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Pro–B-Type Natriuretic Peptide1–108
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Plasma Determinants and Detection of Left Ventricular Dysfunction
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Objectives The purpose of this study was to investigate circulating pro–B-type natriuretic peptide (proBNP1–108) in the gen-
eral community and evaluate its ability to detect left ventricular (LV) dysfunction.

Background The current concept for cardiac endocrine function is that, in response to cardiac stress, the heart secretes
B-type natriuretic peptide (BNP1–32) and amino-terminal pro–B-type natriuretic peptide (NT-proBNP1–76) after
intracardiac cleavage of their molecular precursor, proBNP1–108. We hypothesized that proBNP1–108 circulates in
normal human subjects and that it is a useful biomarker for LV dysfunction.

Methods Our population-based study included a cohort of 1,939 adults (age �45 years) from Olmsted County, Minnesota,
with 672 participants defined as healthy. Subjects underwent in-depth clinical characterization, detailed echocar-
diography, and measurement of proBNP1–108. Independent factors associated with proBNP1–108 and test charac-
teristics for the detection of LV dysfunction were determined.

Results ProBNP1–108 in normal humans was strongly influenced by sex, age, heart rate, and body mass index. The median
concentration was 20 ng/l with a mean proBNP1–108 to NT-proBNP1–76 ratio of 0.366, which decreased with heart
failure stage. ProBNP1–108 was a sensitive (78.8%) and specific (86.1%) biomarker for detecting LV systolic dysfunc-
tion, which was comparable to BNP1–32, but less than NT-proBNP1–76, in several subsets of the population.

Conclusions ProBNP1–108 circulates in the majority of healthy humans in the general population and is a sensitive and spe-
cific biomarker for the detection of systolic dysfunction. The proBNP1–108 to NT-proBNP1–76 ratio may provide
insights into altered proBNP1–108 processing during heart failure progression. Thus, this highly specific assay for
proBNP1–108 provides important new insights into the biology of the BNP system. (J Am Coll Cardiol 2011;57:
1386–95) © 2011 by the American College of Cardiology Foundation
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Pro–B-type natriuretic peptide1–108 (proBNP1–108) is the
108-amino acid prohormone that is cleaved, by either corin
or furin, to the 32-amino acid, biologically active brain
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natriuretic peptide (BNP1–32), also known as B-type natri-
retic peptide, and to the 76-amino acid, biologically
nactive N-terminal pro–B-type natriuretic peptide (NT-
roBNP1–76) (1). Brain natriuretic peptide augments so-

dium excretion, lowers blood pressure, suppresses the renin-
angiotensin-aldosterone system, inhibits cardiomyocyte
hypertrophy, induces angiogenesis, and retards activation of

See page 1396

cardiac fibroblasts (2), whereas its prohormone has signifi-
cantly reduced function (3). The elevation of BNP1–32 and

T-proBNP1–76 immunoreactivity in heart failure (HF) sec-
ondary to myocardial stretch, despite the lack of BNP func-
tionality (the “BNP paradox”), has resulted in their widespread

use as diagnostic and prognostic biomarkers (4–6).
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Most recently, studies with mass spectroscopy and West-
ern blot analysis have identified that the major immunore-
active form of BNP in plasma of patients with HF is
proBNP1–108, rather than biologically active BNP1–32, which
an in part explain the BNP paradox (3,7–10). Although
everal studies have documented elevated proBNP1–108 levels

in patients with HF (11–13), to date there are no studies
that have investigated circulating proBNP1–108 levels in a
arge sample of normal, disease-free humans to define key
ndependent determinants of plasma levels of this important
rohormone. Furthermore, no studies have analyzed the
otential of unprocessed BNP forms, such as proBNP1–108,

to improve detection of left ventricular (LV) dysfunction.
Our central hypothesis was that proBNP1–108 circulates

in normal human subjects without cardiac or renal disease,
is increased in the presence of LV dysfunction, is modulated
by age and sex, and serves as a biomarker for the detection
of LV dysfunction. This hypothesis is based on previous
studies by Costello-Boerrigter et al. (14), Redfield et al.
(15), and Wang et al. (16) that demonstrated that these
factors are independently correlated with BNP1–32 and

T-proBNP1–76. To test this hypothesis, we utilized a
novel assay for plasma proBNP1–108 developed by Giuliani
t al. (12) that is sensitive and specific for detecting
roBNP1–108 and does not cross-react with mature BNP1–32

or NT-proBNP1–76. Our study cohort was a National
nstitutes of Health-supported study, the PAVD (Preva-
ence of Asymptomatic Ventricular Dysfunction) study,
hich consisted of a community-based cohort of 1,939
ersons, of whom 672 were considered clinically normal, in
lmsted County, Minnesota (17).

ethods

he Mayo institutional review board approved this study.
tudy population. Medical history and detailed 2-
imensional and color Doppler echocardiography were done
n participating residents (n � 1,939; age �45 years) in

Olmsted County, Minnesota, and were previously reported
as the PAVD study (15). Subjects were divided by cardio-
vascular risk factors into a reference group of stage 0 HF
subjects (no risk factors) who were normal healthy humans,
and a group of subjects with stages A to C HF as defined by
the 2009 HF guidelines (18,19). Persons with stage D HF
were previously excluded from the study (5,15,17,20).
Assays and sample processing. Blood samples were drawn
into ethylenediaminetetraacetic acid-treated tubes and
chilled to 4°C, then centrifuged at 2,500 rpm for 10 min and
stored at �80°C. Plasma proBNP1–108 was measured with
the Bio-Rad assay (Bio-Rad, Hercules, California) on an
automated analyzer not yet commercially available. This
immunoassay was developed by Giuliani et al. (12) to be
specific for proBNP1–108 as it uses antibodies directed
gainst the hinge region that is present only in the intact
roBNP1–108 molecule. The lower limit of detection for
proBNP1–108 is 2 ng/l and the interassay and intra-assay
variabilities for proBNP1–108 are
10.3% and 11.6%, respectively.
Plasma NT-proBNP1–76 was
previously measured using the
Elecsys electrochemilumines-
cence immunoassay on the Elec-
sys 2010 platform (Roche Diag-
nostics, Indianapolis, Indiana),
which is a sandwich assay that at
that time utilized 2 different
polyclonal antibodies, 1 to amino
acids 1–21, and 1 to amino acids
39–50. Samples were previously
frozen and sent to Biosite Diag-
nostics (San Diego, California) for
measurement of plasma BNP1–32
(14,15). The nonextracted 1-ml aliquots of frozen plasma
were batch analyzed with the Biosite fluorescence immuno-
assay. The total within-day coefficient of variation (9.4% to
15.2%) and total coefficient of variation (10.1% to 16.2%)
increased from low to high BNP.
Influence of clinical characteristics. Influences on proBNP1–108
were assessed with univariate and multivariable analysis for
age, sex, body mass index (BMI), heart rate, left atrial (LA)
volume index, LV mass index, LV end-diastolic volume
dimension index, systolic and diastolic blood pressure,
serum creatinine, and calculated glomerular filtration rate
(by Cockcroft-Gault formula). All index values were calcu-
lated by dividing by each subject’s body surface area.
Statistical methods. Descriptive statistics were used to
describe the cohort of subjects: median and interquartile
range for continuous data, and count and percentage for
categorical data. Patient and clinical characteristic were
compared between subjects in the various stages of HF
using rank-order tests such as Spearman correlation and the
Kruskal-Wallis method. To derive normal values for
proBNP1–108, the 5th, 50th, and 95th percentile values from
the normal subgroup of subjects were used. Multivariable
linear least-squares regression was then used to detect
independent associations between proBNP1–108 levels and
linical cardiovascular risk factors with 2-way interactions
onsidered. Because the variability of proBNP1–108 in-

creased with its mean level, a natural log transformation of
the proBNP1–108 value �1 (since 0 is in its domain, but
natural log of 0 is undefined) was applied to satisfy regres-
sion modeling assumptions. Similar transformations were
applied to the BNP1–32 and NT-proBNP1–76 biomarkers.

To optimize the number of subjects retained in the multi-
variable regression, all continuous parameters �90% observed
were each categorized, including a category for unknown
values. Using stepwise selection with entry and retention
criteria of p � 0.10 and p � 0.05, respectively, a final model
was derived for the total population and separately for the stage
0 HF (normal subjects) and stages A to C HF subgroups.
Bootstrap resampling was used to evaluate the robustness of

Abbreviations
and Acronyms

AUC � area under the
curve

BMI � body mass index

BNP � B-type natriuretic
peptide

EF � ejection fraction

HF � heart failure

LA � left atrial

LV � left ventricular

NT-proBNP � N-terminal
pro–B-type natriuretic
peptide
the clinical and echocardiographic pa
rameters that were statis-
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tically significantly associated with natriuretic peptide levels.
The frequency of each variable retained in the model using the
pre-specified model selection criteria was computed as a
percentage of all 1,000 bootstrap samples. Our modeling
strategy required that the factors included in the final model
each be retained in at least 60% of the bootstrap samples, thus
reducing the chance of type 1 error (21,22).

The diagnostic utility for detecting LV dysfunction as
either ejection fraction (EF) �40%, or EF �50%, and/or
moderate to severe diastolic dysfunction was assessed for
BNP1–32, NT-proBNP1–76, and proBNP1–108. Diagnostic
est characteristics of proBNP1–108 were evaluated using
eceiver-operating characteristic curves to determine areas
nder the curve (AUCs), which were then compared by the
eLong method (23) to those for BNP1–32 and NT-

proBNP1–76 in the total and age- and sex-stratified popu-
ations (14). The optimal discriminatory value for each assay
as estimated by the point along the receiver-operating

haracteristic curve that provided the minimum Euclidean
istance between the curve and a perfect assay with 100%
ensitivity and specificity. The positive likelihood ratio
�LR � sensitivity/[1 � specificity]) and negative likeli-
ood ratio (�LR � [1 � sensitivity]/specificity) were
alculated for the optimal discriminatory values. Additional
est characteristics estimated include the percentage of
atients screened who would need echocardiography sec-
ndary to an abnormal proBNP1–108 test result (% need
cho), the percent of echocardiograms that then would be
egative (% �echo), and the percent of those with a reduced
F who would be missed by the proBNP1–108 cutoff (%
issed), and the odds ratio of having EF �40% or 50%

nd/or diastolic dysfunction for a high proBNP1–108 result.
Statistical significance was accepted at p � 0.05 for all
analyses.

Results

ProBNP1–108 immunoreactivity in the general community.
Plasma proBNP1–108 values were determined in all 1,939
subjects of the community-based cohort, of whom 672 were
defined as the normal reference group (i.e., stage 0 HF/
healthy normals) because they had no cardiovascular or renal
disease by clinical examination and normal LV structure and
function by echocardiography. The rest of the cohort was
considered clinically abnormal, and further classified as
having stage A, B, or C HF. Table 1 provides characteristics
for the total study population and for subgroups according
to stage of HF. Figure 1 displays proBNP1–108, NT-

roBNP1–76, and BNP1–32 distributions by HF stage. As
llustrated, proBNP1–108 was detected at the lowest levels in

the reference group. By univariate assessment, proBNP1–108
levels increased significantly with advancing stage of HF, as
did BNP1–32 and NT-proBNP1–76 levels. As shown in
Figure 2, although higher in female subjects at younger
ages, plasma proBNP1–108 levels increased with age more
arkedly in male subjects in the total cohort and in subjects
ith HF. In normal subjects, however, higher levels of
lasma proBNP1–108 were associated with increasing age as

well as with female sex across the entire age range.
We sought to investigate whether these age and sex

trends for proBNP1–108 held after adjustment for potential
confounders. Table 2 reports the clinical characteristics that
ignificantly influence proBNP1–108 levels within the total

population, the reference group (stage 0 HF/healthy nor-
mals), and the abnormal group (stages A to C HF). In the
multivariable analysis of the reference group, sex, age, heart
rate, and BMI were independently associated with
proBNP1–108 (p � 0.001 for age and sex, p � 0.006 for

eart rate, p � 0.004 for BMI 25 to 30 kg/m2, and p �
0.021 for BMI �30 kg/m2). Echocardiographic measure-

ents were not associated with proBNP1–108 in normal
subjects, but LV mass index and LV dimension index were
significantly associated with proBNP1–108 in the total pop-
ulation and in subjects with stages A, B, or C HF. Table 3
displays age- and sex-specific ranges for normal values of
proBNP1–108, noting that there are few subjects older than
75 years in the normal subgroup. Table 4 illustrates the
proBNP1–108/NT-proBNP1–76 ratio by stage of HF. The

roBNP1–108/NT-proBNP1–76 ratio decreased significantly
from stage 0 to stages A to C.
Detection of LV dysfunction. In this community-based
sample, 35 (2%) subjects had an EF �40%, 114 (6%) had an
EF �50%, and 135 (8%) had moderate or severe diastolic
dysfunction. For detection of LV systolic dysfunction, the
AUCs for BNP1–32, NT-proBNP1–76, and proBNP1–108 are
each summarized in Online Table 1 for the total population
and for subsets stratified by age and sex. In general, the
performance for detecting LV systolic dysfunction was
comparable between proBNP1–108 and BNP1–32, although

roBNP1–108 was more diagnostic of an EF �50% in the
younger stratum of the total and male populations. Despite
this, NT-proBNP1–76 was superior to proBNP1–108 for detect-
ing EF �40% and �50% except in the younger subjects.

cross the various population groups, each of these natriuretic
eptides was consistently more diagnostic of LV dysfunction
ased on an EF cutoff of 40% as opposed to 50%.

Using a single group-specific cutpoint to optimize sensi-
ivity and specificity in detecting reduced EF, the test
haracteristics of the proBNP1–108 assay were summarized

for the total population and for age- and sex-stratified
subgroups of the population (Online Table 2). For optimal
discrimination of EF �40% or �40% in the total popula-
tion, the cutpoint proBNP1–108 value was 65 ng/l, reflecting
a sensitivity of 78.8% and a specificity of 86.1%. The best
performance of this assay was in female and younger
subgroups.

Similar cutpoint analyses were performed for detecting
diastolic dysfunction and overall LV dysfunction, a compos-
ite of either systolic (EF �40%) or diastolic (moderate or
severe based on echocardiography) dysfunction. For dis-
criminating subjects with and without diastolic dysfunction,

the AUCs were on average comparable between NT-
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proBNP1–76 and BNP1–32, and significantly greater than
hose of proBNP1–108 (Table 5). The optimal cutpoint for

detection of diastolic dysfunction by proBNP1–108 was 25.1
ng/l, with a resulting sensitivity of 66.1% and a specificity of
63.1% in the total population. Finally, the optimal
proBNP1–108 cutpoint for detection of overall LV dysfunc-
tion as a composite of either systolic or diastolic dysfunction
was 39 ng/l, with a sensitivity of 56.8% and a specificity of
74.5% in the total population (AUCs not displayed for
composite LV dysfunction).

Given their strong influence on proBNP1–108 levels, age-
nd sex-specific cutpoints were obtained for detecting a
educed ejection, with their corresponding test characteris-
ics compared to those based on 1 unadjusted proBNP1–108

cutpoint (Online Tables 3 and 4). In the total population,
the use of age- and sex-adjusted (vs. unadjusted) proBNP1–

108 cutpoints increased the relative risk estimate of having an
F �40% by a factor of 2 (95% confidence interval of odds

Characteristics of the Study Population by Stage of HFTable 1 Characteristics of the Study Population by Stage of HF

Variable*
Total Population

(n � 1,939)
Stage 0 HF
(n � 672)

Females 1,003 (52%) 347 (52%)

Age, yrs 61.8 (53.6–70.5) 54.5 (50.6–61

Age categories, yrs

45–54 560 (29%) 346 (51%)

55–64 595 (31%) 222 (33%)

65–74 500 (26%) 89 (13%)

75� 284 (15%) 15 (2%)

BMI, kg/m2 27.7 (25.0–31.2) 27.1 (24.5–29

Obesity, BMI �30 kg/m2 623 (32%) 162 (24%)

ProBNP1–108, ng/l 20.0 (9.0–42.0) 14.0 (7.0–26.0

NT-proBNP1–76, ng/l 69.9 (28.3–147.5) 39.4 (18.0–82

BNP1–32, ng/l 24.0 (9.5–56.3) 15.3 (6.4–29.8

Calculated GFR 75.0 (60.4–92.6) 81.2 (66.8–97

Estrogen† 460/961 (48%) 160/325 (49

Diabetes mellitus 145 (7%) 0 (0%)

Past or current atrial fibrillation 94 (5%) 0 (0%)

Coronary artery disease 233 (12%) 0 (0%)

Past heart failure diagnosis 49 (3%) 0 (0%)

Hypertension 543 (28%) 0 (0%)

Systolic blood pressure, mm Hg 131.0 (116.0–146.0) 122.0 (111.0–1

Diastolic blood pressure, mm Hg 73.0 (67.0–80.0) 72.0 (66.0–78

LV dimension index 2.61 (2.40–2.82) 2.59 (2.39–2.7

LV mass index 93.7 (81.9–108.8) 88.2 (77.2–97

LA volume index 23.3 (19.4–28.1) 20.9 (18.0–24

Beta-blocker 284 (16%) 0 (0%)

ACEI/ARB 204 (11%) 0 (0%)

Diuretic 330 (18%) 0 (0%)

EF �40% 35 (2%) 0 (0%)

EF �50% 114 (6%) 0 (0%)

Moderate or severe DD 135/1,709 (8%) 0/672 (0%

Values are n (%) or median (interquartile range). *The top block of variables were each tested for
a Cochran-Armitage trend test as appropriate for continuous and categorical variables (each had a h
he lower block of variables was used in defining the subgroups of HF, so no statistical tests were

ACEI � angiotensin-converting enzyme inhibitor; ARB � angiotensin-receptor blocker; BMI � bod
lomerular filtration rate; LA � left atrial; LV � left ventricular; NT-proBNP � N terminal pro–B-type na
atio: 23 to 46).
iscussion

roBNP1–108 is a circulating prohormone. The major
nding in our study is that proBNP1–108 circulates in the
ajority of normal, disease-free humans, which changes our

nderstanding of the secretion of proBNP1–108 and its
rocessing to mature, biologically active BNP1–32. Although

prior studies have shown that proBNP1–108 exists in circu-
ation, our translational study is the first to our knowledge to
onfirm at the population level the relative predominance of
his prohormone compared to multiple immunoreactive BNP
orms that circulate and which are nonspecifically detected by
onventional BNP1–32 and NT-proBNP1–76 assays

(7,9,10,24).
To date, studies have focused on circulating proBNP1–108

in humans with advanced HF (8,10–13). With BNP1–32

reported to be at low levels or undetectable in human HF
despite high immunoreactivity using conventional assays,
the concept has been proposed that the presence of

Stage A HF
(n � 788)

Stage B HF
(n � 415)

Stage C HF
(n � 64)

391 (50%) 245 (59%) 20 (31%)

64.9 (57.2–72.2) 67.9 (59.3–76.4) 73.8 (64.4–82.0)

146 (19%) 62 (15%) 6 (9%)

252 (32%) 110 (27%) 11 (17%)

264 (34%) 128 (31%) 19 (30%)

126 (16%) 115 (28%) 28 (44%)

28.1 (25.0–31.7) 28.1 (25.3–31.9) 28.0 (25.7–31.9)

287 (36%) 152 (37%) 22 (34%)

20.0 (9.0–41.0) 37.0 (16.0–79.0) 150.0 (61.5–391.0)

72.1 (31.3–140.7) 138.5 (61.0–332.2) 777.8 (234.2–1271.0)

24.4 (9.7–53.9) 50.5 (20.3–106.2) 138.5 (80.4–313.6)

72.9 (58.9–91.3) 69.3 (54.6–90.5) 62.4 (44.8–78.5)

194/381 (51%) 101/235 (43%) 5/20 (25%)

85 (11%) 47 (11%) 13 (20%)

34 (4%) 31 (7%) 29 (45%)

113 (14%) 78 (19%) 42 (66%)

0 (0%) 0 (0%) 49 (77%)

340 (43%) 168 (40%) 35 (55%)

135.0 (121.0–149.0) 138.0 (123.0–155.0) 134.0 (119.0–154.0)

75.0 (68.0–82.0) 74.0 (67.0–80.0) 70.0 (66.0–82.5)

2.55 (2.36–2.74) 2.77 (2.54–2.97) 3.04 (2.73–3.29)

92.2 (81.8–104.2) 113.1 (97.7–128.0) 137.2 (116.5–163.3)

22.7 (19.4–26.2) 33.0 (25.2–36.9) 35.8 (29.0–51.0)

162 (22%) 99 (25%) 23 (36%)

115 (15%) 57 (14%) 32 (50%)

193 (26%) 98 (25%) 39 (61%)

0 (0%) 0 (0%) 35 (55%)

0 (0%) 71 (17%) 43 (67%)

52/668 (8%) 63/330 (19%) 20/39 (51%)

ciation with advancing stage of heart failure (HF) using a Spearman correlation rank-order test or
gnificant association [p � 0.001], except for sex [p � 0.796] and female estrogen use [p � 0.047];
cted. †Percent of estrogen use based only on female subgroup.
index; BNP � B-type natriuretic peptide; DD � diastolic dysfunction; EF � ejection fraction; GFR �

peptide; proBNP � pro–B-type natriuretic peptide.
.3)

.8)

)

.0)

)

.0)

%)

34.0)

.0)

7)

.0)

.6)

)

an asso
ighly si
condu
proBNP1–108 in plasma reflects a defect in proBNP1–108
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processing in the heart with spillover of unprocessed and
nonbiologically active proBNP1–108 into the plasma (3,6,9).

ur study changes that paradigm with the use of this newly
eveloped and specific assay for proBNP1–108 that does not

cross-react with NT-proBNP1–76 or BNP1–32. Specifically,
ur data are consistent with the concept of the physiological
elease of proBNP1–108 from the normal heart, implying
eripheral processing to mature BNP1–32 either in plasma

and/or at target organs. Indeed, we have recently docu-
mented the presence of the proBNP1–108 processing con-
vertase corin in normal human plasma and the in vitro
processing of proBNP1–108 to BNP1–32 in normal human
plasma (25) together with a step-up in the proBNP1–108
gradient across the normal human heart (26). With

Figure 2 Plasma ProBNP1–108 Levels by Age, Separated by Sex

Plasma pro–B-type natriuretic peptide1–108 (proBNP1–108) distributions shown
for the total population, stage 0 heart failure subjects, and stages A to C heart

failure subjects.
Figure 1 BNP Levels in the General Population by Stage of HF

Plasma B-type natriuretic peptide1–32 (BNP1–32), N-terminal pro–B-type natri-
uretic peptide1–76 (NT-proBNP1–76), and pro–B-type natriuretic peptide1–108

(proBNP1–108) levels in the total population, the healthy subjects (i.e., car-
diovascular and renal disease-free subjects, stage 0 heart failure [HF]), and
subjects with stages A, B, and C heart failure.
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proBNP1–108 now a circulating hormone, it is logical that
there now is a need for such an assay to better assess direct
secretion of this cardiac hormone from the heart and its
peripheral processing from a biological perspective as well as
to assess its potential diagnostic significance across a wide
spectrum of human cardiovascular disease.

Importantly, we have documented in a large population
both free of HF and in stages A to C what Dries et al. (11)
has labeled the “natriuretic peptide processing efficiency,”
and which has previously been investigated in the PENN
HF study, which was mostly in patients with advanced
systolic HF. Our results show that progressing from stage 0
to stages A to C is associated with increasing processing
efficiency due to either decreased secretion of proBNP1–108
or an increase in peripheral processing to NT-proBNP1–76
as demonstrated by the decrease in the proBNP1–108/NT-

Age- and Sex-Specific Median Values and Rangein Normal SubjectsTable 3 Age- and Sex-Specific Median Value
in Normal Subjects

45–54

Women

Median (5th–95th percentiles), ng/l 17 (3–48)

n 168

Men

Median (5th–95th percentiles), ng/l 7 (1–40)

n 178

Parameters That Significantly Contribute to ProBNP1–108* in MultivTable 2 Parameters That Significantly Contribute to ProBNP1–1

Population Parameters Included in Mo

Total population†

Age‡

Males

Females

BMI �25 kg/m2 (reference)

25–30 kg/m2

�30 kg/m2

LVMI high (�134 males, �110 f

LVDI high (�2.6)

Creatinine

Normal subgroup (stage 0 HF) Age‡

Sex, female

Heart rate

BMI �25 kg/m2 (reference)

25–30 kg/m2

�30 kg/m2

Abnormal subgroup (stages A–C HF) Age‡

Sex, female

BMI �25 kg/m2 (reference)

25–30 kg/m2

�30 kg/m2

LVMI high (�134 males, �110 f

LVDI high (�2.6)

*Dependent variable in all linear regression models above was log-transformed proBNP value�1.
fit as categorical with categories abnormal/high (effect shown), normal (reference level), and unk

Abbreviations as in Table 1.
ProBNP � pro–B-type natriuretic peptide.
roBNP1–76 ratio. It appears that NT-proBNP1–76 is in-
creasing faster than proBNP1–108 in stages A to C. We
speculate as one moves into stage D, secretion outpaces
processing and efficiency decreases. Because of our popula-
tion, we are unable to prove whether HF worsens processing
efficiency or if decreasing processing efficiency pre-dates
advanced HF, as we had no stage D subjects. To show this,
an important future use of the proBNP1–108 assay, using
tep-up studies in subjects with varying degrees of HF and
t different time points, will be needed to determine exactly
hat proportion of BNP forms the heart secretes in phys-

ological and pathophysiological states, and where and by
hat mechanism precisely extracardiac processing occurs.
e speculate that local processing of proBNP1–108 may be

n efficacious way of promoting renal function without
ausing systemic actions such as hypotension.

Plasma ProBNP1–108d Ranges for Plasma ProBNP1–108

Age, yrs

55–64 65–74 >75

21 (3–81) 23 (4–128) 37 (5–56)

117 49 13

12 (2–44) 16 (2–53) 25 (8–42)

105 40 2

le Analysisn Multivariable Analysis

Regression Coefficient SE p Value

0.431 0.035 �0.001

0.308 0.032 �0.001

— — —

�0.193 0.060 0.001

�0.184 0.067 0.006

) 0.203 0.085 0.017

0.151 0.059 0.010

0.297 0.129 0.021

0.250 0.046 �0.001

0.485 0.073 �0.001

�0.010 0.004 0.006

— — —

�0.244 0.085 0.004

�0.227 0.099 0.021

0.406 0.031 �0.001

0.162 0.063 0.010

— — —

�0.153 0.079 0.054

�0.179 0.085 0.036

) 0.225 0.092 0.014

0.146 0.077 0.059

ft ventricular mass index (LVMI) and left ventricular dimension index (LVDI) covariates, each was
effect not shown). ‡Age, expressed per 10-year change.
s fors an
ariab
08* i

del

emales

emales

†For le
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Association of clinical and echocardiographic parameters
on proBNP1–108 levels. We present the first analysis of the
factors independently associated with circulating proBNP1–108
in subjects without cardiovascular and renal disease and
then compare those factors to those of BNP1–32 and
NT-proBNP1–76 in the same population. To our knowledge,
this is the first study of natriuretic peptides that utilized the
internal validation technique of bootstrap resampling to ensure
the robustness of the multivariable modeling. We found that
age and sex were the principal determinants of proBNP1–108
levels, with higher levels associated with increasing age and
female sex, but we also observed that this association increased
at a higher rate with age in males in the total population.
Despite significant associations, the effects of age and sex on
proBNP1–108 in our study were not as strong as those on
NT-proBNP1–76, suggesting a difference between the effects of
ge and sex on cardiac proBNP1–108 production and down-

stream processing and renal clearance (13,14,27,28). These
important findings underscore the need for considering age
and sex when developing ranges for normals; they also empha-
size that production and processing are distinct processes with
unique determining characteristics. Of relevance is the recent
report by Ichiki et al. (25) that corin levels in the plasma are
also determined by sex, with males possessing higher levels
than females.

Although the mechanisms by which age contributes to an
increase in proBNP1–108 levels are not clearly understood,
we demonstrate that the aging heart produces more
proBNP1–108, even with normal myocardial function and
structure in the general population. Expression of the BNP
gene has been shown to be up-regulated with aging (29),
but some studies have speculated that circulating BNP1–32
immunoreactivity rises because of impaired renal function

Detection of Moderate or Severe Diastolic Dysfunction by ProBNP1Table 5 Detection of Moderate or Severe Diastolic Dysfunction

Population/Subgroup n ProBNP1–108

Total (n � 1,558) 118 0.71 (0.66, 0.76)

Age �65 yrs (n � 594) 77 0.65 (0.58, 0.72)

Age �65 yrs (n � 964) 41 0.71 (0.63, 0.79)

All men (n � 742) 54 0.77 (0.71, 0.83)

All women (n � 816) 64 0.66 (0.58, 0.74)

Men, age �65 yrs (n � 265) 33 0.71 (0.61, 0.80)

Women, age �65 yrs (n � 329) 44 0.61 (0.50, 0.72)

Men, age �65 yrs (n � 477) 21 0.77 (0.67, 0.87)

Women, age �65 yrs (n � 487) 20 0.66 (0.53, 0.80)

ProBNP1–108 to NT-proBNP1–76 Ratio by Stage oTable 4 ProBNP1–108 to NT-proBNP1–76 Rati

Ratio Stage 0

ProBNP1–108/NT-proBNP1–76 0.366

(0.209, 0.612) (0.1

Median (quartile 1, quartile 3); both tested for an association with ad
Abbreviations as in Table 1.
*Area under the curve (AUC) of biomarker is significantly different from that of proBNP1–108.
CI � confidence interval; other abbreviations as in Table 1.
with aging, including reduced natriuretic peptide receptor
function (30,31). Thus, the increase in proBNP1–108 with
ging may be due to 1 or more mechanisms: increased
ardiac production and release or impaired downstream
rocessing or clearance.
Previous studies have shown a relationship between sex

nd BNP1–32 and NT-proBNP1–76, and some have noted an
ssociation between estrogen use (hormone replacement
herapy) and increased BNP1–32 levels (14,15). We did not
nd an independent association between estrogen use and
roBNP1–108 in our study, whereas a significant association

was found for NT-proBNP1–76 in the Costello-Boerrigter
t al. (14) study, suggesting a differential effect by androgens
nd estrogens on production and processing. Studies of sex
ifferences in natriuretic peptide production and processing
ay lead to better explanation of the predominance of men
ith HF at younger ages than women.
Another important finding in our study was that cardiac

tructure and function parameters, LV mass index and LV
imension index, were independently associated with in-
reased proBNP1–108 in stage A, B, and C HF subgroups,
uggesting that decreasing myocardial function and wors-
ning fibrosis, dilation, and hypertrophy may contribute to
ncreasing proBNP1–108 by an alteration in production or
rocessing capability in persons with cardiovascular and
enal disease.

Previously, NT-proBNP1–76 and BNP1–32 were found to
e independently associated with LA volume index, but in
ur study, proBNP1–108 was not. It was believed that LA

volume index and LV dimension index had effects on the
variability of BNP1–32 because both atrial and ventricular

yocardium are responsible for BNP1–32 production (5,32–34).
Importantly, our results suggest a stronger role for ventric-

NT-proBNP1–76, and BNP1–32roBNP1–108, NT-proBNP1–76, and BNP1–32

AUC (95% CI)
p Value of Overall

DifferenceNT-proBNP1–76 BNP1–32 (Bio-site)

0.77 (0.72, 0.82)* 0.78 (0.73, 0.82)* 0.028

0.73 (0.67, 0.79)* 0.76 (0.70, 0.82)* 0.006

0.73 (0.63, 0.83) 0.72 (0.63, 0.81) 0.871

0.78 (0.71, 0.86) 0.78 (0.72, 0.85) 0.929

0.76 (0.70, 0.83)* 0.79 (0.72, 0.85)* 0.008

0.76 (0.67, 0.86) 0.78 (0.70, 0.87) 0.228

0.70 (0.61, 0.80) 0.75 (0.67, 0.83)* 0.022

0.72 (0.57, 0.86) 0.71 (0.59, 0.84) 0.644

0.76 (0.64, 0.89) 0.76 (0.62, 0.89) 0.345

rt FailureStage of Heart Failure

A Stage B Stage C p Value

0.271 0.301 �0.001

.504) (0.147, 0.444) (0.140, 0.416)

stage of heart failure using a Spearman correlation rank-order test.
–108,by P
f Heao by

Stage

0.300

78, 0
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ular myocardium than atrial myocardium in secretion of
unprocessed proBNP1–108 in diseased subjects compared

ith normal subjects, on the basis of a lack of significant
ssociation between LV echocardiographic characteristics and
roBNP1–108 in subjects with stage 0 HF (healthy normals)

and the presence of significant associations between LV di-
mension index and LV mass index and proBNP1–108 in
ubjects with cardiovascular disease. Atrial myocardium may
lay a part in secretion of mature (BNP1–32) or may be involved
n processing.

We did not find a statistically significant correlation
etween glomerular filtration rate and proBNP1–108 levels in

our multivariable analysis of the normal population. This
finding is similar to previous studies with NT-proBNP1–76
in our study population (14). However, several groups have
reported that BNP1–32 and NT-proBNP1–76 levels are
inversely correlated with renal function in abnormal pa-
tients, such as in those with varying degrees of HF or renal
disease (35–37). It was further shown that cardiovascular
disease was required for BNP1–32 elevation in patients on

ialysis for end-stage renal disease (38). Given that our
tudy had so few subjects with the severity of disease that
as examined in those studies, it was unlikely that we would
ave found an association. Another consideration is that
roBNP1–108, NT-proBNP1–76, and BNP1–32 may all have
ifferent mechanisms for renal clearance (39–41), which
ould explain the variability in the associations among these
forms of BNP and renal function, especially in the stages
to C HF group.
Finally, we note that the decrease in proBNP1–108 with

besity may support the overall concept that decreased
irculating BNP1–32 levels in obesity may indeed be second-

ary to reduced BNP1–32 production by the heart in this
linical setting (42). This observation supports the need for
etter understanding the impact of obesity on the heart,
hich may influence BNP production, and, here, use of
roBNP1–108 measurements may have an important role

beyond HF alone.
In our analysis of clinical factors, because of lack of data,

we were unable to correlate proBNP1–108 secretion with
unctional status as measured by New York Heart Associ-
tion functional class of HF.

etection of LV dysfunction. We are the first to report
hat the Bio-Rad proBNP1–108 assay detected LV systolic

dysfunction in the general community with high sensitivity
and specificity and was comparable to BNP1–32 in discrim-
inative performance (14). We also show the efficacy of an
unprocessed natriuretic peptide for detection of diastolic
dysfunction in a large population. Importantly, because of a
lack of cross-reactivity, we are able to emphasize that this
novel assay is a true reflection of physiological and patho-
logical secretion of proBNP1–108, and, therefore, of the
endocrine function of the heart. A specific proBNP1–108
assay will be of tremendous value for future studies evalu-
ating the peripheral processing of proBNP1–108. Regarding

its use as a novel biomarker for HF, it is also important to m
state that proBNP1–108 is a more robust biomarker for the
detection of systolic versus diastolic dysfunction, and that
our findings will have to be replicated in other populations
and in other scenarios.

Based on statistically significant differences in their
AUCs, the NT-proBNP1–76 assay performed better than
the proBNP1–108 and BNP1–32 assays in several subgroups
or the detection of reduced EF, whereas the proBNP1–108

assay was comparable with BNP1–32 in most others. These
esults illustrate that all of these assays hold some diagnostic
alue for the detection of LV systolic dysfunction in the
eneral population, but individual differences in their bio-
ogic meaning must be taken into account in the clinical
etting. We caution against over-interpretation of their
ifferences because of the small number of subjects in some
f the subgroups, especially females. In fact, the lack of a
arge number of diseased persons in the general population
s an important limitation of the cohort study design.

Our findings illustrate the heterogeneity of factors in
ardiac disease that may influence proBNP1–108 secretion

and processing. We noted that age- and sex-adjusted
cutpoints generally improved test characteristics for detect-
ing EF �40%. Furthermore, we noted that processed forms
of BNP, including BNP1–32 and NT-proBNP1–76 were for
the most part better at detection of systolic HF, implying
that processes that adversely affect ventricular filling may
have a differential effect on processing compared to secre-
tion. The heterogeneity is also evident from the fact that
when proBNP1–108 is used to detect composite, namely,
systolic and/or diastolic dysfunction, the sensitivity and
specificity both decrease relative to systolic dysfunction
alone.

A limitation of our study was that we had no information
regarding right ventricular function. Therefore, we had no
way to assess the diagnostic accuracy of proBNP1–108 for
ight ventricular dysfunction.
hysiologic, pathophysiologic, and diagnostic significance
f proBNP1–108. In addition to its value as a novel diag-
ostic tool for HF, the Bio-Rad proBNP1–108 assay reveals

both the physiologic and pathophysiologic importance of
proBNP1–108 in human plasma. It confirms and extends

revious studies by Lam et al. (24) that utilized an assay for
roBNP3–108, which reported its presence in the general

population. With the proBNP1–108 assay, which has been
ocumented not to cross-react to BNP1–32 or NTproBNP1–76

we can now be confident that the heart releases this prohor-
mone of BNP in normal humans (12). Indeed, the presence of
proBNP1–108 in most normal humans in this large population
study and the recent report that proBNP1–108 can be processed
to mature BNP1–32 in human plasma clearly change our
understanding of the heart as an endocrine organ and the BNP
system (25). These observations strongly suggest that in part
proBNP1–108 is an important carrier protein, which delivers
he mature peptide to the plasma or tissues for local
rocessing and conversion. From a biological perspective,

easurement of circulating proBNP1–108 may be important
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from the perspective of fully understanding the intactness of
proBNP1–108 secretion from the heart and its processing in
the circulation.

In HF, the BNP paradox is the disparity between
diagnostically elevated BNP1–32 immunoreactivity in pa-
tients with HF and a lack of BNP-derived vasodilatory and
cardiorenal protective effects. We can now state that the
elevation of proBNP1–108, which has reduced biologic ac-
ivity and cross-reacts with conventional BNP assays, in
atients with HF can account for at least some of this
henomenon (3,8). Yet, in stages A, B, and C HF, there
ay be increased processing efficiency based upon the

ecrease in the proBNP1–108/NT-proBNP1–76 ratio. Per-
haps the increased secretion of proBNP1–108 in stages A to

, and its efficient conversion, represents successful com-
ensation to maintain a state of compensated HF. We
ould predict that this efficiency is impaired in advanced
F, as supported by studies by Dries et al. (11). The exact

eason for this possible proBNP1–108 processing deficiency is
nknown, but there may be an enzymatic deficiency,
hether due to saturation or constitutive dysfunction, that
nderlies the progression of HF. Such a deficiency may also
epresent a therapeutic target and opportunity. Use of either
orin or a corin-like drug could have potential as a therapy
o delay disease progression and warrants investigation,
specially in experimental models of progressive HF. In
ddition to aberrant upstream processing, there may be
ownstream receptor insensitivity or decreased renal clear-
nce, as other authors have speculated. These may be similar
athophysiological mechanisms to those that cause decreas-
ng BNP1–32 activation and processing in early stages of

hypertension as well (43). It should also be noted, however,
as indicated in the preceding text, that decreased overall
proBNP1–108 processing may serve to achieve high local
levels of BNP1–32 activity in areas with convertase activity
while at the same time avoiding systemic BNP1–32 activity,
which could result, for example, in hypotension.

Conclusions

ProBNP1–108 circulates in the majority of normal persons in
he general population, supporting the conclusion that
roBNP1–108 is normally released from the heart and may

serve a role as a carrier protein to deliver the biologically
active peptide into the circulation or to target tissues for
processing. Importantly, age and sex were the major factors
influencing proBNP1–108 in the general population. In
addition, proBNP1–108 was a sensitive and specific bio-
marker for the detection of systolic dysfunction and less so
for diastolic dysfunction equal to that of BNP1–32, but in
eneral, less so than NT-proBNP1–76. Importantly, the
atio of proBNP1–108/NT-proBNP1–76 provides insight into
ossible changes in proBNP1–108 processing during the
rogression of HF. Thus, this highly specific assay for

roBNP1–108 provides important new insights into the
iology of the BNP system as well as potential diagnostic
pplications for this important new technology.
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please see the online verison of this article.
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