled simi-
larly, or one may compare the expected value with that offep;, |*~*] where, say,
b=mn/[4A(l— )] andb = n/[A(1 — a)], respectively.

We now remove the assumption that= (1, 0). We first deal with the upper bound.
We let z = (x,y) and assume that is very large and certainly much larger than
1. By translation of paths it is clear thab((x1, y), 0;; P, (2)) <w((x2, y), 0r; Py(2))
wheneverx; < x2. Hence, we may assume thag 1. Thus forr >> x >> 1 we have,
by symmetry,

sup (z’, O;; Py(t)) = w(x, 0r; Pyl1)). (3.8)

7€l

From this and the more general upper bound of Haliglewe have that for = (x, y)
andf >> x >> 1,

t
o(z, 0t); Pu()) <C2 exp[—n/ du ]

0(u)
— _ L 1-o L 1-o
=Cy exp[ A0 %) t A0 %) X ] (3.9

These two inequalities, (3.8) and (3.9), give the desired upper bound estimate on
PABL* > 1}.

For the lower bound, we may assume by the above argument thatx, y) with
0 < x < 1. As before, we may assume thats much greater than 1. By a standard
Whitney chain argument and the Harnack inequality we have

o(z, 03 Pu(1)) 2 C(2) 0(z0, O3 Pa()), (3.10)
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where C(z) is a function ofz depending on the distance afto the boundary ofP,.
The general lower bound follows from this and the case ef (1, 0) which we have
already done.

4. Parabola-shaped regions inR"

The parabola-shaped regions with which we work have the form
Py={x,Y) e RxR"1:x >0, |Y| < Ax%}

for 0 <« <1 andA > 0. Our objective is to derive estimates for the distribution
function of the exit position of Brownian motion from such regions or, equivalently, for
the harmonic measure of the exterior of the ball of center 0 and radiith respect

to such regions. In Section 4.1, we derive an upper bound for the distribution function
by means of the Carleman method and in Section 4.2 we introduce a new conformal
mapping technique to derive an equally sharp lower bound.

4.1. Carleman method: upper bound for harmonic measure

It will be more convenient to write the domaiB, in this section as
L, ={x,Y) e Rx R"1ix >0, Y € B,_1(0, Ax%)},

where B,,_1(0, r) is the ball in R"~1 centered at 0 and of radius For convenience
of notation we set)(x) = B,,_1(0, Ax*) and refer tof(x) as a cross cut of?, at x.
For t large we set

Pu®) ={(x,Y):0<x <t,Y € 0(x)}.

This is the domairP, truncated to the right of. For such a and any(x, Y) € P,(1),
we denote byw((x, Y), 0(0); Pa(t)) the harmonic measure @f, 0) + 0(¢) at the point
(x,Y) relative to the domairP,(r). We wish to estimateo((1, 0), 0(1); P.(1)).

Proposition 2. There exist two constanis; and C», that depend om, A1, A and «,
such that forr > C1,

o((1,0), 0(r); Py(t)) < Co 1"~ 1/2 exp[— Vi tl‘“].

A(l— o)

Before we begin the proof of Proposition 2, we show how it leads to an estimate
for the distribution of B;,. With the notation of Lemma 1 and of the note at the end
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of Section 3.2,

Pao) {IBz,| > t} = Pao(BL > x()}< Pao{BE* > x(1)}.

The distribution function forB};* is the harmonic measure that is estimated in Propo-

sition 2, so that
Pao(BL* > 1) = o((1, 0), 00); Px(1)).

From estimate 3.2), namelyr — A%?*~1 < x(t) < t, it follows, as in the proof of
Lemma 1, thatr(r)1~* = +1=%[1 4 o(1)]. Together with Proposition 2, this leads to

\/;“_1 1—o

Al—o 0 }
\//1_1 1-o

Ad—2) 1+ 0(1)]]

We may absorb the terr@, r*"~9/2 into the q1) term in the exponential to deduce
an estimate for the distribution function fdt, in the following form.

Pao{BL* > x(} < Cox (1)) exp[ —

L Co 1= D/2 exp[ -

Proposition 3. Suppose that is positive There exists a constar; depending ore,
n, 21, A and « such thaf for t > Cq,

V1

P(]_’O) {|BTX| > [} < eXp|:— m

[1—¢] tl_“:|

Proof of Proposition 2. Our estimates follow those of Halis{&]. We taket to have
some large, fixed value and set

h(x) = / wz(x, Y)dY, O<ux <t, (4.1)
0(x)

where for convenience we writex(x, Y) for w((x, Y), 0(r); P,(¢)). Differentiating h
(see[7] for the justification of this step), we obtain

h/(x) 2/ 2o (x,Y)w(x,Y)dY (4.2)
0(x)

and

h"(x) 22/ Wy (x, Y)O)(X,Y)dY+2/ |a)x(x,Y)|2dY. (4.3)
0(x)

0(x)
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We observe that, sincex(x, Y) is increasing inx for eachY, the derivativew, (x, Y)
is non-negative and hendgé(x)>0. Sincew(x, Y) is harmonic, we have

Wy (x,Y)+ Ay w(x,Y) =0.

Thus,

K’ (x) =—2/ Ay a)(x,Y)w(x,Y)dY—i—Z/ wy(x, )2 dY. (4.4)
0(x) 0(x)

Since the harmonic measure vanishes on the lateral boundary of the domain,
wkx,Y) =0 if Y € d0(x), with 0 < x < ¢. Thus, integrating by parts, we obtain

h'(x) = 2/ IVy o(x, Y)|?dY +2/ wy(x, Y)?dY. (4.5)
0(x) 0(x)

Writing B(0, r) for B,_1(0, r), we now recall that for alu that are differentiable on
B(0, r) and vanish oroB(0, r),

Ik 0 |Vu|?
ABO.r) < B(’r)—z, (4.6)
-/I;(O,r) |u]
where A, is the first eigenvalue oB(0, r) for the Laplacian. By scaling,
1
A = -,
BO) = 54
where 11 is the eigenvalue of the unit ball. In our case this gives
1
/1(9()() = m i]_. (47)
From @.5 and @.6) we deduce that
h”(x)>2,19(x)/ o(x, Y)ZdY+2/ oy (x, Y)2dY
0(x) 0(x)
=27p(0h(x) + 2/ wy(x, Y)?dY. (4.8)
0(x)

On the other hand, by4(2) and Hdlder’s inequality,

1/2 1/2
h’(x)<2(/ oy (x, Y)ZdY> </ o(x, Y)ZdY>
0(x) 0(x)
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or

h’(x)2<4</ oy (x, Y)de>h(x)
0(x)
or

h 2
x) ng Wy (x, V)2 dY.
2h(x) 0(x)

This and 4.8) give

/(x)Z
2h(x) "

B (x) > 2y h (x) +
Since 2/av/b<a + b, we conclude that
1 (x) =2,/ Zgee 1 (x)

which, by @.7), is the same as

h"(x) 2\/_1 1
h’(x) A x*

Following Haliste, we consider the functianon the interval(0, t) given by

X N
(x):/ ex (2/ 20 dr) ds
g 0 p o 0(r)
X 2 ] N
:/ exp( z ﬂ) ds
0 A re

_ * 2\/_ 1—o
-, exp(A(l—oc) )ds'

This function satisfies

X
g (x)=exp (2/ Ao dr)
0

g ()=g'(x) 2,/ 29x)

2\/_11

xO{

=g'(x)

235

(4.9)



236 R. Bafiuelos, T. Carroll/Journal of Functional Analysis 218 (2005) 219-253

and so
d / !
—(log k' —log g’) >0.
dx

From this it follows that the function”®) is non-decreasing on(0,r). Since

g(0) = h(0) = 0, the generalized mean value theorem gives that for ary 0 < ¢

i h(x) _ W)
there is a¢ € (0, x) such thatg(x) =70 Hence,

Mo i)
gx) ~g'(x)

Since g’(x) >0, this shows tha(%)’(x) is non-negative and hence the functié@—g
is non-decreasing. Thus,

h(x)<h(&) @ for0O<x < &<t (4.10)

g(&)

Sett'ng 'Ll(r) = 2‘ / /’LO(V)’

g(X)=eXp</x u(r)dr> /x exp( — /x ,u(r)dr> ds
0 0 s

:exp( /x w(r) dr> H(x). (4.12)

0
We may estimateH (x) by

H(x):/x exp( 2—\/2_1[)61—0! _ sl—a]) ds
0

Al -w)
:exp|: — 2—«/71 xl_“:| / exp[z—msl_“} ds
A(l— o) 0 A(l— o)
<x.
Therefore,
X
gx)<x exp(/ w(r) dr), O<x<t. (4.12)
0
On the other hand, setting
_ _[Ad-a s _ 2VA
)CO—XO(/{]_,A,OC)— [Z—MIn 2+ 1:| and K—m,
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we find that, forx > xg,

H(x)=exp| — le‘“] /x exp[K sl‘“] ds
0

xl—x
=exp[ — K x17%] f 1—106 r*/3=" exp[K r]dr
o Z

xlfa

> exp[ — K x*77] / exp[K r]dr
1

1—«a
1
a-rrp— exp[ — K x*7*][ exp[K x**] — expK]
. 1
T KA—a)
1
> —.
2K(1— o)
We have shown that,

[1 — exp[K (1- xl_“)]i|

H(x)=>

for x >xo

A
4v71

and this, together with4(11), gives

A X
>——— ex d for xo< t.
g(x) N p(/o pr) r) Xo<Xx <

From @.10, (4.12 and @.13 we deduce that,

¢é
h(x)§4iﬂxh(f) eXp( —/ ,u(r)dr) for xo<x < & < 1.

Taking x = xo and letting¢ tend tot, we arrive at

y t
h(xp) < 4\1/:_1 xoh(t) exp( —/ ﬂ(r)dr>

0

=C1(41, A, ) h(2) exp[_ 2V 1—1}

— 1
A(l— o)
for an appropriate constaidt;. By our definition ofh,

h(t) <VOI(Bn—l(O, Ala)) = ﬂ))nA”*lttX(nfl)7

237

(4.13)
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wherey, is the volume of the unit ball if"~1. Thus,

h(XO) < CZ(Vl, ){L, A, DC) ta(”fl) exp|: _ z—m tlx:|7

Al— )

for all sufficiently larget. We now choose am, independent ot, such that the ball
Bn((xo, O),2r) is contained inP,; clearly such anr exists. Then, by the Harnack
inequality,

o(x0,0) < C3(n) w(x,Y) for all (x,Y) € By((xo,0),r).
Squaring and then integrating over the bBJl_1(0, r) leads to

®?(x0, 0) < Ca(n, r) / w?(xg, Y)dY
B,-1(0,r)
<Caln.r) / (30, Y)dY = Caln, r) h(xo).
0(x0)
From this we finally obtain

o((x0, 0), 0(1); Py(1)) < Cs(n, 21, A, o) 12~ 1/2 exp[ - A(l—w;_la) r“],

for t > xp. One final application of the Harnack inequality to move frgm, 0) to
(1, 0), and the proposition is proved.]

4.2. Conformal mapping method: lower bound

In this section we writeP, for the region in {.6) to emphasize the dimension. We
observe that, because of the cylindrical symmetryPf(this region is invariant under
rotation about thex-axis) and because of the symmetry of the boundary values of the
harmonic measure, the value of the harmonic measure.df) in P, depends only
on x and on|Y]|.

We associate withP, the corresponding domaif®, = PZ“ in two dimensions.

The technique we develop to obtain lower bounds for the distribution function of
the exit position in?; is the following. We replace Laplace’s equation 7t} by the
corresponding Bessel-type partial differential equatiorPin—in the casen = 2, this
reduces to the Laplacian. Mirroring the arguments in Section 3.2, we map the parabola-
shaped domairP, conformally onto the standard strip = {w : |Imw| < n/2} and
determine the form the partial differential equation takes in the strip after this change
of variable. Adapting the Ahlfors—Warschawski conformal mapping estimates to our
purposes, and in some instances refining them, we show that the partial differential
equation in the strip is but a small perturbation of the Bessel-type partial differential
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equation that we started with—it is almost conformally invariant. The solution of the
unperturbed Bessel-type p.d.e. in the strip may be easily estimated. We show how
to compare the solutions of the perturbed p.d.e. with those of the unperturbed p.d.e.,
so as to obtain the estimates we require on the original harmonic measure in the
parabola-shaped region R". As well as keeping track of how the p.d.e. changes as
we change from one domain to another, we also need to keep track of the boundary
conditions—but here Warschawski’s detailed conformal mapping estimates are exactly
what we need.
We break the proof into a number of subsections and lemmas.

4.2.1. From a parabola-shaped region ' to a planar strip

To begin with we compute how the Laplace operator changes as we drop down from
n dimensions to two dimensions.

Lemma 2. Suppose thatH (x, Y) is a C?-function on?? that is invariant under rota-
tion about the xaxis so that H depends only on and on|Y|. We associate withH
a functioni(z) in the half parabola-shaped planar domain

Py = {z=x+iyix>0and 0 <y < Ax"},
defined by

h(x +iy)=H(x,Y) whenever |Y|=y.
Then

hy(x +iy)

AH(x,Y) = Ah(x +iy) + (n — 2) (4.14)

Proof. In this proof, we denote a point i®, by (x1, x2, ..., x,). With this notation,

H(-xlv -x2""7-xl‘l):h<-xlv \/-x§+"+-x3> zh(xvy)i
with x =x1 andy :,/x§+~-~+x3. Then,

n 2
0 /
AH= E ﬁh(x:]_, x%—i——l—x,%)
i=1 1
2 n
oh Z 0 oh Xi

=4y — | ——l
2 .
Ox ‘= 0x; | dy /xg-i--”-i-X,%
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P&
=_2+Z 2 2\3/2 | 9y2 42 :
0x P _ay (x5+---+x2) Oy? x5+ ---

_O_h(x§—|—~'+x3)—xi2 oh x?
+ x2

_h o n—1 1 L
=S 27T o - 2
a‘x ay _\/x%-}--{_x’% \/x%_i__lr__x’% ay
hy
=Ah(z)+(n—2)¥. O

From now on we may work in two dimensions and have conformal mapping at
our disposal, at the expense of having to deal with the more complicated Bessel-type
differential operator appearing ir.(L4), rather than the Laplacian. The complication
arises because this operator is not conformally invariant.

As in Section 3.2, we denote by = f(z) the conformal mapping from the domain
P, onto the standard stri, for which f(1) = 0 and f’(1) > 0. Sincef is real on
the real axis, the upper ha®; of the parabola-shaped domaf, is mapped to the
upper halfS* of the strip, specificallyS*T = {w:0 < Imw < 7/2}.

We denote the inverse mapping ¢iz) by g(w). We associate a functiok(w) in
St with a functionk(z) in P:{ according to

k(w) = h(g(w)) for we St. (4.15)

Thenh(z) = k(f(z)), for z € P} . In the next lemma, we compute how the differential
operator on the right of4(14 changes under this change of variables.

Lemma 3. Suppose thak(z) is a C?-function in the domairP; and thatk is defined
in the strip S by (4.15. Then with g(w) = z,

hy() _ Ak(w) 2 Im [k, (w) / &' (w)]

Ah -2 T T
@+ ) |g/(w)|2 n Im [g(w)]

(4.16)

Proof. We recall thath(z) = k(f(z)), and use the formulae for change of variable in
the complex partial derivatives/dz andd/0z, as explained, for example, [B, Section
1.2]. First,

Ah(z) = (AR (fF) If @)%, z € P

In general,

0 . < 0 0 )
=1 —_—— — .
d(Imz) 0z 07
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whence
(on o
()
Z 61
(0 0
i (a—[k(f(z))] - —_[k(f(z))]>
7 0z

K Fe f’(i)) .

ow

ok
=i (ﬁ (f@) f'(2) -
ow
Sincek(w) is real-valuedky = k. We therefore obtain,
hy(z) = =2Im[ky(f(2) f'(@)].

Thus,

Im [kw (f (@) f/(2)]

_ / 2 _
= (B @) I @I = 20 = 2)—= 1

Ah(z) + (n — 2)h3'y(Z)

On substitutingw for f(z) and ¥g'(w) for f'(z), we obtain 4.16. O

4.2.2. Asymptotic estimates for the conformal mapping g

The success of the transformations introduced in the previous subsection depends on
being able to simplify the expression on the right-hand sideddfq, which is essen-
tially an expression for the Laplacian in the domda) in R" transformed to the strip
St in the plane. This is achieved using modifications of results of Warschdski
which give asymptotic expressions for the conformal mapmjrand for its derivative.
For some of these we draw ¢4]. We begin with an estimate for the imaginary part of
the mappingg. In this context it is helpful to keep in mind that estimates for the real
part of the mapping, that is for the rate of growth of, are generally more difficult.

We will adopt the more general situation, as considered by Warschawski, of a con-
formal mappingf of a domain of the form

D ={z:|Imz| < ¢(Rez)},

where ¢(x) is continuous on the real line, onto the stBpln our casep(x) = Ax%,

for x positive. Warschawski’s domains are not necessarily symmetric, but the symmetric
case is sufficiently general for our purposes here. Warschawski wiites= 2¢(x)

for the width of the domairD at x. We assume thad hasboundary inclinationO at

x = oo Iin that

d(x2) — p(x1) = 0(x2 —x1) asxy, x2 —> o0.
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This is the case ifp(x) is continuously differentiable ang’(x) — 0 asx — oo, and
includes our parabola-shaped domafs

We take the conformal mappirfgof D onto S for which f is real andf’ is positive
on the real axis. We denote the inverse mapping by g, in agreement with earlier
notation. We begin with an estimate for the derivativegof
Lemma A (Warschawski [15, Theorem X(ii))])For each p with 0 < p < 1, the

conformal mapping g of the strip S onto, Bbr which g is real andg’ is positive on
the real axis satisfies

1
g (w) = |:; + 0(1):| O(Reg(w)), (4.17)

uniformly asRew — oo in the sub stripS, = {w : [Imw| < pr/2}.

In [15, Theorem X(iii)] Warschawski obtains an asymptotic expression fog (m)
as Rew — oo. Taking advantage of the symmetry of the domBir§so that Img(w) =
0 when Imw = 0) and adapting Warschawski’s proof, we prove

Lemma 4. The conformal mapping of the strip S onto D, for which g is real and
g’ is positive on the real axjssatisfies

Img(w) = I:% + 0(1)j| 0(g(Rew)) Imw (4.18)

as Rew — oo with w € S.

Proof. By symmetry of the mappingy, it is enough to prove4.18 in the case of
Imw positive. First we show that4(18 holds in each sub strig,, (0 < p < 1). By
Theorem lli(a) in[15],

lim argg’(u +iv) =0, (4.19)
u— 00

uniformly in v, |v| < /2. Combining 4.19 with Lemma A, we find that

1
Reg'(w) = [; + 0(1)] O(Reg(w))

for w e S,. Then, forw =u +ivg € S,

Im g(u + ivo)=Im g(u +ivg) — Im g(u)
=g (,\ilm g(u+ iv))
ov

[v1 € (0, vo)]

v=v1
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=voReg (u + iv1)
1
=vg [; + 0(1)] O(Reg(u +iv1)).

We assert that, uniformly in, |v| < /2,
O(Reg(u + iv)) = 0(g(u)) + o(1), (4.20)

(which is why we need not distinguish betweérg(Rew)) and 6(Reg(w)), up to
0(1)). This then gives the stated expression forg@ + ivg), for |vg| < pn/2. To
prove @.20 we note that, as at the bottom of p. 290[@6] and as a consequence of
the assumption thdd has boundary inclination 0 at = oo,

Reg(u +iv) = g(u) +0(1), asu — oo.

On using yet again the assumption titahas boundary inclination 0 at = oo, (4.20
follows.

Finally, we need to show tha# (18 holds uniformly inv. Givene small and positive,
we takep = 1—¢, so that 4.18 holds forw = u+iv, with |v| < (1—¢)7/2. In particular,

1
Im g (u + ig(l— g>)=[; + 0(1)} H(g(u))g(l— ¢)

0
(gz(”)) +0(0(g(u)))

asu — oo. Thus, using 4.20, the image of the sub strif, is a region of the form

=(1-¢)

0(Rez)
2

{z:llmzlé(l—s) +O(0(Rez))}.

Since g(w) lies outside this region it > (1 — ¢)n/2, we find that

Im g(w)> (1 — &) —H(Reg w))

0(g(u))
2

+ 0 (0(Reg(w))) (4.21)

=1-e)

+0(0(gw))).
On the other hand, it > (1 — ¢)n/2 then, simply becausg(w) lies in D,

O(Reg(w)) _ O(g() "

Im <
g(w) > >

o(1). (4.22)

Together 4.21) and @.22 imply that, for u sufficiently large andv > (1 — ¢)7/2,

0(g(u))

T

Img(w) —

v| <2e0(g(w)).
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It follows that @.18 holds uniformly inv, —n/2 < v < ©/2, with o(1) replaced by
Ce. Sincee may be as small as we please, the proof4fl® is complete. O

We wish to remove the restriction in Warschawski's Lemma A thdies in a fixed

sub strip of the standard stri at least wherD is a parabola-shaped domain. In this
situation,

0(x) = 2Ax* for x > 0.

Proposition 4. We setg to be the conformal mapping of the strip onto P, for
which g is real andg’ is positive on the real axisThen the following estimate for the
derivative ofg holds

1 1
g w) = |:; + 0(1)] 0(g(Rew)) = 2A I:; + O(l)] gw)” (4.23)

as u, the real part ofw, tends tooco, uniformly in Im w.

Proposition 4 is part of the main result 4], in which it is shown that the function

I’l(Z) = — exp|: [1 _ (1 + BZ)]-%:I:| , B = Afl/(lfo()

T
21— )

is univalent inP, and mapsP, onto the interiorD of a Dini-smooth curveC lying
inside the unit circlelz| = 1, except forz = —1. A smooth Jordan curv€ is said to
be Dini-smooth if there is an increasing functiorix), that satisfies the Dini-condition

1
/ @) dx < 00,
0 X

for which the anglefi(s) of the tangent toC, considered as a function of arclength,
satisfies

|B(s2) — B(s1)| < w(s2 — s1), for s1 < s2.

The proof in[4] that 2(P,) is indeed bounded by a Dini-smooth curve, that lies inside
the unit circle except for = —1, is quite involved. Proposition 4 follows from this in
a relatively straightforward manner. We repeat a version of the argument here for the
reader’s convenience.

We first note that

W () = —g B(1+ B2 *h(z). zeP, (4.24)
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We consider the mapping

‘P(z):h[g (Iogiji)], zed

The unit disk 4 is first mapped onto the strifg, which is mapped byg onto the
parabola-shaped domaf, and, finally, this is mapped bly onto the inside of a Dini-
smooth curveC. As explained in[4], we are now in a position to appliL1, Theorem
10.2] and may deduce tha?’ has a continuous, non-zero extension to the closure of
the unit disk. In particular¥’(1) # 0, and we note that’(1) = 0. We can derive
information on the behaviour of the derivative @ffrom information on the derivative

of ¥. We write w(z) = log[(1 + z)/(1 — z)], for z € 4. Using expression4(24) for

the derivative ofh,

V' (2)=h'(g(w(2) ¢ (w(2)) w'(2)
=2 B[1+ Bew@)] " Y@ ¢ (w()

1 dwk) Y@
1+z[1+Bgw@)]" 1-2
We let z — 1 from within the unit disk. Then

2
1—72

Y(z)
1-z

- _T/(l)v

which is non-zero. Hence,

g (w(@)

—_—t - — asz—1 zeA.
[1+ Bgw)]* 7B

It is not difficult to see that(Rez)/(1+ Bz) — B! as Rez — oo with z € P,.
Substitutingz = g(w) in this limit yields

Reg(w) N

1
=87 L 2 as Rew — oo with w € S.
1+ Bg(w) B

Since the unrestricted limit as— 1 within the unit disk corresponds to the unrestricted
limit as Rew — oo within the strip§ it follows from the previous two estimates that

! 2 2A
& — — B*=— as Raw — o0, weSs,
[Reg(w)]* nB T

which is @.23.
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4.2.3. Asymptotic form of the differential operator
Armed with the asymptotics for Im(w) in Lemma4 and those forg’(w) in Propo-
sition 4, we are now ready to derive the asymptotics for the differential operator

Ak(w) 2 Im [k (w) /&' (w)]

_ _ 4.25
g Im [g(w)] (4.23)

which acts onC2-functions defined in the stri and arises in Lemma&. We keep in
mind that, for a real-valued functiok(w) = k(u + iv),

ey (w) = —21m (ky (w)).

First we compute, using Propositieh

—2Im [kW(w)}:—mm [ k(w) }
g'(w) [L/7 +0D)]0(sw))
=2 (J(g—tu))lm [ku(w)(1+0(D))]
-2 O(g—7ZLt)) [—%kv(w) +1Im]o <1)kw(w)]}
=2 m [—%kv(w) + o(l)@(w)]

T
= kw[l+o®)]
0(e@) w)[1+0(D)]

Using Lemma4 to estimate the imaginary part gfiw), we find that

Im [g(w)] _H(gu;)) [1/7 +o(D)10(g(w)) v
TR o),

0%(gw))
Similarly, and again using Propositiah

o Im [ky, (w) / g'(w)] T ky(w)[1+0(D)]

1 72

FE ~ Pgm) o)

In summary, the differential operator id.25 becomes

2

) [[1 +o(1)|dk(w) + (n — 2)[1+ 0o(D)] (4.26)

T kv(w):|
Qz(g(u) v '

Summary to date: The work in the foregoing sections has been leading up to the
following. Suppose thaH is harmonic in the domair, in R" and thatH(x,Y)
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is rotationally symmetric about the-axis. Suppose that the functidnin the planar
domain P, is constructed fronH according toh(x +iy) = H(x,Y), with |Y| = y.
Then, by Lemma2, h satisfies

Ah(z)+(n—2)hyT(Z) =0, zeP;.

From h(z) we construct the functiok(w) in the strip ST according to
k(w) = h(g(w)), weST,

whereg is a symmetric conformal mapping of the st®onto the parabola-shaped do-
main P,. The partial differential equation satisfied kys given in the next proposition,
which follows directly from 4.26) and Lemma3.

Proposition 5. There is a functiore(w) in the strip S, with the properties that

(i) e(w) — 0 asu — oo, uniformly in v,

(i) whenever the functiokh(w) arises from a rotationally symmetric harmonic function
H in P, as described aboyehen k satisfies the partial differential equation

ky (w)
v

Ak(w) + [n + e(w) — 2]

-0, wes™. (4.27)

Remark. If the harmonic functionH with which we began had lived in a cylinder
in R" (of radius/2 and with axis along the-axis), then the associated functién
would have the standard stripas its domain of definition. The mappirggwould be

the identity mapping and sowould simply satisfyAk(w) + (n — 2)k, (w)/v = 0 in this
case. Propositio® may be thought of as asserting thabehaves asymptotically as if

it derived from a cylindrical domain. One may also interpret Propos#i@s asserting
that while the differential operatoth(z) + (n — 2)hy(z)/y is not conformally invariant

in the same way that the Laplacian is, it is asymptotically conformally invariant. The
conformal invariance of the Laplacian was used3w) in Section 3.2, and Proposition

5 is essentially an extension of this to higher dimensions.

4.2.4. Sub solutions and a maximum principle
We need to determine the boundary conditions satisfied by a funétitimat is
constructed, as in Propositids) from the rotationally symmetric harmonic function

H(x,Y) = P y{lBs,| > t},

in the region?, in R". ThusH is the harmonic measure of the exterior of the ball
of radiust w.r.t. P,. The gradient ofH w.r.t. Y vanishes whenx = 0 because of
the rotational symmetry. This translates into the boundary conditigir, 0) = O for
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the associated functioh in the planar domair?; and, in turn, into the boundary
condition k, (z, 0) = 0 for the functionk(u, v) in the stripS™:

ky(u) =0, —o00 <u < oo. (4.28)

The boundary values oH lead to the condition on the boundary @7 that

hix, Ax*) = 1 if |(x, Ax®)| > ¢ and h(x, Ax*) = 0 if |(x, Ax®)| < t. Under the
conformal mappindg of the domainP, onto the stripS, this becomes the following
boundary condition fok:

k(u+in/2) =0, —oco<u<s; (4.29)
k(u+in/2) =1 s <u < oo. (4.30)

Here s depends ort, as specified in3.6). We note that the pointl, 0) in P, corre-
sponds to the point 0 on the boundary of the sfip.
Let us therefore suppose thiatis a solution of the p.d.e.

ky(w) _
p——

Ak(w) + [n + e(w) — 2] 0, wesSt, (4.31)

where ¢(w) — 0 asu — oo, uniformly in v, with the boundary conditions4(28—
(4.30. We will show in the next section that(0) decays at a slower exponential rate
ass — oo than solutions of

ky (w)
v

Ak(w) + [n+ 6 — 2] =0, wesh, (4.32)

when ¢ is positive, the boundary conditions being the same as those satisfikd by
This comparison between the solutions 4f31) and @.32 has a heuristic interpre-
tation that may be helpful to keep in mind. In the limiting case: 0, the differential
equation 4.32 becomesdk(w) + (n — 2)k,(w)/v = 0, the solutions of which, with
the above boundary conditions, may be thought of as deriving from harmonic measure
in a cylinder of radiusz/2 in R". The solutions of 4.32 may then be thought of
as corresponding to harmonic measure in such a cylinder in a slightly higher ‘dimen-
sion’ when ¢ is positive. Thus, our results will show that the distribution function of
the exit position of Brownian motion from a parabola-shaped regioR"irdecays like
the distribution function of the exit position from a cylinder &', but with a time
change that is given explicitly by3(6).
It is natural to consider solutions oft.32 in the half strip

SS+=S+ﬂ{u<s}={w=u+iv:u<s and O< v < /2}.
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In fact, by symmetry, a solution of the p.d.e..32 in ST that satisfies the boundary
conditions 4.28—(4.30 will take the constant value /2 on the vertical cross cut

u = s. This boundary condition can be satisfied by using separation of variables to
solve @.32) in the half stripS;" and then taking a series expansion. The rate of decay
of the solution at 0 as becomes large is then determined by the first term in this
Bessel series. This is the term that is therefore of interest to us. Forneasle write
Jn(v) for the Bessel function of ordem, we write j,, for its smallest positive zero
and we set

In (@) = 07" I (v).
The first term in the Bessel series for a solution 4£3Q) in S is (a constant times)

. n 27
gy = i (2

1
v) ,  Wherem = é(n +0—-23). (4.33)

Since J,, satisfies the differential equation (sf6, Section 17.22]for example),

Jr (v

v

I ) + [2m + 1] +Jn() =0

¢s(w) satisfies the p.d.e4(329 in S, as well as the boundary condition4.Z8 and
(4.29. On the vertical side of the half strig;", its values are simplyfm(ijv/n).
One needs to take the entire series to have a solution which egtalsnlthe vertical
Cross cutu =s.

We write L for the operator

L[f]:Af+[n+s(w)—2]%. (4.34)
Thenk(w) is a solution ofL[k] = O in the half stripS;~ with the boundary conditions
(4.28 and @.29. In order to comparek to solutions of 4.32, we construct sub
solutions forL in S;, and then use a maximum principle. Of course, all our estimates
need to be uniform irs. We show how to obtain the sub solutions that we need in the
next lemma.

Lemma 5. We suppose thafor a fixed positived, the numberus is chosen so large
that 2e(w)| < o for u > us. We suppose that a functioky is defined in the rect-
angle R, = S N {u > us} and satisfies the partial differential equatiqd.32 there
Suppose further thafks/0v is negative inR;. Then L[ks]>0 in Ry. In particular,
L[¢;]1>0.
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Proof. With ks as in the statement of the lemma,

1 0k
Liksl=Aks + [n + e(w) — 2= 2

v Ov
. 10k ~10k
—Mks + [n+ 06— 2]= 22 4 [e(w) — 5] =22
1ak~ vV Ov vV Ov
=[e(w) — §]==2.
[P(w) ]v v

Since 2¢(w)| < d for u > ug, it follows that¢(w) — 0 has the same sign aso in the
rectangleR;. Sincedks/dv is negative inR,, we deduce thalL[ks] has the same sign
aso in R;.

The statement aboug; now follows from the facts thap; satisfies 4.32 and that
J is decreasing on the intervaD, j,,). O

The other ingredient we need is an appropriate form of the maximum principle.
While the version presented here is most probably not new, we have been unable to
find it in the literature. Consequently, we outline the proof for completeness.

Lemma 6. If f is a sub solution of. which isC? in the closure of the rectang|®&,
(the second derivatives are continuous up to the boundamngl which is non positive
on the top left and right parts of the boundarghen f(u, v) <0 for any (u, v) € R;.

Proof. Let Z, = (X;, Y;) be the diffusion associated with the operatorThenY; > 0
almost surely for allt. This is true in the case(w) = 0, sinceZ,; is then a Bessel
process and as such it never hits zero (@& Chapter Xl]. If ¢ is not zero, we still
assume that-d <e(x, y) <o in the rectangle. It follows by a stochastic comparison
theorem argument (as in the classical lkeda—Watanabe thedid&)), that ¥, > 0
almost surely for alk > 0. Now, lett be the first time tha#, hits the boundary of the
rectangle with the diffusion starting ab = (xo, yo) € Ry. This time is finite almost
surely. Of course, by the abov&,; belongs only to the three sides of the rectangle
with probability 1. Applying Ité’s lemma,

F(Zi min<) — f(z0) = My + Ay (4.35)

where M, is a martingale and\; = féL[f](ZS)ds. Sincef is a sub solution of, we
have L[ f]1>0. Taking expectations of both sides @.35, we conclude that

J(20) S Ez (f(Zi min 1)) -

We now letr — oco. Sincef is bounded in the closure of the rectangle,

f(ZO) < Ezo(f(z‘r)),

which provesf(z0)<0. O
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4.2.5. Rate of exponential decay
We now have all the ingredients necessary to prove the following estimdte of

Proposition 6. Suppose that the functioriw), w € S, satisfiese(w) — 0 asu — oo,
uniformly in v Suppose thak(w) is the solution of(4.27) in ST with the boundary
conditions(4.28—(4.30, so thatk derives from harmonic measure f, as in Section
4.2.3.Then given ¢ positive

k(0)> exp[— (217’" + s) s]

for all sufficiently larges, wherem = (n — 3)/2.

Proof. The functionk is bounded by 1 on the vertical side= s of R; (since it is
but a certain harmonic measure in the parabola-shaped régjoim disguise). More
precisely,k(s, v) — 1/2 ass — oo, uniformly for v in (0, 7/2). In fact, the harmonic
measure ofP;N{x > r} w.r.t. the parabola-shaped regi®j approaches /2 uniformly
on the cross sectioni(z,Y) : ¥ € R"L |Y| < Ar*}. Hence, for all sufficiently
large s,

<k(s,v)<1 for O<v < m/2 (4.36)

Bl

Given ¢ positive, we setn; = %(n + 6 — 3) and choose& positive, but so small
that j,,, < jm + me/4. This is possible since the first positive zero of the Bessel func-
tion depends continuously on the order of the Bessel function and increases with
this order. We suppose that; is as in Lemma5 and thats > us. Direct compar-
ison of k with the function ¢s of (4.33 does not quite work, ags is positive on
the sideu = uz; of R, while we do not knowk there. We consider the positive
function

ké(w) — [62]‘1111(1473)/775 _ ezjml[(u(ifé‘)*(ll*u(‘i)]/ﬂ:l jm]_ <% v) s w E RS?
T

in which the second exponential term compensates for the positive valugg oh

the sideu = ugs. This function is a solution of4.32 in R, and, moreovergks/dv

is negative inR; since fml is decreasing or{0, ju,). It follows from Lemmas5 that
L[ks]>0. The functionk; satisfies zero Dirichlet boundary conditions on the sides
u =us andv = n/2 of Ry, and zero Neumann condition on the side= 0. On the
right side of the rectangle its boundary values satisfy

k(s + iv) = [1 - e4fml(uo'—f>] Iy @imav/7) <im0/ 7) < Jony (0)
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for all sufficiently larges. Together with 4.36, we see that we can choose a fixed
small, but positivep; such that

b1ks(s +iv) <b1Jp,(0) <1/4<k(s +iv)

for all sufficiently larges. Thus,b1ks—k <0 on the three side$ = us, u =5, v =1/2

of Ry, while b1ks — k satisfies a zero Neumann condition on the side- 0. Since
L[biks — k] = b1L[ks]1>0 in Ry, we conclude from the Maximum Principle, Lemma
6, that b1ks — k<0 in R,. This leads to a lower bound fdr(us + 1) since

k(us +1) =biks(us + 1) _ .
=2b1%m "/ SINN2 jyyy /) e 2Im Ty (0)
>bze—21m1s/7r.

By the Harnack inequalityk(0) > b3k (ugs + 1), for a constant that does not depend on
S. Settingbs = b3bo,

;
k(0) > bsk(us + 1) >ba exp[— Jm gsj| .
T

As b4 does not depend os we havebs >e¢~%/2 for all sufficiently larges. The proof
of Proposition 6 is complete.[]

4.2.6. Lower bound for harmonic measure
The point 0 in the stri corresponds to the poird, 0) in the region?;, under the
transformations in Section 4.2.1. Thus,

Pa,o) {IBz,| > t} = k(0),

where the functionk satisfies the partial differential equatiod.27) of Proposition

5 and the boundary conditiong.28—(4.30 with s = s(zr) as given by 8.6). Thus
Proposition 6 leads directly to the following lower bound for harmonic measure in the
parabola-shaped regioh;.

Proposition 7. Suppose that is positive There exists a constani; depending ore,
n, A and o such that for r > Co,

NI

P10 {|B'fa| = t} Z EXp|: B m

1+ ] tl_“:|
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4.3. Concluding remarks

The distributional inequalities in Propositions 3 and 7 lead immediately to limit
(1.12, and to Theorem 3 by following the steps in the proof of Theorem 2 in
Section 3.3.

It is natural to hope that the machinery constructed in Section 4.2 would lead to an
upper bound for harmonic measure, and not only to a lower bound, thus rendering the
use of the Carleman method and Section 4.1 unnecessary. In fact, there is no mention
in Section 4.2 of bounds of any kind until Section 4.2.5. However, we have been unable
to prove a counterpart for Proposition 6 involving an upper boundk{oy.
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