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A (v, k, t) covering design, or covering, is a family of k-subsets, called blocks,
chosen from a v-set, such that each t-subset is contained in at least one of the
blocks. The number of blocks is the covering's size, and the minimum size of such
a covering is denoted by C(v, k, t). It is easy to see that a covering must contain
at least ( v

t)�(
k
t ) blocks, and in 1985 Ro� dl [5] proved a long-standing conjecture of

Erdo� s and Hanani [3] that for fixed k and t, coverings of size ( v
t )�(

k
t )(1+o(1)) exist

(as v � �). An earlier paper by the first three authors [4] gave new methods for
constructing good coverings, and gave tables of upper bounds on C(v, k, t) for
small v, k, and t. The present paper shows that two of those constructions are
asymptotically optimal: For fixed k and t, the size of the coverings constructed
matches Ro� dl's bound. The paper also makes the o(1) error bound explicit, and
gives some evidence for a much stronger bound. � 1996 Academic Press, Inc.

1. Introduction

Let the covering number C(v, k, t) denote the smallest number of k-sub-
sets of a v-set that cover all t-subsets. The best general lower bound on
C(v, k, t), due to Scho� nheim [7], comes from the following inequality:

Theorem 1. C(v, k, t)�W(v�k) C(v&1, k&1, t&1)X .
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Iterating this gives the Scho� nheim bound

C(v, k, t)��
v
k �

v&1
k&1

} } } �
v&t+1
k&t+1| } } } || .

The best general upper bound on C(v, k, t) is due to Ro� dl [5]: The density
of a covering is the average number of blocks containing a t-set. The mini-
mum density is C(v, k, t)( k

t )�(
v
t), and is obviously at least 1. Ro� dl showed

that for k and t fixed there exist coverings with density 1+o(1) as v gets
large.

This paper shows that two of our constructions [4] match the bound of
Ro� dl's theorem. One of the constructions gives an easier proof of the
theorem than Ro� dl's original proof [5]. The other construction provides a
computationally efficient version of Ro� dl's theorem. In Section 2 we review
the two constructions. In Section 3 we show that the first one, which uses
a greedy algorithm, is asymptotically optimal. And in Section 4 we show
that the second one, which constructs an induced covering from a finite-
geometry covering, is also asymptotically optimal, and that it is computa-
tionally efficient as well.

Theorem 3 (in Section 3) is a special case of a main result of the fourth
author [8]; Ro� dl and Thoma [6] gave another proof of that result. We
present the proof here to keep the paper self-contained and to provide an
explicit error bound for use in Section 4.

2. Covering Constructions

Here we summarize two methods for constructing asymptotically
optimal coverings. Our previous paper [4] gives more details, as well as
computational results for small v, k, and t.

2.1. Greedy Coverings

Algorithm 1. Random Greedy (v, k, t) Covering

1. Fix a random ordering of the k-sets of a v-set.

2. Choose the earliest k-set containing no already-covered t-set.

3. Repeat Step 2 until no k-set can be chosen.

4. Cover the remaining t-sets with one k-set each.

This greedy algorithm is a little different from our previous one. That
algorithm uses one of four possible orderings in Step 1: lexicographic,
colex, Gray code, or random. Also, it chooses in Step 2 the earliest k-set
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that contains the most still-uncovered t-sets; thus it continues with Steps 2
and 3 instead of cutting out to Step 4. That algorithm produces slightly
better coverings in practice, but is harder to analyze than the algorithm
here.

2.2. Induced Finite Geometry Coverings

The k-flats of an affine or projective geometry form a covering. For this
paper, we restrict our attention to the hyperplanes of an affine geometry,
which form an optimal covering:

Theorem 2. For a prime power q and integer t>1, the hyperplanes of
the affine geometry AG(t, q) are a (qt, qt&1, t) covering of size

C(qt, qt&1, t)=
qt+1&q

q&1
.

The density of such a covering is

qt+1&q
q&1 \qt&1

t +<\qt

t +=1+O(q&1).

Algorithm 2. Induced (v, k, t) Covering

1. Choose a prime p with pt>v, and an integer l, as specified later.

2. Precompute (l $, k, t) coverings, for l<l $<9l, using Algorithm 1.

3. Choose v points of the AG(t, p) at random.

4. For each hyperplane, find its intersection with the v points; let l $
be the size of the intersection.

(a) If l<l $<9l, add the blocks of the (l $, k, t) covering on those
points to the (v, k, t) covering.

(b) If l $�l or l $�9l, trivially add ( l $
t ) blocks to the (v, k, t)

covering.

The new blocks each have k elements, and together they cover all t-sets,
so they form a (v, k, t) covering. The blocks of the affine covering and their
intersection with the v-set may quickly be computed by solving linear equa-
tions over GF(q).

This construction, too, differs slightly from our earlier version [4]. In
that paper, we construct (l $, k, t) coverings for all l $<v by whatever con-
struction gives the best results, and then always use Step 4a. That results
in better coverings in practice, but is harder to analyze.
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3. Greedy Coverings and Ro� dl's Bound

The usual proofs of Ro� dl's theorem (Ro� dl [5] or Alon and Spencer [1])
seem nonconstructive; however, they are actually analyses of a covering
algorithm, similar to the greedy algorithm with random ordering, that con-
structs a covering in two steps. First, it chooses a sequence of Ro� dl nibbles,
each of which is a small, random collection of k-sets that do not contain
any t-set contained in any previous Ro� dl nibble. Second, when there is no
longer room for a nibble, it chooses a separate k-set for each remaining
uncovered t-set.

The main difference between the k-sets chosen in the sequence of Ro� dl
nibbles and those chosen by the greedy algorithm in Steps 2 and 3 is that
two k-sets in the same nibble may intersect each other in a t-set. This
difference seems small, hence it is natural to conjecture that the greedy
algorithm, too, meets Ro� dl's bound. It does:

Theorem 3. For fixed k and t, the greedy algorithm with random
ordering produces a covering with expected density 1+o(1) as v � �.

The proof of Theorem 3 will proceed in several steps, along the lines of
Spencer [8].

3.1. The Continuous Model

Model the execution of the greedy algorithm as a Poisson process; that
is, a given k-set is chosen between time { and {+$ with probability
asymptotic to $�( v&t

k&t) as $ � 0, and the probabilities of any two k-sets
being chosen in any two time intervals are independent. The process begins
at time 0 and lasts forever. If a k-set chosen by the process at some time {
contains any previously covered t-set, it fails at time {, otherwise it succeeds
and its t-sets are considered covered after time {. The k-set thus fails at any
time subsequent to { it is chosen.

The ordering determined by the first-choosings of the k-sets in this
process corresponds to the random ordering of the k-sets in the greedy
algorithm, and the k-sets that have succeeded at time infinity correspond to
the k-sets chosen by the greedy algorithm just prior to Step 4. Thus to
prove the theorem it suffices to show that, at time infinity of the Poisson
process, a given t-set is covered with probability asymptotic to 1. (Since if
the proportion of t-sets covered at that point of the greedy algorithm goes
to 1 then so does the density of the eventual covering.) We actually find the
limit of this probability as v � � for every fixed {, and we show that this
limit goes to 1 as { � �.

Fix a time { and a t-set T. Based on the Poisson process above, we either
define the dependence tree of ({, T ) or else declare it to be aborted. The tree
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is rooted, and has t-vertices and k-vertices��({$, T $) with |T $|=t and
({$, K$) with |K$|=k. We begin at time { with the tree consisting only of
its t-vertex root ({, T), and we examine k-sets chosen by the process,
proceeding backwards in time from { toward 0.

There are three cases for a k-set K* chosen at some time {*: if K* does
not contain any T $ already in the tree then do nothing; if it contains two
or more such T $ then declare the tree to be aborted; if (the important case)
it contains precisely one such T $ then add ({*, K*) as a child of ({$, T $)
and for every t-set T*/K* except T $ add ({*, T*) as a child of ({*, K*).
We will say that T $ has given birth to K* at time {*, and K* immediately
gives birth to all the T* nodes.

The tree, if defined, is finite; a child of a t-vertex is a k-vertex and vice
versa. We label each vertex as follows. A t-vertex is covered if at least one
of its children is accepted, else it is uncovered; a k-vertex is accepted if none
of its children is covered, else it is rejected. Thus a childless (leaf) t-vertex
is uncovered, and a unique labeling is defined inductively from the leaves up.

Example. Take t=2; k=3; v=1010; {=4.3; T=[1, 2]. Suppose
[1, 2, 3] is chosen at time 3.7 and [2, 3, 4] at time 1.2 and these are the
only relevant chosen sets. The dependence tree of (4.3, [1, 2]) is shown in
Figure 1. Two of the leaves (1.2, [2, 4]) and (1.2, [3, 4]) are uncovered,
thus their parent (1.2, [2, 3, 4]) is accepted, so (3.7, [2, 3]) is covered
and (3.7, [1, 2, 3]) is rejected and finally (4.3, [1, 2]) is uncovered. In
the corresponding Poisson process, [2, 3, 4] succeeds at time 1.2, thus
[1, 2, 3] fails at time 3.7, so no 3-set covering [1, 2] is accepted by time
4.3. This example is consistent with the claim below.

Fig. 1. Example of a dependence tree.
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Claim. Suppose the dependence tree of ({, T ) for some { and T is
defined. Then ({, T ) is covered if and only if T is covered by the Poisson
process.

Proof of claim. If T is covered in the Poisson process by a k-set K, then
K succeeded at some time {*. Thus no k-set containing any of the t-sets
covered by K was chosen before {*, and ({*, K) is accepted, hence ({, T )
is covered. Conversely, suppose that ({, T ) is covered in its dependence
tree. Then it has an accepted child. It might have several accepted children,
but since the tree is defined, the k-sets of these children can intersect only
in T. The earliest such k-set succeeded, so it covers T. That establishes the
claim.

3.2. The Idealized Tree

The process above is still difficult to analyze directly, so we will define
for a fixed { an idealized process and an idealized tree, analogous to the
Poisson process and dependence tree. We will show that the idealized trees
behave like the dependence trees, and then find the probability that the
root of an idealized tree is covered.

The idealized tree has t-vertices and k-vertices, and consists at time { just
of a t-vertex root. Again, time goes backwards, from { to 0. In the interval
from {1 to {1&$ each t-vertex has probability asymptotic to $ of giving
birth to a k-vertex, which then instantly gives birth to D=( k

t )&1 new
t-vertices. In a length $ interval each t-vertex has on average $D
grandchildren (also t-vertices), so the expected number of t-vertices goes up
by a factor of 1+$D. The expected number of t-vertices at time 0 is thus
(1+$D){�$=e{D(1+O($)) as $ � 0, hence with probability 1 the idealized
tree is finite. The notions of covered, uncovered, accepted, and rejected are
defined on it as before.

We claim that the limit distribution of the dependence tree of ({, T ) as
v � � is the distribution for the idealized tree. Consider a fixed idealized
tree at time {, and look at the dependence tree of ({, T ) from time {1 to
{1&$ given that at {1 it matches the idealized tree. The number of t-sets
in the tree is O(e{D), with probability asymptotic to 1, so the number of
k-sets that contain more than one t-set already in the tree is O(e2{Dvk&t&1),
and thus the probability of aborting (i.e., that some such k-set is chosen)
is O($e2{Dv&1). Therefore the total chance of aborting throughout the
length { interval is O({e2{Dv&1)=o(1) for {�(ln v)�(2+=)D, for any fixed
=>0.

For each T $ in the tree, the number of k-sets that contain T $ and no
other t-set in the tree is asymptotically ( v&t

k&t), so T $ has a (k-vertex) child
with probability asymptotic to $, as in the idealized version. Hence the two
distributions are the same, as claimed.
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Now we compute the probability P({) that the root of an idealized tree
at time { is uncovered. In the interval from { to {&$ of an idealized pro-
cess, a t-vertex either does or does not give birth, with probabilities
asymptotic to $ and 1&$ as $ � 0. In the former case, a k-vertex child is
accepted with probability P({&$)D, because each t-vertex grandchild has
independent probability P({&$) of being uncovered at time {&$, and thus
is rejected with probability 1&P({&$)D. Hence

P({)t$(1&P({&$)D) P({&$)+(1&$) P({&$).

So P({&$)&P({)t$P({&$)D+1, which leads to the differential equation
P({)$=&P({)D+1 with the initial condition P(0)=1. The solution is

P({)=({D+1)&1�D.

In particular lim{ � �P({)=0, so the root of an idealized tree at time
infinity is covered with probability asymptotic to 1. Therefore, at time
infinity of the Poisson process, a given t-set is covered with probability
asymptotic to 1, and Theorem 3 is established.

3.3. Estimating the Error Term

The proof above shows that the greedy covering is optimal, but we have
not estimated the error term. We conclude this section by giving a weak
estimate, along with some evidence for a stronger conjecture.

Consider the state of the algorithm at time {=O(log v). First, notice that
at this time of the Poisson process, the expected number of k-sets chosen
is O(vt log v). Thus in the greedy algorithm it suffices to examine just
O(vt log v) random k-sets before cutting out to Step 4. It takes only
O(vt log v) expected time and O(vt) space to generate those k-sets
(Brassard and Kannan [2]), so this early abort strategy dramatically
speeds up the algorithm, at negligible cost to the density of the covering:

Corollary 1. The early-abort greedy algorithm produces a covering
with expected density 1+o(1) in time O(vt log v).

Second, at time {=(ln v)�(2+=)D for any fixed =>0, the probability
of a t-set being uncovered is P({)=O((log v)&1�D). Thus:

Corollary 2. The expected density of a covering produced by the
random greedy algorithm is 1+O((log v)&1�D), where D=( k

t )&1.

This bound is pessimistic. Figure 2 gives log-log plots for several (k, t)
pairs, based on 1000 random greedy coverings per (v, k, t) triple for v�50,
and 106&k such coverings for v>50. The apparent asymptotic linearity of
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Fig. 2. Average density $ of random greedy coverings.

the plots suggests that the expected density of a random greedy covering
for k and t fixed is 1+3(v&:), for some positive :=:(k, t) as v � �.

To estimate : for each of the curves in Figure 2, we used the tails of the
curves (100�v�150) for a least-squares fit to a straight line. That gave us
rough estimates for the slopes &:(k, t), as indicated in Table I. Those
values suggest:

Conjecture. The expected density of a covering produced by the random
greedy algorithm is 1+3(v&(k&t)�D), where D=( k

t )&1.

TABLE I

Estimates for :(k, t)

k t : (k&t)�D

3 2 0.484 1�2
4 2 0.407 2�5
4 3 0.332 1�3
5 2 0.344 1�3
5 3 0.241 2�9
5 4 0.256 1�4
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The following argument, though far from a proof, supports the conjecture.

Heuristic argument. Let :=(k&t)�D. The conjecture is equivalent to
the statement that there are 3(vt&:) expected t-sets not covered by a
random greedy packing. (The first three steps of Algorithm 1 constitute the
random greedy packing algorithm.) So consider the t-uniform hypergraph
whose edges are the t-sets still uncovered during the packing algorithm.
Assume that this hypergraph looks like a random hypergraph with the
same number of edges, and assume that the packing algorithm has
managed to leave just c1vt&:(1+o(1)) edges in the hypergraph, for some
positive constant c1 . We show that a positive fraction of these edges��that
is, 3(vt&:) in all��are contained in no k-clique, and hence can never be
covered by the packing; this provides the 0(v&:) lower bound of the con-
jecture's error term.

Under the stated assumptions, the probability p that a given edge exists
in the hypergraph is asymptotic to c1 t!v&:=c2v&:, and the probability, for
a given edge in the hypergraph and a given k-set containing that edge, that
the other ( k

t )&1=D edges on those k vertices also exist is pD. Therefore
the expected number of k-cliques that contain the given edge is asymptotic
to pDvk&t�(k&t)!=c3v&:Dvk&t=c3 , a positive constant. But this number
of k-cliques is Poisson distributed, so is zero with probability asymptotic to
e&c 3, also a positive constant, thus a positive fraction of the edges are con-
tained in no k-clique, as claimed. The matching O(v&:) upper bound
follows from similar reasoning, and that completes the argument. It,
together with our empirical data, makes the conjecture quite compelling.

4. Induced Coverings and Ro� dl's Bound

While the greedy algorithm produces good coverings, it works in time
and space 3(vk). These can be reduced to time O(vt log v) and space O(vt)
using the early abort strategy of Corollary 1, but for larger values of v, k,
and t, the induced covering algorithm is more practical, because it is faster.

Theorem 4. For fixed k and t the expected density of an induced
covering is 1+o(1).

Proof. For Step 1 of Algorithm 2 choose l= 1
9v1&1�t, and choose the

prime p such that

4l�
v&t

p
�8l.
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Such a prime exists by Bertrand's Postulate, which states that there is
always a prime between n and 2n. These choices ensure that pt>v, and that
the affine ( pt, pt&1, t) covering by hyperplanes has density 1+O(v&1�t).

By Corollary 2 the precomputed (l $, k, t) greedy coverings of Step 2 have
expected density 1+O((log v)&1�D). So by running O(log l) trials per pre-
computed covering, we can ensure, with probability greater than, for exam-
ple, 1&1�l, that all precomputed coverings have density 1+O((log v)&1�D).

Now select the v-set V as a random subset of the points in the affine
covering, and consider a fixed t-set T of V. There are, on average,
1+O(v&1�t) hyperplanes containing T ; let P be one of them. The size of
the intersection of V and P&T has a hypergeometric distribution from
0 to v&t with mean M=(v&t)( pt&1&t)�( pt&t). For p�5 we have
(v&t)�2p<M<(v&t)�p, thus 2l<M<8l by our choice of p. So the prob-
ability that the size of the intersection is at most l or at least 9l is O(e&cl)
for some c>0.

This intersection, together with T itself, is replaced in the induced
covering by an (l $, k, t) covering. If l<l $<9l, then this covering has den-
sity 1+O((log v)&1�D). If l $ is outside this range, the covering has density
( k

t ), but the probability of this event is O(e&cl), so the total expected
number of k-sets containing T coming from a given hyperplane containing
T is 1+O((log v)&1�D), and the total expected number coming from all
such hyperplanes is (1+O((log v)&1�D))(1+O(v&1�t))=1+O((log v)&1�D).
Thus the expected density of the induced covering is 1+O((log v)&1�D). K

Corollary 3. The induced covering algorithm runs in time and space
O(vt).

Proof. By Corollary 1, precomputation takes time O(lt+1 log2 l ), which
is O(vt) by our choice of l. The number of hyperplanes is O( pt)=O(v) by
our choice of p, so the time to compute the affine geometry is
O(v2)=O(vt). For each hyperplane, the work to find the intersection and
convert it into an (l $, k, t) covering will vary, but the time per block is
constant. Hence the total time and space of the algorithm is dominated by
the size of the (v, k, t) covering, which is also O(vt). K

Corollary 4. The induced covering has expected density
1+O((log v)&1�D).

Furthermore, if, as we conjecture, the greedy covering has expected den-
sity 1+O(v&(k&t)�D), then the expected density of the induced covering
improves to 1+O(v&(k&t)�D)+O(v&1�t)=1+O(v&(k&t)�D).

The best way to use the induced covering algorithm in practice is to first
find or make a large table of good coverings with small parameters using
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many different methods, and then use these for the (l $, k, t) coverings. We
used that strategy to produce the induced coverings of our earlier paper
[4].
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