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Abstract 

In automotive industry, market demands shorter life cycles and individualized products. For manual assembly, this trend leads to more frequent 
planning of an ever increasing number of process variants. In order to ensure planning quality, virtual verification of manual production is 
crucial for efficient process optimization. However, virtual verification is not established in practice because available simulation tools require 
prohibitive manual modeling effort for human motions of acceptable quality. For automating the modeling process, data driven motion 
synthesis approaches are promising candidates that –however– require high quality input data for acceptable synthesis results. Therefore, 
objective motion capture data quality measures for data driven human motion synthesis are sought.  
This work proposes and tests a principal component analysis (PCA) and a Shannon entropy based quality measure. Both measures evaluate 
post-processed data and thus consider motion capture hardware in combination with a post-processing tool chain.  
The measures are tested for selectivity and validity using two low cost and two high cost motion capture systems. They differ in selectivity for 
high and low cost motion capture systems. Both measures correctly predict motion synthesis quality in tests with treadmill walking. Therefore, 
they can be employed for testing if a motion capture system is suitable for data driven motion synthesis that relies on PCA for input dimension 
reduction. Further research on robustness of the measures against motion variation is proposed. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 
2015. 

 Keywords: Digital production planning; Digital human simulation; Motion capture; Quality measure 

1. Introduction 

In automotive industry, there is an ongoing trend to shorter 
life cycles and individualized products [1]. This market-
driven development to larger product variety (s. [2]) has 
partly led to a reduction in end-assembly automation in high 
cost countries such as Germany [3]. In order to ensure product 
quality and production efficiency, the resulting manual 
assembly processes have to be planned and verified carefully 
with prototypes before the actual start of production. This 
approach –however– contradicts to increased planning 
frequency. 

Furthermore, the increasing number of product variants 
leads to an equivalently increasing demand on prototypes for 
product verification which drives planning cost (c. [4]). 

Therefore, virtualizing verification of manual assembly 
processes is considered a competitive advantage. In physical 
production verification a group of process experts examine 
workers, who conduct the planned tasks in workshops. Issues 
in various fields such as process times, ergonomics and 
process quality are documented and solutions are found, 
discussed and chosen. 

A straight forward approach is to replace workers and 
physical prototypes with a simulation expert and simulations. 
In field tests at Daimler this approach led to an acceptable 
number of identified issues within the process.  

However in the workshop, the simulation model was fixed 
because changes required a day of re-modeling. This 
limitation hindered trying out new ideas and prevented 
solution generation. Only few solutions or process 
improvements were derived in the field tests.  
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Modelling effort with state of technology tools such as 
Delmia V5 Human or Tecnomatix Jack was one week for a 
worker process in order to get simulation quality that is 
acceptable for experts. 

Approaches to reduce modeling and re-modeling time with 
partly automated planning tools such as EMA [5] have been 
conducted. However, field tests at Daimler showed that for a 
majority of processes simulation quality from these tryouts 
was considered too unrealistic by process experts [6]. Another 
approach is to directly record motions within process 
verification workshops [7]. This approach has been 
successfully tested in practice. While motion quality meets 
requirements, verification requires time consuming manual 
recordings for each considered product variant. 

Therefore, automating the modeling process with realistic 
and variant-rich motion synthesis is considered a missing 
enabler for virtual production verification.  

2. Related Work 

2.1. Motion synthesis 

Generation of human motions can be manual, semi-
automated or fully automated. In context of this work, only 
fully automated approaches are taken into account. Wright 
and Jordanov differentiate [8]: 

 
 Analytical approaches that explicitly model state equations of motion 
 Central pattern generators that employ representations of 

the biological innate locomotion e.g. as systems of oscillators 
 Neural networks mainly relying on kinematic or kinetic 

sensory variables as inputs 
 Hidden Markov Model techniques that observe motion 

patterns and then reproduce them  
 Rule based systems that comprise generalized state based 

methods 
 
Furthermore, Gaussian process networks, which are able to 

generate infinite motion variations with a semantically 
interpretable, statistical model, have been presented e.g. by 
Min et al. [9] and Glardon et al. [10].  

Data driven motion synthesis approaches, which rely on 
motion capture data, share the issue that such data is 
structured, i.e. consists of consecutive frames with 
information about multiple joints’ positions. Concatenating 
this data normally reduces efficiency of the before-mentioned 
algorithms because of the curse of dimensionality (c. [11]). 
Besides ignoring parts of the skeleton, dimension reduction 
has been achieved by regarding poses and their transitions in 
two separate models (e.g. in [12]) or by using consecutive 
frames at a time and compressing them into low dimensional 
vectors. In the latter case, a popular approach is to use 
dynamic time warping [13] in order to separate space and 
time variations and the employ principal component analysis 
(PCA) [14] on both results (c. [9,15]). 

PCA derives a linear projection of a high dimensional 
input space into a space of lower dimensionality so that the 

explained variance is maximized. Therefore, its effectiveness 
for dimension reduction is mainly influenced by the way how 
input data is distributed in input space. Obviously, motion 
capture artifacts such as jitter should affect variance. Skeleton 
data representation also can introduce artificial variance e.g. 
from joint angle singularities or meaningless quaternion 
rotations (c. [16]). Therefore, motion capture data quality after 
post-processing is relevant for successfully applying PCA 
based motion synthesis. 

2.2. Motion Capture Systems 

To generate plausible and variant-rich human movement 
via statistical motion synthesis, it is crucial to capture high 
precision quality training data. Therefore, commercial, state 
of the art motion capture systems are evaluated. Motion 
capture systems are commonly employed to digitalize human 
movement in different environments [17]. Rolland et al. 
present a taxonomy of motion capture and tracking systems 
classified by their physical principles of operation [18]:  

 
 Time of flight (e.g. ultrasonic or light) 
 Spatial scan (e.g. optical outside-in cameras) 
 Inertial sensing (e.g. gyroscope and accelerometer) 
 Mechanical linkages 
 Phase-difference sensing 
 Direct-field sensing 
  

In order to create a high quality database and having 
controlled capture situations, optical outside-in tracking 
systems are the prevalent technology for human motion 
capture. Commercial optical tracking systems offer 
markerless and marker-based skeletal reconstruction.  

Comparing commercial, marker based tracking systems, 
the price for the same tracking volume differs by factor of 10, 
while tracking accuracy of single markers are comparable at a 
fraction of a millimeter [19]. However, single marker 
accuracy does not necessarily provide insight into how well 
the resulting skeleton motion is suited for data driven motion 
synthesis approaches. 

2.3. Motion Capture Quality Measures 

Welch and Foxlin [20] formulate their vision of an ideal 
tracking system as tiny, self-contained, complete, accurate, 
immune to occlusions, robust, tenacious, wireless and cheap. 
Motion capture systems can either be compared by their 
hardware/software specifications or by data output quality. 

Vendors of tracking systems typically provide information 
on hardware specifications of their tracking system, but only 
few on recognition and post-processing algorithms or on final 
motion data quality (s. Table 1). However, post processing 
has significant influence on motion data quality. 

Known measures for analyzing motion capture output 
quantify the jerkiness, frequencies, smoothness [21] and 
variance [15] of human movement 
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Table 1. Choice of motion capture system specifications following [20]. 

Performance 
Parameters 

Hardware Parameters Software  
Parameters 

Spatial distortion Data-returned (3DoF, 
6DoF) 

Marker-based / 
markerless tracking 

Spatial jitter Error-proneness (e.g. 
interferences) 

Post-processing 
algorithms 

Stability or creep Resolution Skeletal hierarchy 

Latency Update rate Output Formats 

Latency-jitter Tracking space Real-time operation 

Dynamic error Durability  

 
Biomechanical, anthropometric models such as RAMSIS 

[22] and Dynamicus [23] provide methods for measuring 
plausibility of a captured movement. Such measures allow 
recognizing and suppressing unrealistic movements. 
Additionally, angular velocities and accelerations and 
jerkiness can be used to detect unrealistic movements. 
Frequency domain and differential equation analysis of 
motion capture data can be used for plausibility evaluation as 
well. 

Furthermore, to validate smoothness of motions, Rincon-
Montes compares four algorithms which are called 
“logarithmic dimensionless jerk metric”, “mean arrest period 
ratio”, spectral arc-length metric” and “peak metric”[21]. As 
result of this survey the “spectral arc-length metric” of 
Balasubramanian [24] is found to be the “most convenient 
computable tool”.  

However, it remains unclear how existing quality measures 
on motion capture systems and data can be applied so that 
they deliver information on suitability for data driven motion 
synthesis. Therefore, a quality measure for statistical motion 
synthesis is sought.  

3. Two measures for motion capture data quality with 
focus on data driven human motion synthesis 

3.1. Objectives 

This work suggests and investigates two method-driven 
measures for motion capture data quality. Quality is 
considered with special focus on data driven motion synthesis 
algorithms that are based on principal component analysis. 

3.2. PCA based motion capture quality measure 

For the principal component based motion capture quality 
measure, walking on a treadmill is chosen as a well-
understood example motion. 

The captured motions are cut into the segments right stance 
and left stance. A step starts with the frame, when the foot 
loses contact to the floor plane and stops when the opposite 
foot leaves the floor plane. 

Motions are represented as a skeleton tree structure with 
fixed bone lengths and a set of frames where each frame 
consists of skeleton root node position and orientations of 
each skeleton node. In order to avoid singularities in Euler or 
exponential map representations (c. [15]), quaternions are 

employed for orientations. Since quaternions are over-
specified with 4 values for 3 degrees of freedom, they are 
aligned so that their distances are minimized throughout all 
motions of a joint. 

The cut motions are aligned by letting each motion start at 
a skeleton root node position of (0, 0, 0) and then minimizing 
Euclidian joint position distances in all frames. Right and left 
stances are separated, and dynamic time warping is applied on 
each following the methodology proposed by Kovar and 
Gleicher [25]. The result is the spatial domain, i.e. a set of 
spatial trajectories on a canonical timeline that has the same 
number of frames for each motion and the temporal domain, 
i.e. a time value list per cut motion that maps each frame of 
the canonical timeline to an actual point in time. 

In principle, the next steps can be applied to both the 
spatial and the time domain. However, since preliminary tests 
show no impact of the time domain on PCA results, only the 
spatial result, i.e. the motion in the canonical timeline is 
employed in the proposed measure. 

The spatial data in the canonical timeline is preprocessed 
by first concatenating all frames, then centering the motion 
and finally normalizing variation of each value. Next PCA is 
applied. Instead of using the standard method for deriving an 
appropriate number of principal components, the number is 
fixed to 10. Using ten principle components is an empirical 
value the quality measure is the amount of variance that is 
explained by the resulting 10 principal components for the 
input data, e.g. right stance takes or left stance takes. 

3.3. Shannon entropy as motion capture quality measure 

Shannon entropy [26] is examined as a second measure for 
motion capture quality. Input data are the aligned input 
vectors from section 3.2. For each dimension of each joint, the 
number of bins is derived by multiplying the maximum value 
with 1.5 times the number of recorded steps at and rounding 
up. When following the measuring principle in section 3.4, 
the multiplication factor is 300. Next values for each joint 
dimension are sorted into the bins. The bins are concatenated 
and used as input for calculating the Shannon entropy, which 
acts as motion capture quality measure. 

3.4. Measuring principle 

In order to get reproducible and intersubjective results, the 
measure is accompanied with a measuring principle that 
describes how input data shall be gathered.  

Motions should be uniform, well defined and reproducible. 
Since this is difficult to achieve with humans acting freely, 
walking on a treadmill is chosen, which controls speed and 
eliminates curve walking.  

Treadmill walking is not comparable to normal walking 
but is more uniform (c. [15]). However, motions should show 
variation. Therefore, treadmill velocity is varied: 100 steps are 
recorded at 4 km/h and 100 steps at 6 km/h. 

The recorded data is post-processed into a Biovision 
Hierarchy (BVH) file [27]. In order not to imbalance results 
with retargeting, the native skeleton of the respective motion 
capture system is employed for BVH generation. Manual 
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optimization with post-processing software has to be 
minimized. Acceptable interactions are starting recommended 
actions in post-processing software such as gap filling. 

While the latter restriction can be relaxed when measuring 
different post-processing toolchains, all actions have to be 
documented and stated in order to get comparable results. 

4. Evaluation 

4.1. Tested Motion Capture Systems 

Four different commercial motion capture systems are used 
to capture human gait data. These are all optical outside-in 
tracking systems. Three of them use retro-reflective markers 
suits to reconstruct skeleton structure, whereas one 
(“CapturyStudio”) uses algorithms to non-obtrusively and 
markerlessly reconstruct human movement. Still, the user’s 
clothes have to be trained first. The specifications of each 
motion capture system are given in Table 2. 

Table 2. Motion capture systems used for experimental dataset. 

Properties Vicon  
Bonita 10 

A.R. Tracking 
ARTrack5 

Number of cameras 18 18 

Resolution 1024x1024 px 1280x1024 px 

Framerate 250 Hz 150 Hz 

Tracking procedure Marker-based Marker-based 

Post-processing SW MotionBuilder & 
Blade 

ARTHuman 

Properties OptiTrack  
Flex 13 

Captury Studio 
PointGrey Blackfly 

Number of cameras 18 8 

Resolution 1280x1024 px 808x608 px 

Framerate 120 Hz 50 Hz 

Tracking procedure Marker-based Markerless 

Post-processing SW Motive:Body CapturyStudio 0.1 

 
For each motion capture system, hardware, software and 

post-processing pipeline are set up according to the proposals 
of the vendors or integrators. System output is directly 
converted to the BVH format.  

For Captury motion capture data, CapturyStudio version 
0.1 was used. The current version 1.0 is likely to exhibit 
different results but has not been available for the tests. 

4.2. Design of Experiments 

The PCA efficiency measure and Shannon entropy 
measure will be tested on the following quality criteria: 

 
1. Selectivity  

Given an appropriate measurement principle, the PCA 
efficiency and Shannon entropy measures are able to 
separate distinct results for different systems. 

2. Validity 
The hypothesis for validity is that motion capture 
systems, which yield larger results on the quality 

measure, are better suitable for statistical motion 
synthesis. Therefore, the found rank order of measure 
will be checked against results from motion synthesis. 

 
For each capture system, 100 steps are captured at 4 km/h 

and 100 steps at 6 km/h. The actors are not given any 
instructions on their walking style. Identical actors have 
conducted the recordings on the same treadmill for OptiTrack, 
A.R.T and Captury motion capture systems. Because of 
availability for Vicon system recordings, a different actor and 
treadmill is employed. 

Left and right stances are examined separately in order to 
gain insight into the variation within each system’s recor–
dings. We assume that for the examined measure to be selec–
tive, the variation between left and right stances of one system 
must be smaller than the variation between different systems.  

In order to verify the hypothesis of validity, a motion 
synthesis model for walking is set up following Min. et al [9]. 
Results are visually evaluated and ordered by quality. 

Additionally both quality measures are compared to 
“spectral arc length metric”. The hypothesis is that the novel 
quality measures are better suited for prediction of quality for 
statistical motion synthesis than the compared ones. 

4.3. Results 

Fig. 1 depicts the results of the cumulated explained 
variance for the four motion capture systems. On average, the 
A.R.T. (98.99 %) system yields the highest explained 
variance followed by Vicon (98.69 %), OptiTrack (98.15 %) 
and Captury (94.20 %).  

In order to indicate how well the measure distinguishes a 
system, the measures for left and right stance are calculated 
and divided by the difference between the average measure of 
the system and the average measure of the next system. 
A.R.T., Vicon and Captury show differences in results 
between left and right stances that are more than three times 
smaller than the distance to the closest system. 

 

 

Fig. 1. Results on the cumulated explained variance at ten principle 
components of walking motion capture data of four different mocap systems. 
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Motion synthesis models for left and right stances have 
been constructed for Captury, OptiTrack and Vicon. Motion 
synthesis quality for the Vicon data is comparable to the 
results previously published by Min et al. [9]. 

The resulting motions have been rated naturally looking 
and of high quality. Captury based synthesis has not yielded 
motions of acceptable quality, because limbs movements are 
highly show unrealistic joint angles and jerkiness. OptiTrack 
system based motions are situated in between which means 
jerkiness is occurring less often and joint angles are more 
realistic. Therefore, motion synthesis quality order is Vicon 
better than OptiTrack better than Captury. This result 
corresponds to the PCA efficiency measure. 

 

 

Fig. 2. Results on Shannon entropy for walking data captured with four 
different systems distributed over 300 bins. 

Shannon entropy calculates the uncertainty contained in 
the motion data. Higher values indicate a higher average 
amount of information. Fig. 2 depicts the results for the 
Shannon entropy. Entropy is averaged for left and right stance 
results. On average, the A.R.T. (15.27) system yields the 
lowest entropy followed by Vicon (15.30), OptiTrack (15.73) 
and Captury (16.51). The same system rank order as for the 
PCA efficiency measure can be recognized. However, lower 
Shannon entropy does not always go along with higher PCA 
efficiency. While right stances yield lower PCA efficiency 
than left stances, they show lower Shannon entropy for 
OptiTrack and Captury. 

Vicon, OptiTrack and Captury show differences in results 
between left and right stances that are more than eight times 
smaller than the distance to the closest system. Between 
Captury, OptiTrack and Vicon, Shannon entropy 
differentiates stronger than PCA efficiency measure. Vicon 
and A.R.T. cannot be clearly differentiated.  

5. Discussion 

All tracking systems have been set up according to the 
integrator’s recommendation for optimal results. Therefore, 
the experimental setups vary by their sensing technology, 
camera arrangement and tracking volume, e.g. comparing the 
markerless tracking system Captury to common marker-based 
systems different levels of accuracy could be expected. It is 

not possible to draw conclusions on the resulting data quality 
of the four motion capture systems, just by comparing hard–
ware and software specifications as depicted in section 4.1. 

Due to the usage of a treadmill, a small tracking volume is 
utilized, thus penalizing large area tracking systems at 
constant sensor resolutions. During the capture sessions, two 
different actors with similar proportions have been recorded. 
Additionally, according to Tilmanne [15] treadmill walking 
does not correspond to regular walking style but all 
experimental data has been recorded on a treadmill and 
therefore is uniform. In spite of the mentioned differences in 
experimental setups, motion segments still can be declared as 
comparable raw data. 

Post-processing pipelines of all tracking systems differ in 
skeletal hierarchy and degree of optimization (gap filling and 
low-pass filtering). The PCA efficiency measure penalizes 
skeletal hierarchies with higher joint number due to multiple 
variations in orientations for each joint. The impact of this 
effect has to be further investigated. Retargeting of motion 
data would harmonize skeletal hierarchy but weaken 
discriminative power of PCA efficiency measure and 
therefore reduces selectivity and validity. 

The upper bound of PCA efficiency measure declares 
100% of the cumulated explained variance. As discussed by 
Min et al. [9], 99 percent of original variations is considered 
to be a good value for synthesizing natural movement 
variations whereas Tilmanne and Dutoit presented other 
levels: Leaving 80% variance in PCA the synthesized motion 
is “visually significantly impoverished”. “Taking into account 
90% of cumulated percentage of information[…], gave data 
reconstruction that was very difficult to differentiate from the 
original data by the human eye.”[15] Lower results show less 
cumulated explained variance. Comparing similar motion 
types for different systems, lower values can be interpreted as 
unnecessary variance induced by spatial jitter or jerkiness.  

Lower cumulated explained variance can also be explained 
by intrinsic non-linearities due to the angle-based 
representations in skeletal hierarchy (c. [28]). Tilmanne and 
Dutoit state that “PCA is a strictly linear algorithm and cannot 
be applied on quaternions as they do not form a linear space” 
[15]. The proposed approach addresses this issue by aligning 
quaternions. In the experiments, no effect of different 
quaternion rotations on the measures could be found after 
alignment.  

According to the design of experiments, both efficiency 
measures are positively evaluated on selectivity and validity. 
In comparison to measures such as spectral arc length 
measure or jerkiness, the two proposed measures concentrate 
on the overall effect on the result rather than the reason for 
quality loss. Both measures indicate well how suitable 
resulting motion capture is for the tested data driven motion 
synthesis approach.  

Before choosing an appropriate motion capture system, 
PCA efficiency measure and Shannon entropy can show 
differences in tracking system data quality for data driven 
motion synthesis. Both quality measures can be used without 
extensive manual effort. Therefore, their applicability is 
considered as easy. 
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6. Conclusion & Outlook 

The proposed motion capture data quality measures are 
considered a good indicator regarding validity and selectivity. 
The measures predict suitability of a motion capture system 
and post-processing pipeline for data driven motion synthesis 
approaches that rely on PCA for dimension reduction. They 
are clearly better suited than technical specification by motion 
capture equipment vendors. Besides the measures, a 
measurement principle has been proposed that has proven to 
ease applicability and ensure reproducibility of results. 

Further research is required to investigate how robust the 
proposed PCA efficiency measure and Shannon entropy are - 
especially regarding motion variation. Therefore, additional 
test series with different motions have to be carried out. 
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