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Abstract

We study the sharp order of integrability of the exit position of Brownian motion from
the planar domainsP� = {(x, y) ∈ R × R: x >0, |y|<Ax�}, 0< �<1. Together with some
simple good-� type arguments, this implies the order of integrability for the exit time of these
domains; a result first proved for� = 1/2 by Bañuelos et al. (Ann. Probab. 29 (2001) 882)
and for general� by Li (Ann. Probab. 31 (2003) 1078). A sharp version of this result is also
proved in higher dimensions.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

For � with 0 < ���, we denote by�� the right circular cone inRn of angle
�. We let {Bt : t�0} be n-dimensional Brownian motion and denote byEx and Px
the expectation and the probability associated with this motion starting atx. We write
T� = inf {t > 0 : Bt 	∈ ��}, so thatT� is the first exit time of the Brownian motion
from ��. In 1977, Burkholder[3] found the sharp order of integrability ofT�. More
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precisely, he showed the existence of a critical constantp(�, n) (given explicitly in
terms of zeros of certain hypergeometric functions) such that, forz ∈ ��,

EzT
p/2
� < ∞, (1.1)

if and only if p < p(�, n). In particular, for a cone in two dimensions (a case that had
already been solved in[14]) EzT

p/2
� < ∞ if and only if p < �/(2�). Notice that by

making the angle of the cone arbitrarily small we can makep arbitrarily large.
The cone in two dimensions can be thought of as the domain above the graph of the

functiony = a|x|. It is then natural to study the order of integrability of exit times from
other unbounded regions, in particular parabolas. Since any parabola is contained in a
cone of arbitrarily small angle, the exit time for a parabola has finite moments of all
orders. On the other hand, by comparing with rectangles, it is also easy to show that the
exit time is not exponentially integrable. Bañuelos, et al., showed in[1] that if �P is the
exit time of the Brownian motion from the parabolaP = {(x, y): x > 0, |y| < A

√
x}

and z ∈ P, then there exist positive constantsA1 andA2 such that

−A1� lim inf
t→∞ t−

1
3 log

[
Pz{�P > t}] (1.2)

� lim sup
t→∞

t−
1
3 log

[
Pz{�P > t}] � − A2.

Thus if a < 1/3, thenEz[exp(b�aP)] < ∞ for eachb > 0 and, if a > 1/3, then
Ez[exp(b�aP)] = ∞ for eachb > 0. This result was extended to all dimensions and to
other unbounded regions by Li[9]. More recently, Lifshits and Shi[10] found the limit

−l of t− 1
3 log

[
Pz{�P > t}], as t → ∞. Then, if b < l then Ez[exp(b�1/3

P )] < ∞ and

if b > l then Ez[exp(b�1/3
P )] = ∞, (it is not known whether or notEz[exp(l�1/3

P )] is
finite or infinite), so that Lifshits and Shi determine the sharp order of integrability of
the exit time�P (see the proof of Theorem 2). Their result holds for the more general
parabolic regions studied in[9] in any dimension. In[2], van den Berg used the sharp
results of Lifshits and Shi to obtain analogues of these results for the Dirichlet heat
kernel. Finally, similar results have been obtained recently by DeBlassie and Smits[5]
for “twisted parabolas" in two dimensions.

In the case of the cone�� in Rn, the sharp order of integrability of the exit position
BT� is known. For any domainD in Rn we write B∗

�D for the maximum distance of
Brownian motion from the origin up to the exit time�D for D. More precisely, we set

B∗
�D = sup{|Bt |: 0� t < �D}.

Then, by Burkholder’s inequality (Theorem 2.1 in[3]), for any finite, positivep there
are constantsC1

p,n andC2
p,n such that

C1
p,nEz

[
n�D + |z|2

]p/2
�Ez[B∗

�D ]p�C2
p,nEz

[
n�D + |z|2

]p/2
. (1.3)
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Thus it follows from (1.1) that

Ez [B∗
T�

]p < ∞ (1.4)

if and only if p < p(�, n). We always have|BT� |�B∗
T�

. On the other hand, ifp > 1
and

Ez|BT� |p < ∞ (1.5)

then by Doob’s maximal inequality (1.4) holds, and hence so does (1.1). This gives
the sharp order of integrability�/2� of BT� in two dimensions. ForRn, n�3, since
T� is finite a.s., it is a consequence of Burkholder’s Theorem 2.2 in[3] that Ez[B∗

T�
]p

is finite if Ez|BT� |p is finite and this gives the sharp order of integrability ofBT�

in all dimensions. The results of Burkholder generated considerable interest amongst
probabilists and analysts. In particular, Essén and Haliste[6] used harmonic measure
techniques to obtain some generalizations of Burkholder’s results.

The problem of obtaining the sharp order of integrability of the exit positionB�P
for the parabolaP, and of the related random variableB∗

�P , suggest themselves—a
problem that we address in this paper. As we shall see below, the order of integrability
of B∗

�P and �P are, as in the case of cones, also closely related. We consider, as in
[9,10], more general regions inRn of the form

P� = {(x, Y ) ∈ R × Rn−1: x > 0, |Y | < Ax�}, (1.6)

with 0 < � < 1 andA > 0. (The case� = 1 is the cone for which, as described above,
we know everything.) We write�� for the exit time fromP�.

We begin with a very simple result which shows that the random variablesB�P and
B∗

�P share the same integrability properties. More precisely,

Theorem 1. Suppose thata and b are positive constants and thatz ∈ P�. Then
Ez

[
exp[b |B�� |a]

]
< ∞ if and only if Ez

[
exp[b (B∗

��
)a]] < ∞.

Naturally, we will need to estimate the distribution functions ofB�P andB∗
�P for large

t in the manner of (1.2). The probability that the Brownian motion exits a parabola-
shaped domainP� outside the ball of radiust, that isPz{|B�� | > t}, is the harmonic
measure of that part of the boundary ofP� lying outside the ballB(0, t) of radius t,
taken w.r.t. the domainP�. The larger quantityPz{B∗

��
> t} is the harmonic measure

of the intersection ofP� with the sphere of radiust taken w.r.t. the intersection ofP�
with the ballB(0, t). In fact, 1− Pz{B∗

��
> t} is the probability of exitingP� without

ever exiting the ballB(0, t). These interpretations of the distribution functions ofB��

andB∗
��

facilitate the use of some well known and quite precise estimates of harmonic
measure.

Our result for parabola-shaped regions in the plane provides a complete solution to
the problem and we state it separately.
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Theorem 2. For the exit positionB�� from the parabola-shaped domainP� in the
plane,

lim
t→∞ t�−1 log

[
Pz{|B�� | > t}] = − �

2A(1 − �)
. (1.7)

Furthermore,

Ez

[
exp

[
b |B�� |1−�]] < ∞ (1.8)

if and only if

b <
�

2A(1 − �)
.

Then, Ez

[
exp[b |B�� |a]

]
is integrable for each positiveb if a < 1 − �, and is not

integrable for any positiveb if a > 1 − �.

We note that we can determine whether or not exp[b |B�� |a] is integrable in all cases,
including the critical casea = 1 − �, b = �/

[
2A(1 − �)

]
.

For parabola-shaped regions inRn, it is proved in[9] that

−B1� lim inf
t→∞ t

�−1
�+1 log

[
Pz{�� > t}] (1.9)

� lim sup
t→∞

t
�−1
�+1 log

[
Pz{�� > t}] � − B2

for two positive constantsB1 andB2 depending onA, on � and on the dimension. In

[10], the limit of t
�−1
�+1 log

[
Pz{�� > t}] is shown to exist and its value is determined

explicitly. For comparison purposes we observe that ifn = 2, � = 1
2 and A = 1, the

case of the parabola in the plane, the results in[10] give

lim
t→∞ t−

1
3 log

[
Pz{�1/2 > t}] = −3�2

8
, (1.10)

while it follows from Theorem 2 that

lim
t→∞ t−

1
2 log

[
Pz{|B�1/2| > t}] = −�. (1.11)

We stated Theorem 2 in terms of limits of logs of distributions to draw a parallel
with the previously cited work on exit times. However, our results are sharper than
that, as we obtain sharp estimates for the distribution itself, (see Proposition 1 below).

We prove an extension of Theorem 2 to parabola-shaped regions in higher dimensions.
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Theorem 3.We let �1 be the smallest eigenvalue for the Dirichlet Laplacian in the
unit ball of Rn−1. For the exit positionB�� from the parabola-shaped regionP� of
(1.6), and for z ∈ P�,

lim
t→∞ t�−1 log

[
Pz{|B�� | > t}] = −

√
�1

A(1 − �)
. (1.12)

Furthermore,

Ez

[
exp

[
b |B�� |1−�]]

is finite if b <
√

�1/
[
A(1 − �)

]
and is infinite ifb >

√
�1/

[
A(1 − �)

]
.

Our estimates on the distribution function ofB�� in higher dimensions are not suf-
ficiently precise to determine whether or not exp

[
b |B�� |a

]
is integrable in the critical

casea = 1 − �, b = √
�1/

[
A(1 − �)

]
. This is one reason why we state the two-

dimensional result separately as Theorem 2. Moreover, though the method we use to
obtain the distribution estimates forB�� in the planar case are relatively standard in
complex analysis, it forms the general outline of the method used to obtain lower
bounds for the distribution in higher dimensions. For this reason also, it seems helpful
to present the two-dimensional case separately.

A large part of this paper is devoted to adapting the conformal mapping techniques
that have led to such precise harmonic measure estimates in planar domains to the
parabola-shaped regionsP� in Rn. The so-called ‘Carleman method’ can be adapted
to estimate harmonic measure in these domains from above, as we do in Section 4.1.
All else being equal, harmonic measure is generally largest in the most symmetric
case, and so one would expect the upper bounds given by the Carleman method to be
reasonably precise. However, we were not able to use the Carleman method to obtain
the lower bounds for harmonic measure that we need to determine the exact order
of exponential integrability of the exit positionB�� . For this, we adapt the conformal
mapping techniques used to prove Theorem 2. Our parabola-shaped domains being
symmetric, we can rewrite the distribution estimates forB�� as a distribution estimate
in the corresponding planar parabola-shaped domain, but at the cost of having to deal
with a Bessel-type operator rather than the Laplacian. Conformal invariance is lost, but
the conformal mapping techniques can still be made to work with considerably more
effort. An outline of our method for obtaining these relatively precise estimates from
below for the distribution of the exit position in parabola-shaped regions can be found
at the beginning of Section 4.2.

Burkholder’s inequality (1.3), as outlined earlier, allows one to deduce the integra-
bility properties of the random variableB∗

T�
for the cone�� from those for the exit

time T� for the cone, and vice versa. In the case of parabola-shaped domains, we can
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partially pass from integrability results for the exit position to integrability results for
the exit time and conversely. The proof provides a partial explanation of the connec-
tion between the two critical exponents, 1− � in the case of the exit position and
(1 − �)/(1 + �) in the case of the exit time.

Theorem 4.We may deduce from

Ez

[
exp[b1 (B

∗
��
)1−�]

]
< ∞, (1.13)

with b1 positive, that there is some positiveb2 for which

Ez

[
exp

[
b2 ��

1−�
1+�

]]
< ∞. (1.14)

Conversely, we may deduce from(1.14), with b2 positive, that (1.13) holds for some
positiveb1.

2. Proofs of Theorems 1 and 4

Proof of Theorem 1. Clearly |B�� |�B∗
��

and hence ifEz

[
exp[b (B∗

��
)a]] < ∞, then

Ez

[
exp[b |B�� |a]

]
< ∞, with the samea and b.

We turn to the proof of the converse. As observed in the Introduction,Ez�
p
� < ∞,

for each finitep. By (1.3) we also haveEz(B
∗
��
)p < ∞ for p finite. By Doob’s maximal

inequality,

Ez(B
∗
��
)p�

(
p

p − 1

)p

Ez|B�� |p for 1 < p < ∞.

Thus there exists ap0 such that for allp > p0,

Ez(B
∗
��
)p�4Ez|B�� |p. (2.1)

We choose an integerk0, depending onp0 and a, such thatp0 < ka for all k > k0.
Then

Ez

[
exp[b (B∗

��
)a]]=1 +

k0∑
k=1

bk

k!Ez(B
∗
��
)ak +

∞∑
k=k0+1

bk

k!Ez(B
∗
��
)ak

�1 +
k0∑
k=1

bk

k!Ez(B
∗
��
)ak + 4

∞∑
k=k0+1

bk

k!Ez|B�� |ak
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�1 +
k0∑
k=1

bk

k!Ez(B
∗
��
)ak + 4Ez

[
exp[b |B�� |a]

]
<∞,

which proves the theorem.�

Proof of Theorem 4.We argue as in the proof of the classical good-� inequalities, see
[3] for example. Suppose (1.14) holds for someb2 > 0. We set� = 1 + � and note
that 0< �/2 < 1. Then

Pz{B∗
��
> t} � Pz{B∗

��
> t, ��� t�} + Pz{�� > t�}.

For the second term (1.14), together with a Chebyshev style argument, gives

Pz{�� > t�}�C exp
[
−b2t

�( 1−�
1+� )

]
= C exp

[
−b2t

1−�
]
. (2.2)

Take t > 2|z|, so thatt − |z| > t/2. By our assumption ont and by scaling,

Pz{B∗
��
> t, ��� t�}�Pz

{
sup

0� s<��

|Bs − z| > t

2
, ��� t�

}
(2.3)

�Pz

{
sup

0� s<t�
|Bs − z| > t

2

}

=P0

{
sup

0� s<t�
|Bs | > t

2

}

=P0

{
sup

0� s<1
|Bs | > 1

2
t1−�/2

}

�C exp

[
−1

8
t2−�

]
= C exp

[
−1

8
t1−�

]
.

In the last inequality we used the well-known fact (see[3], inequality (2.15)) that

P0

{
sup

0� s<1
|Bs | > �

}
�C exp

[
−�2/2

]
.

It now follows from (2.2) and (2.3) that

Pz{B∗
��
> t}�C exp

[
−2b1t

1−�
]
,



226 R. Bañuelos, T. Carroll / Journal of Functional Analysis 218 (2005) 219–253

for all large t, where 2b1 = min{1/8, b2}. Since

Ez

[
exp[b (B∗

��
)1−�]

]
= 1 + b

∫ ∞

0
ebtPz{B∗

��
> t1/(1−�)} dt,

we obtain (1.13).
Conversely, suppose that (1.13) holds, so that

Pz{B∗
��
> t}�C exp

[
−b1t

1−�
]
. (2.4)

Let � = 1/(1 + �). We assume, as we may, thatt is very large and set

P̃(t) = P� ∩ B(0, t�)

and write �̃ for its exit time. Clearly�̃��� and

Pz{�� > t} � Pz{�� > t, �� = �̃} + Pz{�� > t, �� > �̃}. (2.5)

Let us denote the ball centered at 0 and of radiusr in Rn−1 by Bn−1(0, r) and the
exit time of Brownian motion from it by�Bn−1(0,r). We recall that fort > 1,

P0{�Bn−1(0,1) > t}�C exp
[−�1t

]
,

where C is a constant independent oft and �1 is the first Dirichlet eigenvalue of
Bn−1(0,1). By our definition of the regioñP(t),

Pz{�� > t, �� = �̃}�Pz{�̃ > t} (2.6)

�P0{�Bn−1(0,t��) > t}
=P0{�Bn−1(0,1) > t1−2��}
�C exp

[
−�1 t

1−2��
]

=C exp
[
−�1 t

1−�
1+�

]
,

where we used scaling for the first equality above. On the other hand, using (2.4),

Pz{�� > t, �� > �̃}�Pz{B∗
��
> t�} (2.7)

�C exp
[
−b1t

�(1−�)
]

=C exp
[
−b1t

1−�
1+�

]
.
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Estimates (2.5)–(2.7) prove that (1.14) may be deduced from (1.13). This completes
the proof of Theorem 4. �

We note that our argument above proves that ifEz

[
exp[b2 ��

a]] < ∞ for some
0 < a < 1 andb2 > 0, thenEz

[
exp[b1 (B

∗
��
)2a/(1+a)]] < ∞ for someb1 depending on

b2. Conversely, ifEz

[
exp[b1 (B

∗
��
)a]] < ∞ for somea and b1, then

Ez

[
exp[b2 ��

a/(a+2�)]
]
< ∞

for someb2 depending onb1. Thus by Theorems 2 and 3 we see that

Ez

[
exp[b ��

p]] < ∞ (2.8)

for someb > 0 if and only

p� 1 − �
1 + �

,

as was already proved in[1] for � = 1/2 and in [9] for general� in (0, 1).

3. Parabola-shaped domains in the plane

3.1. Harmonic measure estimates

For the moment we restrict ourselves to two dimensions. The key estimate for the
distribution function forB�� , of which limit (1.7) is a direct consequence, is Proposition
1. As we shall see below, we may suppose without loss of generality thatz = z0, where
z0 is the point(1,0).

Proposition 1. There are constantsC1 and C2 depending only on� and A such that,
as t → ∞,

C1 exp

[
− �

2A(1 − �)
t1−�

]
�Pz0{|B�� | > t}

� C2 exp

[
− �

2A(1 − �)
t1−� + o(t1−�)

]
.

The first step in the proof of Proposition 1 is to show that there is a negligible
difference betweenPz0{|B�� | > t} andPz0{B1

��
> t}, where forz = (x, Y ) ∈ R × Rn−1

we write z1 for x, the projection onto the first coordinate. This will follow from a
simple estimate that holds in all dimensions.
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Lemma 1. For the exit positionB�� of Brownian motion fromP� in Rn, and for
sufficiently larget ,

Pz0{B1
��
> t} � Pz0{|B�� | > t} � Pz0{B1

��
> t − A2t2�−1}.

Proof. For fixed t positive, we writeS(0, t) for the sphere center 0 and radiust and we
write x(t) for the common first coordinate of the points of intersection of the boundary
of P� with S(0, t). Then

Pz0

{|B�� | > t
} = Pz0{B1

��
> x(t)}. (3.1)

We also have, for all sufficiently larget,

t − A2t2�−1 < x(t) < t. (3.2)

The upper bound is clear. For the lower bound, we observe that any point(x, Y ) with
x = t − A2t2�−1 and |Y | = A(t − A2t2�−1)� lies inside the sphereS(0, t). Indeed,

(t − A2t2�−1)2+A2(t − A2t2�−1)2� − t2

=A4t4�−2 − 2A2t2� + A2(t − A2t2�−1)2�

�A4t4�−2 − 2A2t2� + A2t2�

=A2t2�(A2t2(�−1) − 1)
<0,

where we use the assumption that 0< � < 1 and note that 0< t −A2t2�−1 < t . �

Since
(
t − A2t2�−1

)1−� = t1−�[1+o(1)], Proposition 1 would follow from Lemma 1
together with

C1 exp

[
− �

2A(1 − �)
t1−�

]
�Pz0{B1

��
> t} (3.3)

� C2 exp

[
− �

2A(1 − �)
t1−�

]
.

3.2. Proof of (3.3) by conformal mapping

We wish to use the Ahlfors–Warschawski estimates on conformal mappings. Follow-
ing the standard notation in this area, we introduce the functions�+(x) = −�−(x) =
Ax� for x > 0 and	(x) = �+(x) − �−(x), so that	(x) = 2Ax� for x�0. ThenP�
has the form

P� = {z = x + iy: x > 0 and�−(x) < y < �+(x)}.
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We write f (z) for the conformal mapping ofP� onto the standard strip

S = {w: |Im w| < �/2}

for which f (z0) = 0 and f ′(z0) > 0. The mappingf is then symmetric in the real
axis. We writeEt for �P� ∩ {Rez > t} and writeFs for �S ∩ {Rew > s}. For t > 0,
Et corresponds under the mappingf to Fs , for somes that we denote bys = s(t).

Then, by conformal invariance of harmonic measure,Pz0{B1
��

> t} is the harmonic
measure at 0 ofFs(t) with respect toS, that is

Pz0{B1
��
> t} = 
(0, Fs(t); S). (3.4)

Harmonic measure in the strip is easy to estimate, for example by mapping the strip
onto the unit disk where harmonic measure at the origin coincides with normalized
angular measure on the circle. One may show that


(0, Fs; S) = 1

�
arg

[
e2s − 1 + 2ies

]
,

whence, fors large,

1

�
e−s �
(0, Fs; S)� 4

�
e−s . (3.5)

Warschawski’s estimates[15, Theorem VII] for the real part of the mappingf involve
an error term

∫∞ 	′(x)2/	(x) dx for which, in our case,

∫ ∞

1

[ 	′(x) ]2

	(x)
dx = A

∫ ∞

1

(2�x�−1)2

2x� dx = 2�2A

∫ ∞

1
x�−2 dx < ∞.

From [15, Theorem VII] we deduce that, forz1 = x1 + iy1 and z2 = x2 + iy2,

Ref (z2) − Ref (z1) = �
∫ x2

x1

dx

	(x)
+ o(1),
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as x1, x2 → +∞, uniformly with respect toy1 and y2. As a consequence we obtain
that ast → ∞,

Ref (t + iy) = �
∫ t

1

dx

	(x)
+ O(1) = �

2A(1 − �)
t1−� + O(1).

Since this estimate is uniform iny, it follows that

s(t) = �
2A(1 − �)

t1−� + O(1) as t → ∞. (3.6)

We will use this estimate on the boundary correspondence underf again in Section 4.
Together (3.4), (3.5) and (3.6) yield (3.3). Thus Proposition 1 is proved.
Note: It is possible to shortcut the above explicit calculations by using Haliste’s

estimates for harmonic measure[7, Chapter 1.2], that are themselves based on the
Ahlfors–Warschawski approximations. Haliste formulates her estimates in terms of the
harmonic measure of a vertical cross cut	t = [t − iAt�, t + iAt�] with respect to the
truncated domainP�(t) = {(x, y): 0 < x < t, |y| < Ax�}. We set

B1,∗
��

= sup{|B1
t |: 0� t < ��}.

Then,


(z0, 	t ;P�(t)) = Pz0{B1,∗
��

> t},

for which Haliste provides estimates similar to (3.3). A version of Lemma 1 for the
maximal functionsB1,∗

�� and B∗
��

yields Proposition 1 with|B�� | replaced byB∗
��

. At
this point, it suffices follow the argument in the next section withB∗

��
instead of|B�� |

and to recall that|B�� | andB∗
��

have the same integrability properties (Theorem 1).

3.3. Proof of Theorem 2

As above, we assume for the moment thatz = z0 = (1,0). First, the limit (1.7) is a
direct consequence of Proposition 1. Next, we observe that

Ez0

[
exp[b |B�� |a]

] = 1 + b

∫ ∞

0
ebtPz0{|B�� | > t1/a} dt. (3.7)

Proposition 1 yields that

C1 exp

[(
b − �

2A(1 − �)

)
t

]
�ebtPz0{|B�� | > t1/(1−�)}

� C2 exp

[(
b − �

2A(1 − �)

)
t + o(t)

]
.
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We suppose first thatb < �/[2A(1 − �)] and set

ε = �
2A(1 − �)

− b.

Then ε is positive and we observe that−εt + o(t)� − εt/2 for sufficiently larget.
Hence, fort large,

ebtPz0{|B�� | > t1/(1−�)}�C2e
− 1

2εt .

It follows from the casea = 1−� of (3.7) thatEz0

[
exp[b |B�� |1−�]] < ∞ in this case.

In the caseb��/[2A(1 − �)],

ebtPz0{|B�� | > t1/(1−�)}�C1 exp

[(
b − �

2A(1 − �)

)
t

]
�C1.

This givesEz0

[
exp[b |B�� |1−�]] = ∞, for suchb.

The cases 0< a < 1 − �, b > 0 and a > 1 − �, b > 0 may be handled simi-
larly, or one may compare the expected value with that of exp[b |B�� |1−�] where, say,
b = �/[4A(1 − �)] and b = �/[A(1 − �)], respectively.

We now remove the assumption thatz = (1,0). We first deal with the upper bound.
We let z = (x, y) and assume thatt is very large and certainly much larger than
1. By translation of paths it is clear that
((x1, y), 	t ;P�(t))�
((x2, y), 	t ;P�(t))

wheneverx1�x2. Hence, we may assume thatx�1. Thus fort >> x >> 1 we have,
by symmetry,

sup
z′∈	x


(z′, 	t ;P�(t)) = 
(x, 	t ;P�(t)). (3.8)

From this and the more general upper bound of Haliste[7] we have that forz = (x, y)

and t >> x >> 1,


(z, 	(t);P�(t))�C2 exp

[
−�

∫ t

x

du

	(u)

]

=C2 exp

[
− �

2A(1 − �)
t1−� − �

2A(1 − �)
x1−�

]
. (3.9)

These two inequalities, (3.8) and (3.9), give the desired upper bound estimate on
Pz{B1,∗

�� > t}.
For the lower bound, we may assume by the above argument thatz = (x, y) with

0 < x < 1. As before, we may assume thatt is much greater than 1. By a standard
Whitney chain argument and the Harnack inequality we have


(z, 	t ;P�(t))�C(z)
(z0, 	t ;P�(t)), (3.10)
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whereC(z) is a function ofz depending on the distance ofz to the boundary ofP�.
The general lower bound follows from this and the case ofz = (1,0) which we have
already done.

4. Parabola-shaped regions inRn

The parabola-shaped regions with which we work have the form

P� = {(x, Y ) ∈ R × Rn−1: x > 0, |Y | < Ax�}

for 0 < � < 1 and A > 0. Our objective is to derive estimates for the distribution
function of the exit position of Brownian motion from such regions or, equivalently, for
the harmonic measure of the exterior of the ball of center 0 and radiust with respect
to such regions. In Section 4.1, we derive an upper bound for the distribution function
by means of the Carleman method and in Section 4.2 we introduce a new conformal
mapping technique to derive an equally sharp lower bound.

4.1. Carleman method: upper bound for harmonic measure

It will be more convenient to write the domainP� in this section as

P� = {(x, Y ) ∈ R × Rn−1: x > 0, Y ∈ Bn−1(0, Ax
�)},

whereBn−1(0, r) is the ball in Rn−1 centered at 0 and of radiusr. For convenience
of notation we set	(x) = Bn−1(0, Ax�) and refer to	(x) as a cross cut ofP� at x.
For t large we set

P�(t) = {(x, Y ): 0 < x < t, Y ∈ 	(x)}.

This is the domainP� truncated to the right oft. For such at and any(x, Y ) ∈ P�(t),
we denote by


(
(x, Y ), 	(t);P�(t)

)
the harmonic measure of(t,0)+ 	(t) at the point

(x, Y ) relative to the domainP�(t). We wish to estimate

(
(1,0), 	(t);P�(t)

)
.

Proposition 2. There exist two constantsC1 and C2, that depend onn, �1, A and �,
such that fort > C1,



(
(1,0), 	(t);P�(t)

)
�C2 t

�(n−1)/2 exp

[
−

√
�1

A(1 − �)
t1−�

]
.

Before we begin the proof of Proposition 2, we show how it leads to an estimate
for the distribution ofB�� . With the notation of Lemma 1 and of the note at the end
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of Section 3.2,

P(1,0)
{|B�� | > t

} = P(1,0){B1
��
> x(t)}�P(1,0){B1,∗

��
> x(t)}.

The distribution function forB1,∗
�� is the harmonic measure that is estimated in Propo-

sition 2, so that

P(1,0){B1,∗
��

> t} = 

(
(1,0), 	(t);P�(t)

)
.

From estimate (3.2), namely t − A2t2�−1 < x(t) < t , it follows, as in the proof of
Lemma 1, thatx(t)1−� = t1−�[1 + o(1)]. Together with Proposition 2, this leads to

P(1,0){B1,∗
��

> x(t)}�C2 x(t)
�(n−1)/2 exp

[
−

√
�1

A(1 − �)
x(t)1−�

]

�C2 t
�(n−1)/2 exp

[
−

√
�1

A(1 − �)
t1−�[1 + o(1)]

]

We may absorb the termC2 t
�(n−1)/2 into the o(1) term in the exponential to deduce

an estimate for the distribution function forB�� in the following form.

Proposition 3. Suppose that� is positive. There exists a constantC1 depending on�,
n, �1, A and � such that, for t > C1,

P(1,0)
{|B�� | > t

}
� exp

[
−

√
�1

A(1 − �)
[1 − �] t1−�

]

Proof of Proposition 2. Our estimates follow those of Haliste[7]. We taket to have
some large, fixed value and set

h(x) =
∫

	(x)

2(x, Y ) dY, 0 < x < t, (4.1)

where for convenience we write
(x, Y ) for 
((x, Y ), 	(t);P�(t)). Differentiating h
(see[7] for the justification of this step), we obtain

h′(x) =
∫

	(x)
2
x(x, Y )
(x, Y ) dY (4.2)

and

h′′(x) = 2
∫

	(x)

xx(x, Y )
(x, Y ) dY + 2

∫
	(x)

|
x(x, Y )|2 dY. (4.3)
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We observe that, since
(x, Y ) is increasing inx for eachY, the derivative
x(x, Y )

is non-negative and henceh′(x)�0. Since
(x, Y ) is harmonic, we have


xx(x, Y ) + �Y 
(x, Y ) = 0.

Thus,

h′′(x) = −2
∫

	(x)
�Y 
(x, Y )
(x, Y ) dY + 2

∫
	(x)


x(x, Y )
2 dY. (4.4)

Since the harmonic measure vanishes on the lateral boundary of the domain,

(x, Y ) = 0 if Y ∈ �	(x), with 0 < x < t . Thus, integrating by parts, we obtain

h′′(x) = 2
∫

	(x)
|∇Y 
(x, Y )|2 dY + 2

∫
	(x)


x(x, Y )
2 dY. (4.5)

Writing B(0, r) for Bn−1(0, r), we now recall that for allu that are differentiable on
B(0, r) and vanish on�B(0, r),

�B(0,r)�
∫
B(0,r) |∇u|2∫
B(0,r) |u|2 , (4.6)

where�B(0,r) is the first eigenvalue ofB(0, r) for the Laplacian. By scaling,

�B(0,r) = 1

r2 �1,

where�1 is the eigenvalue of the unit ball. In our case this gives

�	(x) = 1

A2x2� �1. (4.7)

From (4.5) and (4.6) we deduce that

h′′(x)�2�	(x)

∫
	(x)


(x, Y )2 dY + 2
∫

	(x)

x(x, Y )

2 dY

=2�	(x)h(x) + 2
∫

	(x)

x(x, Y )

2 dY . (4.8)

On the other hand, by (4.2) and Hölder’s inequality,

h′(x)�2

(∫
	(x)


x(x, Y )
2 dY

)1/2(∫
	(x)


(x, Y )2 dY

)1/2
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or

h′(x)2�4

(∫
	(x)


x(x, Y )
2 dY

)
h(x)

or

h′(x)2

2h(x)
�2

∫
	(x)


x(x, Y )
2 dY.

This and (4.8) give

h′′(x)�2�	(x)h(x) + h′(x)2

2h(x)
. (4.9)

Since 2
√
a
√
b�a + b, we conclude that

h′′(x)�2
√

�	(x) h
′(x)

which, by (4.7), is the same as

h′′(x)
h′(x)

� 2
√

�1

A

1

x� .

Following Haliste, we consider the functiong on the interval(0, t) given by

g(x)=
∫ x

0
exp

(
2
∫ s

0

√
�	(r) dr

)
ds

=
∫ x

0
exp

(
2
√

�1

A

∫ s

0

dr

r�

)
ds

=
∫ x

0
exp

(
2
√

�1

A(1 − �)
s1−�

)
ds.

This function satisfies

g′(x)=exp

(
2
∫ x

0

√
�	(r) dr

)

g′′(x)=g′(x)2
√

�	(x)

=g′(x)2
√

�1

A

1

x�
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and so

d

dx
(log h′ − log g′)�0.

From this it follows that the functionh′(x)
g′(x) is non-decreasing on(0, t). Since

g(0) = h(0) = 0, the generalized mean value theorem gives that for any 0< x < t

there is a
 ∈ (0, x) such thath(x)
g(x)

= h′(
)
g′(
) . Hence,

h(x)

g(x)
� h′(x)
g′(x)

.

Since g′(x)�0, this shows that( h
g
)′(x) is non-negative and hence the functionh(x)

g(x)
is non-decreasing. Thus,

h(x)�h(
)
g(x)

g(
)
for 0 < x < 
 < t. (4.10)

Setting�(r) = 2
√

�	(r),

g(x)=exp

(∫ x

0
�(r) dr

)∫ x

0
exp

(
−
∫ x

s

�(r) dr
)
ds

=exp

(∫ x

0
�(r) dr

)
H(x). (4.11)

We may estimateH(x) by

H(x)=
∫ x

0
exp

(
− 2

√
�1

A(1 − �)

[
x1−� − s1−�]) ds

=exp

[
− 2

√
�1

A(1 − �)
x1−�

] ∫ x

0
exp

[
2
√

�1

A(1 − �)
s1−�

]
ds

�x.

Therefore,

g(x)�x exp

(∫ x

0
�(r) dr

)
, 0 < x < t. (4.12)

On the other hand, setting

x0 = x0(�1, A, �) =
[
A(1 − �)

2
√

�1
ln 2 + 1

]1/(1−�)

and K = 2
√

�1

A(1 − �)
,
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we find that, forx�x0,

H(x)=exp
[− K x1−�] ∫ x

0
exp

[
K s1−�] ds

=exp
[− K x1−�] ∫ x1−�

0

1

1 − �
r�/(1−�) exp

[
K r

]
dr

� 1

1 − �
exp

[− K x1−�] ∫ x1−�

1
exp

[
K r

]
dr

= 1

K(1 − �)
exp

[− K x1−�][exp
[
K x1−�]− expK

]

= 1

K(1 − �)

[
1 − exp

[
K (1 − x1−�)

]]

� 1

2K(1 − �)
.

We have shown that,

H(x)� A

4
√

�1
for x�x0

and this, together with (4.11), gives

g(x)� A

4
√

�1
exp

(∫ x

0
�(r) dr

)
for x0�x < t. (4.13)

From (4.10), (4.12) and (4.13) we deduce that,

h(x)� 4
√

�1

A
x h(
) exp

(
−
∫ 


x

�(r) dr
)

for x0�x < 
 < t.

Taking x = x0 and letting
 tend to t, we arrive at

h(x0)�
4
√

�1

A
x0h(t) exp

(
−
∫ t

x0

�(r) dr
)

=C1(�1, A, �) h(t) exp

[
− 2

√
�1

A(1 − �)
t1−�

]
,

for an appropriate constantC1. By our definition ofh,

h(t)�vol
(
Bn−1(0, At

�)
) = �nA

n−1t�(n−1),
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where�n is the volume of the unit ball inRn−1. Thus,

h(x0)�C2(n, �1, A, �) t�(n−1) exp

[
− 2

√
�1

A(1 − �)
t1−�

]
,

for all sufficiently larget. We now choose anr, independent oft, such that the ball
Bn

(
(x0,0),2r

)
is contained inP�; clearly such anr exists. Then, by the Harnack

inequality,


(x0,0)�C3(n)
(x, Y ) for all (x, Y ) ∈ Bn

(
(x0,0), r

)
.

Squaring and then integrating over the ballBn−1(0, r) leads to


2(x0,0)�C4(n, r)

∫
Bn−1(0,r)


2(x0, Y ) dY

�C4(n, r)

∫
	(x0)


2(x0, Y ) dY = C4(n, r) h(x0).

From this we finally obtain


((x0,0), 	(t);P�(t))�C5(n, �1, A, �) t�(n−1)/2 exp

[
−

√
�1

A(1 − �)
t1−�

]
,

for t > x0. One final application of the Harnack inequality to move from(x0,0) to
(1,0), and the proposition is proved.�

4.2. Conformal mapping method: lower bound

In this section we writePn
� for the region in (1.6) to emphasize the dimension. We

observe that, because of the cylindrical symmetry ofPn
� (this region is invariant under

rotation about thex-axis) and because of the symmetry of the boundary values of the
harmonic measure, the value of the harmonic measure at(x, Y ) in Pn

� depends only
on x and on|Y |.

We associate withPn
� the corresponding domainP� = P2

� in two dimensions.
The technique we develop to obtain lower bounds for the distribution function of
the exit position inPn

� is the following. We replace Laplace’s equation inPn
� by the

corresponding Bessel-type partial differential equation inP�—in the casen = 2, this
reduces to the Laplacian. Mirroring the arguments in Section 3.2, we map the parabola-
shaped domainP� conformally onto the standard stripS = {w : |Im w| < �/2} and
determine the form the partial differential equation takes in the strip after this change
of variable. Adapting the Ahlfors–Warschawski conformal mapping estimates to our
purposes, and in some instances refining them, we show that the partial differential
equation in the strip is but a small perturbation of the Bessel-type partial differential
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equation that we started with—it is almost conformally invariant. The solution of the
unperturbed Bessel-type p.d.e. in the strip may be easily estimated. We show how
to compare the solutions of the perturbed p.d.e. with those of the unperturbed p.d.e.,
so as to obtain the estimates we require on the original harmonic measure in the
parabola-shaped region inRn. As well as keeping track of how the p.d.e. changes as
we change from one domain to another, we also need to keep track of the boundary
conditions—but here Warschawski’s detailed conformal mapping estimates are exactly
what we need.

We break the proof into a number of subsections and lemmas.

4.2.1. From a parabola-shaped region inRn to a planar strip
To begin with we compute how the Laplace operator changes as we drop down from

n dimensions to two dimensions.

Lemma 2. Suppose thatH(x, Y ) is a C2-function onPn
� that is invariant under rota-

tion about the x-axis, so that H depends only onx and on |Y |. We associate withH
a functionh(z) in the half parabola-shaped planar domain

P+
� = {z = x + iy: x > 0 and 0 < y < Ax�},

defined by

h(x + iy) = H(x, Y ) whenever |Y | = y.

Then

�H(x, Y ) = �h(x + iy) + (n − 2)
hy(x + iy)

y
. (4.14)

Proof. In this proof, we denote a point inPn
� by (x1, x2, . . . , xn). With this notation,

H(x1, x2, . . . , xn) = h

(
x1,

√
x2

2 + · · · + x2
n

)
= h(x, y),

with x = x1 and y =
√
x2

2 + · · · + x2
n. Then,

�H=
n∑

i=1

�2

�x2
i

h(x1,

√
x2

2 + · · · + x2
n)

=�2
h

�x2
+

n∑
i=2

�
�xi


�h

�y
xi√

x2
2 + · · · + x2

n



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=�2
h

�x2
+

n∑
i=2

[
�h
�y

(x2
2 + · · · + x2

n) − x2
i

(x2
2 + · · · + x2

n)
3/2

+ �2
h

�y2

x2
i

x2
2 + · · · + x2

n

]

=�2
h

�x2
+ �h

�y


 n − 1√

x2
2 + · · · + x2

n

− 1√
x2

2 + · · · + x2
n


+ �2

h

�y2

=�h(z) + (n − 2)
hy(z)

y
. �

From now on we may work in two dimensions and have conformal mapping at
our disposal, at the expense of having to deal with the more complicated Bessel-type
differential operator appearing in (4.14), rather than the Laplacian. The complication
arises because this operator is not conformally invariant.

As in Section 3.2, we denote byw = f (z) the conformal mapping from the domain
P� onto the standard stripS, for which f (1) = 0 and f ′(1) > 0. Since f is real on
the real axis, the upper halfP+

� of the parabola-shaped domainP� is mapped to the
upper halfS+ of the strip, specifically,S+ = {w: 0 < Im w < �/2}.

We denote the inverse mapping off (z) by g(w). We associate a functionk(w) in
S+ with a functionh(z) in P+

� according to

k(w) = h(g(w)) for w ∈ S+. (4.15)

Thenh(z) = k(f (z)), for z ∈ P+
� . In the next lemma, we compute how the differential

operator on the right of (4.14) changes under this change of variables.

Lemma 3. Suppose thath(z) is a C2-function in the domainP+
� and thatk is defined

in the strip S+ by (4.15). Then, with g(w) = z,

�h(z) + (n − 2)
hy(z)

y
= �k(w)

|g′(w)|2 − 2(n − 2)
Im

[
kw(w) / g

′(w)
]

Im [g(w)]
. (4.16)

Proof. We recall thath(z) = k(f (z)), and use the formulae for change of variable in
the complex partial derivatives�/�z and�/�z, as explained, for example, in[8, Section
1.2]. First,

�h(z) = (�k)(f (z)) |f ′(z)|2, z ∈ P�.

In general,

�
�(Im z)

= i

(
�
�z

− �
�z

)
,
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whence

hy(z)=i

(
�h
�z

− �h
�z

)

=i

(
�
�z

[k(f (z))] − �
�z

[k(f (z))]
)

=i

(
�k
�w

(f (z)) f ′(z) − �k
�w

(f (z)) f ′(z)
)
.

Sincek(w) is real-valued,kw = kw. We therefore obtain,

hy(z) = −2 Im
[
kw
(
f (z)

)
f ′(z)

]
.

Thus,

�h(z) + (n − 2)
hy(z)

y
= (�k)(f (z)) |f ′(z)|2 − 2(n − 2)

Im
[
kw
(
f (z)

)
f ′(z)

]
Im [g(w)]

.

On substitutingw for f (z) and 1/g′(w) for f ′(z), we obtain (4.16). �

4.2.2. Asymptotic estimates for the conformal mapping g
The success of the transformations introduced in the previous subsection depends on

being able to simplify the expression on the right-hand side of (4.16), which is essen-
tially an expression for the Laplacian in the domainPn

� in Rn transformed to the strip
S+ in the plane. This is achieved using modifications of results of Warschawski[15],
which give asymptotic expressions for the conformal mappingg and for its derivative.
For some of these we draw on[4]. We begin with an estimate for the imaginary part of
the mappingg. In this context it is helpful to keep in mind that estimates for the real
part of the mappingg, that is for the rate of growth ofg, are generally more difficult.

We will adopt the more general situation, as considered by Warschawski, of a con-
formal mappingf of a domain of the form

D = {z : |Im z| < �(Rez)},

where�(x) is continuous on the real line, onto the stripS. In our case,�(x) = Ax�,
for x positive. Warschawski’s domains are not necessarily symmetric, but the symmetric
case is sufficiently general for our purposes here. Warschawski writes	(x) = 2�(x)
for the width of the domainD at x. We assume thatD hasboundary inclination0 at
x = ∞ in that

�(x2) − �(x1) = o(x2 − x1) as x1, x2 → ∞.
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This is the case if�(x) is continuously differentiable and�′(x) → 0 asx → ∞, and
includes our parabola-shaped domainsP�.

We take the conformal mappingf of D onto S for which f is real andf ′ is positive
on the real axis. We denote the inverse mapping off by g, in agreement with earlier
notation. We begin with an estimate for the derivative ofg.

Lemma A (Warschawski [15, Theorem X(ii)]).For each � with 0 < � < 1, the
conformal mapping g of the strip S onto D, for which g is real andg′ is positive on
the real axis, satisfies

g′(w) =
[

1

�
+ o(1)

]
	(Reg(w)), (4.17)

uniformly asRew → ∞ in the sub stripS� = {w : |Im w| < ��/2}.

In [15, Theorem X(iii)], Warschawski obtains an asymptotic expression for Img(w)

as Rew → ∞. Taking advantage of the symmetry of the domainD (so that Img(w) =
0 when Imw = 0) and adapting Warschawski’s proof, we prove

Lemma 4. The conformal mappingg of the stripS onto D, for which g is real and
g′ is positive on the real axis, satisfies

Im g(w) =
[

1

�
+ o(1)

]
	(g(Rew)) Im w (4.18)

as Rew → ∞ with w ∈ S.

Proof. By symmetry of the mappingg, it is enough to prove (4.18) in the case of
Im w positive. First we show that (4.18) holds in each sub stripS�, (0 < � < 1). By
Theorem II(a) in[15],

lim
u→∞ argg′(u + iv) = 0, (4.19)

uniformly in v, |v| < �/2. Combining (4.19) with Lemma A, we find that

Reg′(w) =
[

1

�
+ o(1)

]
	(Reg(w))

for w ∈ S�. Then, forw = u + iv0 ∈ S�,

Im g(u + iv0)=Im g(u + iv0) − Im g(u)

=v0

(
�
�v

Im g(u + iv)

)∣∣∣∣
v=v1

[v1 ∈ (0, v0)]
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=v0 Reg′(u + iv1)

=v0

[
1

�
+ o(1)

]
	(Reg(u + iv1)).

We assert that, uniformly inv, |v| < �/2,

	(Reg(u + iv)) = 	(g(u)) + o(1), (4.20)

(which is why we need not distinguish between	(g(Rew)) and 	(Reg(w)), up to
o(1)). This then gives the stated expression for Img(u + iv0), for |v0| < ��/2. To
prove (4.20) we note that, as at the bottom of p. 290 of[15] and as a consequence of
the assumption thatD has boundary inclination 0 atx = ∞,

Reg(u + iv) = g(u) + o(1), as u → ∞.

On using yet again the assumption thatD has boundary inclination 0 atx = ∞, (4.20)
follows.

Finally, we need to show that (4.18) holds uniformly inv. Given� small and positive,
we take� = 1−�, so that (4.18) holds forw = u+iv, with |v|�(1−�)�/2. In particular,

Im g
(
u + i

�
2
(1 − �)

)
=
[

1

�
+ o(1)

]
	(g(u))

�
2
(1 − �)

=(1 − �)
	(g(u))

2
+ o(	(g(u)))

as u → ∞. Thus, using (4.20), the image of the sub stripS� is a region of the form

{
z : |Im z|�(1 − �)

	(Rez)

2
+ o(	(Rez))

}
.

Sinceg(w) lies outside this region ifv > (1 − �)�/2, we find that

Im g(w)�(1 − �)
	(Reg(w))

2
+ o(	(Reg(w))) (4.21)

=(1 − �)
	(g(u))

2
+ o(	(g(u))).

On the other hand, ifv > (1 − �)�/2 then, simply becauseg(w) lies in D,

Im g(w)� 	(Reg(w))

2
= 	(g(u))

2
+ o(1). (4.22)

Together (4.21) and (4.22) imply that, for u sufficiently large andv > (1 − �)�/2,

∣∣∣∣Im g(w) − 	(g(u))
�

v

∣∣∣∣ �2� 	(g(u)).
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It follows that (4.18) holds uniformly in v, −�/2 < v < �/2, with o(1) replaced by
C�. Since� may be as small as we please, the proof of (4.18) is complete. �

We wish to remove the restriction in Warschawski’s Lemma A thatw lies in a fixed
sub strip of the standard stripS, at least whenD is a parabola-shaped domain. In this
situation,

	(x) = 2Ax� for x > 0.

Proposition 4. We setg to be the conformal mapping of the stripS onto P� for
which g is real andg′ is positive on the real axis. Then the following estimate for the
derivative ofg holds:

g′(w) =
[

1

�
+ o(1)

]
	(g(Rew)) = 2A

[
1

�
+ o(1)

]
g(u)� (4.23)

as u, the real part ofw, tends to∞, uniformly in Im w.

Proposition 4 is part of the main result in[4], in which it is shown that the function

h(z) = − exp

[
�

2(1 − �)

[
1 − (1 + Bz)1−�

]]
, B = A−1/(1−�)

is univalent inP� and mapsP� onto the interiorD of a Dini-smooth curveC lying
inside the unit circle|z| = 1, except forz = −1. A smooth Jordan curveC is said to
be Dini-smooth if there is an increasing function
(x), that satisfies the Dini-condition

∫ 1

0


(x)
x

dx < ∞,

for which the angle�(s) of the tangent toC, considered as a function of arclength,
satisfies

|�(s2) − �(s1)| < 
(s2 − s1), for s1 < s2.

The proof in[4] that h(P�) is indeed bounded by a Dini-smooth curve, that lies inside
the unit circle except forz = −1, is quite involved. Proposition 4 follows from this in
a relatively straightforward manner. We repeat a version of the argument here for the
reader’s convenience.

We first note that

h′(z) = −�
2
B (1 + Bz)−� h(z), z ∈ P�. (4.24)
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We consider the mapping

�(z) = h

[
g

(
log

1 + z

1 − z

)]
, z ∈ �.

The unit disk � is first mapped onto the stripS, which is mapped byg onto the
parabola-shaped domainP� and, finally, this is mapped byh onto the inside of a Dini-
smooth curveC. As explained in[4], we are now in a position to apply[11, Theorem
10.2] and may deduce that�′ has a continuous, non-zero extension to the closure of
the unit disk. In particular,�′(1) 	= 0, and we note that�(1) = 0. We can derive
information on the behaviour of the derivative ofg from information on the derivative
of �. We write w(z) = log[(1 + z)/(1 − z)], for z ∈ �. Using expression (4.24) for
the derivative ofh,

�′(z)=h′(g(w(z))) g′(w(z))w′(z)

=−�
2
B
[
1 + Bg(w(z))

]−� �(z) g′(w(z)) 2

1 − z2

=−�B
1

1 + z

g′(w(z))[
1 + Bg(w(z))

]� �(z)

1 − z
.

We let z → 1 from within the unit disk. Then

�(z)

1 − z
→ −�′(1),

which is non-zero. Hence,

g′(w(z))[
1 + Bg(w(z))

]� → 2

�B
as z → 1, z ∈ �.

It is not difficult to see that(Rez)/(1 + Bz) → B−1 as Rez → ∞ with z ∈ P�.
Substitutingz = g(w) in this limit yields

Reg(w)

1 + Bg(w)
→ 1

B
as Rew → ∞ with w ∈ S.

Since the unrestricted limit asz → 1 within the unit disk corresponds to the unrestricted
limit as Rew → ∞ within the stripS, it follows from the previous two estimates that

g′(w)
[Reg(w)]� → 2

�B
B� = 2A

�
as Rew → ∞, w ∈ S,

which is (4.23).
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4.2.3. Asymptotic form of the differential operator
Armed with the asymptotics for Img(w) in Lemma4 and those forg′(w) in Propo-

sition 4, we are now ready to derive the asymptotics for the differential operator

�k(w)
|g′(w)|2 − 2(n − 2)

Im
[
kw(w) / g

′(w)
]

Im [g(w)]
, (4.25)

which acts onC2-functions defined in the stripS and arises in Lemma3. We keep in
mind that, for a real-valued functionk(w) = k(u + iv),

kv(w) = −2 Im
(
kw(w)

)
.

First we compute, using Proposition4,

−2 Im

[
kw(w)

g′(w)

]
=−2 Im

[
kw(w)[

1/� + o(1)
]
	
(
g(u)

)
]

=−2
�

	
(
g(u)

) Im
[
kw(w)

(
1 + o(1)

)]
=−2

�

	
(
g(u)

) [−1

2
kv(w) + Im

[
o(1)kw(w)

]]

=−2
�

	
(
g(u)

) [−1

2
kv(w) + o(1)kv(w)

]

= �

	
(
g(u)

) kv(w)[1 + o(1)
]
.

Using Lemma4 to estimate the imaginary part ofg(w), we find that

−2
Im

[
kw(w) / g

′(w)
]

Im [g(w)]
= �

	
(
g(u)

) kv(w)[1 + o(1)]
[1/� + o(1)]	(g(u)) v

= �2

	2(g(u))
kv(w)

v

[
1 + o(1)

]
.

Similarly, and again using Proposition4,

1

|g′(w)|2 = �2

	2(g(u))
[
1 + o(1)

]
.

In summary, the differential operator in (4.25) becomes

�2

	2(g(u))
[[

1 + o(1)
]
�k(w) + (n − 2)

[
1 + o(1)

]kv(w)
v

]
. (4.26)

Summary to date: The work in the foregoing sections has been leading up to the
following. Suppose thatH is harmonic in the domainPn

� in Rn and thatH(x, Y )
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is rotationally symmetric about thex-axis. Suppose that the functionh in the planar
domain P+

� is constructed fromH according toh(x + iy) = H(x, Y ), with |Y | = y.
Then, by Lemma2, h satisfies

�h(z) + (n − 2)
hy(z)

y
= 0, z ∈ P+

� .

From h(z) we construct the functionk(w) in the stripS+ according to

k(w) = h
(
g(w)

)
, w ∈ S+,

whereg is a symmetric conformal mapping of the stripS onto the parabola-shaped do-
main P�. The partial differential equation satisfied byk is given in the next proposition,
which follows directly from (4.26) and Lemma3.

Proposition 5. There is a function�(w) in the strip S, with the properties that
(i) �(w) → 0 as u → ∞, uniformly in v,

(ii) whenever the functionk(w) arises from a rotationally symmetric harmonic function
H in Pn

�, as described above, then k satisfies the partial differential equation

�k(w) + [n + �(w) − 2]kv(w)
v

= 0, w ∈ S+. (4.27)

Remark. If the harmonic functionH with which we began had lived in a cylinder
in Rn (of radius �/2 and with axis along thex-axis), then the associated functionh
would have the standard stripS as its domain of definition. The mappingg would be
the identity mapping and sok would simply satisfy�k(w)+(n−2)kv(w)/v = 0 in this
case. Proposition5 may be thought of as asserting thatk behaves asymptotically as if
it derived from a cylindrical domain. One may also interpret Proposition5 as asserting
that while the differential operator�h(z)+ (n− 2)hy(z)/y is not conformally invariant
in the same way that the Laplacian is, it is asymptotically conformally invariant. The
conformal invariance of the Laplacian was used in (3.4) in Section 3.2, and Proposition
5 is essentially an extension of this to higher dimensions.

4.2.4. Sub solutions and a maximum principle
We need to determine the boundary conditions satisfied by a functionk that is

constructed, as in Proposition5, from the rotationally symmetric harmonic function

H(x, Y ) = P(x,Y ){|B�� | > t},

in the regionPn
� in Rn. ThusH is the harmonic measure of the exterior of the ball

of radius t w.r.t. Pn
�. The gradient ofH w.r.t. Y vanishes whenx = 0 because of

the rotational symmetry. This translates into the boundary conditionhy(x,0) = 0 for
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the associated functionh in the planar domainP+
� and, in turn, into the boundary

condition kv(u,0) = 0 for the functionk(u, v) in the stripS+:

kv(u) = 0, −∞ < u < ∞. (4.28)

The boundary values ofH lead to the condition on the boundary ofP+
� that

h(x,Ax�) = 1 if |(x,Ax�)| > t and h(x,Ax�) = 0 if |(x,Ax�)| < t . Under the
conformal mappingf of the domainP� onto the stripS, this becomes the following
boundary condition fork:

k(u + i�/2) = 0, −∞ < u < s; (4.29)

k(u + i�/2) = 1, s < u < ∞. (4.30)

Here s depends ont, as specified in (3.6). We note that the point(1,0) in Pn
� corre-

sponds to the point 0 on the boundary of the stripS+.
Let us therefore suppose thatk is a solution of the p.d.e.

�k(w) + [n + �(w) − 2]kv(w)
v

= 0, w ∈ S+, (4.31)

where �(w) → 0 as u → ∞, uniformly in v, with the boundary conditions (4.28)–
(4.30). We will show in the next section thatk(0) decays at a slower exponential rate
as s → ∞ than solutions of

�k(w) + [n + � − 2]kv(w)
v

= 0, w ∈ S+, (4.32)

when � is positive, the boundary conditions being the same as those satisfied byk.
This comparison between the solutions of (4.31) and (4.32) has a heuristic interpre-

tation that may be helpful to keep in mind. In the limiting case� = 0, the differential
equation (4.32) becomes�k(w) + (n − 2)kv(w)/v = 0, the solutions of which, with
the above boundary conditions, may be thought of as deriving from harmonic measure
in a cylinder of radius�/2 in Rn. The solutions of (4.32) may then be thought of
as corresponding to harmonic measure in such a cylinder in a slightly higher ‘dimen-
sion’ when � is positive. Thus, our results will show that the distribution function of
the exit position of Brownian motion from a parabola-shaped region inRn decays like
the distribution function of the exit position from a cylinder inRn, but with a time
change that is given explicitly by (3.6).

It is natural to consider solutions of (4.32) in the half strip

S+
s = S+ ∩ {u < s} = {w = u + iv : u < s and 0< v < �/2}.
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In fact, by symmetry, a solution of the p.d.e. (4.32) in S+ that satisfies the boundary
conditions (4.28)–(4.30) will take the constant value 1/2 on the vertical cross cut
u = s. This boundary condition can be satisfied by using separation of variables to
solve (4.32) in the half stripS+

s and then taking a series expansion. The rate of decay
of the solution at 0 ass becomes large is then determined by the first term in this
Bessel series. This is the term that is therefore of interest to us. For eachm, we write
Jm(v) for the Bessel function of orderm, we write jm for its smallest positive zero
and we set

Ĵm(v) = v−mJm(v).

The first term in the Bessel series for a solution of (4.32) in S+
s is (a constant times)

��(w) = e2jm(u−s)/�Ĵm

(
2jm
�

v

)
, wherem = 1

2
(n + � − 3). (4.33)

Since Ĵm satisfies the differential equation (see[16, Section 17.22], for example),

Ĵ ′′
m(v) + [2m + 1] Ĵ

′
m(v)

v
+ Ĵm(v) = 0

��(w) satisfies the p.d.e. (4.32) in S+
s , as well as the boundary conditions (4.28) and

(4.29). On the vertical side of the half stripS+
s , its values are simplyĴm

(
2jmv/�

)
.

One needs to take the entire series to have a solution which equals 1/2 on the vertical
cross cutu = s.

We write L for the operator

L[f ] = �f + [
n + �(w) − 2

]fv
v
. (4.34)

Then k(w) is a solution ofL[k] = 0 in the half stripS+
s with the boundary conditions

(4.28) and (4.29). In order to comparek to solutions of (4.32), we construct sub
solutions forL in S+

s , and then use a maximum principle. Of course, all our estimates
need to be uniform ins. We show how to obtain the sub solutions that we need in the
next lemma.

Lemma 5. We suppose that, for a fixed positive�, the numberu� is chosen so large
that 2|�(w)| < � for u > u�. We suppose that a functionk� is defined in the rect-
angleRs = S+

s ∩ {u > u�} and satisfies the partial differential equation(4.32) there.
Suppose further that�k�/�v is negative inRs . Then, L[k�]�0 in Rs . In particular,
L[��]�0.
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Proof. With k� as in the statement of the lemma,

L[k�]=�k� + [
n + �(w) − 2

]1

v

�k�
�v

=�k� + [
n + � − 2

]1

v

�k�
�v

+ [
�(w) − �

]1

v

�k�
�v

=[�(w) − �
]1

v

�k�
�v

.

Since 2|�(w)| < � for u > u�, it follows that �(w)− � has the same sign as−� in the
rectangleRs . Since�k�/�v is negative inRs , we deduce thatL[k�] has the same sign
as � in Rs .

The statement about�� now follows from the facts that�� satisfies (4.32) and that
Ĵm is decreasing on the interval(0, jm). �

The other ingredient we need is an appropriate form of the maximum principle.
While the version presented here is most probably not new, we have been unable to
find it in the literature. Consequently, we outline the proof for completeness.

Lemma 6. If f is a sub solution ofL which isC2 in the closure of the rectangleRs

(the second derivatives are continuous up to the boundary) and which is non positive
on the top, left and right parts of the boundary, thenf (u, v)�0 for any (u, v) ∈ Rs .

Proof. Let Zt = (Xt , Yt ) be the diffusion associated with the operatorL. ThenYt > 0
almost surely for allt. This is true in the case�(w) = 0, sinceZt is then a Bessel
process and as such it never hits zero (see[12, Chapter XI]). If � is not zero, we still
assume that−���(x, y)�� in the rectangle. It follows by a stochastic comparison
theorem argument (as in the classical Ikeda–Watanabe theorem,[13]) that Yt > 0
almost surely for allt > 0. Now, let� be the first time thatZt hits the boundary of the
rectangle with the diffusion starting atz0 = (x0, y0) ∈ Rs . This time is finite almost
surely. Of course, by the above,Z� belongs only to the three sides of the rectangle
with probability 1. Applying Itô’s lemma,

f (Zt min �) − f (z0) = Mt + At (4.35)

whereMt is a martingale andAt = ∫ t
0 L[f ](Zs)ds. Sincef is a sub solution ofL, we

haveL[f ]�0. Taking expectations of both sides of (4.35), we conclude that

f (z0)�Ez0 (f (Zt min �)) .

We now let t → ∞. Since f is bounded in the closure of the rectangle,

f (z0)�Ez0(f (Z�)),

which provesf (z0)�0. �
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4.2.5. Rate of exponential decay
We now have all the ingredients necessary to prove the following estimate ofk.

Proposition 6. Suppose that the function�(w), w ∈ S, satisfies�(w) → 0 as u → ∞,
uniformly in v. Suppose thatk(w) is the solution of(4.27) in S+ with the boundary
conditions(4.28)–(4.30), so thatk derives from harmonic measure inPn

� as in Section
4.2.3.Then, given � positive,

k(0)� exp

[
−
(

2jm
�

+ �
)
s

]

for all sufficiently larges, wherem = (n − 3)/2.

Proof. The functionk is bounded by 1 on the vertical sideu = s of Rs (since it is
but a certain harmonic measure in the parabola-shaped regionPn

� in disguise). More
precisely,k(s, v) → 1/2 ass → ∞, uniformly for v in (0,�/2). In fact, the harmonic
measure of�Pn

�∩{x > t} w.r.t. the parabola-shaped regionPn
� approaches 1/2 uniformly

on the cross section{(t, Y ) : Y ∈ Rn−1, |Y | < At�}. Hence, for all sufficiently
large s,

1

4
�k(s, v)�1 for 0< v < �/2. (4.36)

Given � positive, we setm1 = 1
2(n + � − 3) and choose� positive, but so small

that jm1 �jm + ��/4. This is possible since the first positive zero of the Bessel func-
tion depends continuously on the order of the Bessel function and increases with
this order. We suppose thatu� is as in Lemma5 and thats > u�. Direct compar-
ison of k with the function �� of (4.33) does not quite work, as�� is positive on
the sideu = u� of Rs while we do not knowk there. We consider the positive
function

k�(w) =
[
e2jm1(u−s)/� − e2jm1[(u�−s)−(u−u�)]/�

]
Ĵm1

(
2jm1

�
v

)
, w ∈ Rs,

in which the second exponential term compensates for the positive values of�� on
the sideu = u�. This function is a solution of (4.32) in Rs and, moreover,�k�/�v
is negative inRs since Ĵm1 is decreasing on(0, jm1). It follows from Lemma5 that
L[k�]�0. The functionk� satisfies zero Dirichlet boundary conditions on the sides
u = u� and v = �/2 of Rs , and zero Neumann condition on the sidev = 0. On the
right side of the rectangle its boundary values satisfy

k�(s + iv) =
[

1 − e4jm1(u�−s)
]
Ĵm1

(
2jm1v/�

)
� Ĵm1

(
2jm1v/�

)
� Ĵm1(0)
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for all sufficiently larges. Together with (4.36), we see that we can choose a fixed
small, but positive,b1 such that

b1k�(s + iv)�b1Ĵm1(0)�1/4�k(s + iv)

for all sufficiently larges. Thus,b1k�−k�0 on the three sidesu = u�, u = s, v = �/2
of Rs , while b1k� − k satisfies a zero Neumann condition on the sidev = 0. Since
L[b1k� − k] = b1L[k�]�0 in Rs , we conclude from the Maximum Principle, Lemma
6, that b1k� − k�0 in Rs . This leads to a lower bound fork(u� + 1) since

k(u� + 1)�b1k�(u� + 1)
=2b1e

2jm1u�/� sinh(2jm1/�)e
−2jm1s/�Ĵm1(0)

�b2e
−2jm1s/�.

By the Harnack inequality,k(0)�b3k(u� + 1), for a constant that does not depend on
s. Settingb4 = b3b2,

k(0)�b3k(u� + 1)�b4 exp

[
−2jm

�
s − �

2
s

]
.

As b4 does not depend ons, we haveb4�e−�s/2 for all sufficiently larges. The proof
of Proposition 6 is complete.�

4.2.6. Lower bound for harmonic measure
The point 0 in the stripS corresponds to the point(1,0) in the regionPn

� under the
transformations in Section 4.2.1. Thus,

P(1,0)
{|B�� | > t

} = k(0),

where the functionk satisfies the partial differential equation (4.27) of Proposition
5 and the boundary conditions (4.28)–(4.30) with s = s(t) as given by (3.6). Thus
Proposition 6 leads directly to the following lower bound for harmonic measure in the
parabola-shaped regionPn

�.

Proposition 7. Suppose that� is positive. There exists a constantC2 depending on�,
n, A and � such that, for t > C2,

P(1,0)
{|B�� | > t

}
� exp

[
−

√
�1

A(1 − �)
[1 + �] t1−�

]
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4.3. Concluding remarks

The distributional inequalities in Propositions 3 and 7 lead immediately to limit
(1.12), and to Theorem 3 by following the steps in the proof of Theorem 2 in
Section 3.3.

It is natural to hope that the machinery constructed in Section 4.2 would lead to an
upper bound for harmonic measure, and not only to a lower bound, thus rendering the
use of the Carleman method and Section 4.1 unnecessary. In fact, there is no mention
in Section 4.2 of bounds of any kind until Section 4.2.5. However, we have been unable
to prove a counterpart for Proposition 6 involving an upper bound fork(0).
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