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ABSTRACT The calcium release channels/ryanodine receptors (RyRs) usually form two-dimensional regular lattices in the
endoplasmic/sarcoplasmic reticulum membranes. However, the function and modulation of the interaction between neighboring
RyRs are still unknown. Here, with an in vitro aqueous system, we demonstrate that the interaction between RyRs isolated from
skeletal muscle (RyR1s) is modulated by their functional states by using photon correlation spectroscopy and [3H]ryanodine
binding assay. High level of oligomerization is observed for resting closed RyR1s with nanomolar Ca21 in solution. Activation of
RyR1s by micromolar Ca21 or/and millimolar AMP leads to the de-oligomerization of RyR1s. The oligomerization of RyR1s
remains at high level when RyR1s are stabilized at closed state by Mg21. The modulation of RyR1-RyR1 interaction by the
functional state is also observed under near-physiological conditions, suggesting that the interaction between arrayed RyR1s
would be dynamically modulated during excitation-contraction coupling. These findings provide exciting new information to
understand the function and operating mechanism of RyR arrays.

INTRODUCTION

Ryanodine receptors (RyRs) belong to the class of ion chan-

nels mediating Ca21 release from endoplasmic/sarcoplasmic

reticulum (SR), and play a pivotal role in intracellular Ca21

signaling processes, such as excitation-contraction coupling

(E-C coupling), in muscle cells (1–5). Three different iso-

forms of RyRs have been identified in mammals, designated

as skeletal (RyR1), cardiac (RyR2), and brain (RyR3) (1,2).

Intriguingly, RyRs in intact muscle cells are almost exclu-

sively found to be assembled into two-dimensional para-

crystalline arrays in SR membrane (6–9). The interaction

between neighboring RyRs may play an essential role in the

activation and termination of Ca21 release during E-C cou-

pling. The ‘‘coupled gating’’ of RyRs has been observed in

vitro for reconstituted RyRs isolated from both skeletal and

cardiac muscle cells (10,11). Recently, by analysis of the

quantal nature of Ca21 sparks, the elementary Ca21 release

events, Cheng et al. have demonstrated that the gating ki-

netics of multiple RyRs is reshaped by the array-based inter-

action between these channels (12–14). However, the nature

of the underlying RyR-RyR interaction and its modulation

during E-C coupling is still unknown.

Clearly, the investigation of the modulation of RyR-RyR

interaction by functional channel state would provide ex-

citing new information, shedding light on the function and

operating mechanism of RyR arrays. The potential RyR-RyR

interacting site is found on the conserved, clamplike subdo-

mains located at the four corners of the cytoplasmic region of

the channel protein (6–9,15). The profound conformational

changes of these domains accompanying the activation of

RyR (16–18) suggest the potential of the channel’s func-

tional states to modulate the interaction between RyRs.

Examination of RyR-RyR protein interaction in vivo would

be extremely difficult given present techniques. Recently, by

electron microscopy study it has been shown that isolated

RyR1s in aqueous medium could self-assemble into a two-

dimensional array, with similar dimensions to those observed

in native SR membrane (15). Thus, it is plausible to work with

such a simple system to look at the basic features of the inter-

action between RyRs, as modulated by their functional states.

In the present work, the modulation of RyR1-RyR1 inter-

action by their functional states was studied by examining

the oligomerization and de-oligomerization of isolated RyR1s

in aqueous medium accompanying their activation by endog-

enous activators, Ca21 and AMP, and inhibitor Mg21. Photon

correlation spectroscopy (PCS), also referred to dynamic light

scattering, was employed for its high sensitivity to the aggre-

gation state of proteins in solution (19–22). The functional

state of isolated RyR1s in the presence of Ca21/AMP/Mg21

was examined by [3H]ryanodine binding assay. By analysis of

the correlation between RyR1 oligomerization and RyR1

activity, we demonstrate that the interaction between RyR1s

decreases with the activation of the channels. These findings

provide new insight for understanding the modulation and

function of the interaction between arrayed RyRs during E-C

coupling.
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MATERIALS AND METHODS

Isolation and purification of RyR1

The isolation and purification of RyR1 from rabbit skeletal muscle were as

described previously (22–24). All the reagents were purchased from Sigma-

Aldrich (St. Louis, MO). In brief, the heavy sarcoplasmic reticulum (HSR)

vesicles were prepared by sucrose step-gradient centrifugation

(20%:35%:40%, w/w). Then, the HSR vesicles were solubilized with 3-

[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS).

The solubilized proteins were fractionated by centrifugation on a 6–20%

linear sucrose gradient. The protein composition of 1 ml fractions was

monitored by SDS-polyacrylamide gel electrophoresis and identified by

Western blot analysis. The fraction containing highly purified RyR1 was

used for this study. The buffer for storing the isolated RyR1s contained 1 M

KCl, 20 mM K-PIPES, 100 mM EGTA, 1 mM dithiothreitol, 1 mM

diisopropylfuorophosphate, pH 7.1, with 10 mM CHAPS, and 3 mg/ml

phosphatidylcholine (PC), ;17% sucrose. The protein concentration was

;100 mg/ml. The purity of RyR1 was ;90%, as estimated from silver-

stained polyacrylamide gel.

[3H]Ryanodine binding assay

These experiments were carried out according to the method of Pessah et al.

(25). HSR vesicles (0.25 mg protein/ml) or isolated RyR1s (2 mg/ml) were

incubated at 34�C for 4.5 h, with various concentrations of free Ca21, Mg21,

and AMP in binding buffer containing 20 mM PIPES, 100 mM EGTA, and

130 mM KCl-20 mM NaCl, pH 7.1, and radioligand: 1 nM [3H]ryanodine

and 14 nM ryanodine (for HSR) or 2 nM [3H]ryanodine and 3 nM ryanodine

(for isolated RyR1s).The total Ca21, Mg21, and AMP necessary for obtain-

ing the desired free concentration in binding buffer was calculated by the

new version of a computer program, Winmaxc (26). The binding reaction

was quenched by rapid filtration through Whatman GF/B filters (Whatman,

Florham Park, NJ) mounted on a 48-well Brandel Cell Harvester (Brandel,

Gaithersburg, MD). The filters were rinsed three times with ice-cold wash

buffer, put into scintillation vials and shaken overnight with scintillation

fluid, and bound [3H]ryanodine determined by scintillation counting (Model

LS 6000IC, Beckman-Coulter, Fullerton, CA).

Photon correlation spectroscopy

Theory

In a typical light-scattering experiment, a laser beam impinges on a solution

and the scattered light is recorded by a photomultiplier. The spatial resolu-

tion of the experiment is defined by the scattered vector q, whose magnitude

is given by the Bragg formula as

jqj ¼ 4pn

l
sin

u

2

� �
; (1)

where l denotes the wavelength of the scattered light, n is the refractive

index of the solution, and u is the scattering angle.

In a PCS experiment, the fluctuations of the scattered light due to the

Brownian motion of the particles are analyzed in terms of an autocorrelation

function, which is proportional to the distribution of relaxation time, t, and

scattering amplitudes of the examined components (20),

g
ð1ÞðtÞ ¼

Z N

0

m
2

GPðq;GÞGðGÞ e�Gt
dG; (2)

where mG is the particle mass, P(q, G) is the particle scattering factor, and

G(G) is the normalized number distribution function for the decay constant

G. G ¼ q2DT. DT is the translational diffusion coefficient. If the particles

are small compared with the employed wavelength, DT can be determined

through Laplace inversion of the autocorrelation function.

From DT, the apparent hydrodynamic diameter (Dh, Z-average) of the

particles are calculated according to the Stokes-Einstein equation

Dh ¼ kBT

3phD
; (3)

where kB denotes the Boltzmann constant, T the absolute temperature, and h

the viscosity of the solvent.

In the case of large, asymmetric particles, rational motions also contribute

to the autocorrelation function. The magnitude of this effect can be roughly

estimated according to Linsay et al. (27,28).

Experimental setup

PCS measurements were performed on a Zetasizer 3000HSA (Malvern

Instruments, Malvern, Worcestershire, UK) with an He-Ne laser, operating

at a 633-nm wavelength. The scattering angle for size analysis was fixed at

90 degrees. All measurements were carried out at 20�C. Solvent and particle
refractive indexes were set to 1.330 and 1.520, respectively. Solvent viscos-

ity was set to 1.00 for analysis at 20�C. CONTIN was chosen as the analysis

method due to its suitability for describing smooth distributions.

Sample preparation for PCS

To prepare samples for PCS measurement, the original purified RyR1 in 1 M

KCl storage buffer was diluted to a final solution containing 130 mMK1-20

mM Na1. The diluted RyR1 samples also contained 0.3 mg/ml PC, 1 mM

CHAPS, 0.1 mM dithiothreitol, 100 mM EGTA, 20 mM PIPES, 10 mg/ml

RyR1, and the desired concentration of Ca21 [Ca21]f/[Mg21]f/AMP, pH

7.1. After dilution, all of the RyR1 samples were immediately mixed (300

rpm) on a Thermomixer (Eppendorf, Westbury, NY) at 20�C for 30 min be-

fore PCS measurement. A control sample, which contained 1 mM CHAPS

and 0.3 mg/ml PC in the absence of RyR1, was also examined (22). It was

found that PC and CHAPS formed ;26-nm homogeneous particles inde-

pendent of the presence of the Ca21, Mg21, and AMP used in this work.

RESULTS

Identification of purified RyR1

First, the purity and activity of the purified RyR1 sample

were identified. Fig. 1 A shows the SDS-PAGE analysis of a

purified RyR1 sample. Two bands, indicated by arrows, were

identified as of RyR1 origin by Western blotting with anti-

RyR antibody 34C. The first band is consistent with the in-

tact RyR1 monomer, whereas the second band represents a

cleaved RyR1 fragment (23,29). Obviously, only a small

amount of RyR1 underwent proteolysis during purification.

Besides these two bands, only one contaminating band be-

tween 97 KDa and 116 KDa, generated by Ca21-ATPase

(23,29), was observed. The purity of intact RyR1 was;90%.

To test if purified RyR1 retains activity, Ca21-dependence of

[3H]ryanodine binding was examined. Similar to HSR, a bell-

shaped Ca21 dependence of [3H]ryanodine binding was ob-

tained for purified RyR1, with a peak binding at ;10 mM
free Ca21 ([Ca21]f) (Fig. 1 B), and consistent with previous

results (2,4,30). In addition, [3H]ryanodine binding by puri-

fied RyR1 maintained its response to activation by AMP and

inhibition by Mg21 (data not shown). Given the broader

[3H]ryanodine binding curve for purified RyR1 relative to

HSR, it is likely that other proteins in HSR contribute to the

Ca21 responsiveness of the channel.
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Modulation of RyR1 oligomerization by Ca21

Previous studies have demonstrated that purified RyR1 could

oligomerize in aqueous solution near physiological ionic

strength (15,22). To investigate the modulation of RyR1-

RyR1 interaction by Ca21, the oligomerization state of RyR1s

in the medium containing 130 mM KCl-20 mM NaCl with

different concentration of Ca21 was examined by PCS.

The representative size distributions of RyR1 samples mea-

sured in the presence of resting 0.1 mM [Ca21]f and acti-

vating 50 mM [Ca21]f are presented in Fig. 2 A. At 0.1 mM

[Ca21]f, three peaks were usually observed (Fig. 2 A, left
panel). As indicated in our previous article (22), the peak at

;30 nm represents the distribution of PC-CHAPS particles

(;26 nm) and the monodisperse RyR1s. Besides this peak,

two peaks at;200 nm and;700 nm were usually observed,

reflecting the high oligomerization state of RyR1s. Some-

times, we only observed two peaks. Besides the peak at;30

nm, the second peak is broad to cover 100–1000 nm. In the

presence of 50 mM [Ca21]f, the oligomerization degree was

decreased. Aside from the 30-nm peak, only one additional

peak at 200–300 nm was usually observed (Fig. 2 A, right
panel).
The average hydrodynamic diameter (Z-average) obtained

from PCS measurement provides a way to semi-quantify the

oligomerization state of RyR1 samples, although this param-

eter does not represent the actual dimensions of RyR1 olig-

omers (19). With this parameter, we quantitatively analyzed

the oligomerization level of RyR1 samples accompanying

the increase/decrease of [Ca21]f (Fig. 2 B). When [Ca21]f
was increased from 0.1 mM to 50 mM, the Z-average de-

creased from 65.46 3.0 nm (n¼ 12) to 49.66 1.2 nm (n¼ 8).

To test if such Ca21-modulation of RyR1 oligomerization is

reversible, EGTA was added to the sample to reduce [Ca21]f
from 50 mM to ;0.1 mM. After the addition of EGTA, the

Z-average gradually increased and reached plateau equiva-

lent to control levels after ;45 min (Fig. 2 B). These results
demonstrate that the decreased oligomerization of RyR1s in

the presence of activating mM [Ca21]f could be completely

reversed after a decrease in [Ca21]f.

Then the [Ca21]f dependence of oligomerization of RyR1s

was examined in detail (Fig. 3). To investigate the cor-

relation between Ca21-dependent RyR1 oligomerization

and Ca21-dependent RyR1 activity, the Ca21 dependence

of [3H]ryanodine binding of isolated RyR1s was also de-

termined. As shown in Fig. 3, a close correlation between

RyR1 de-oligomerization and RyR1 activation was ob-

served. At 0.1 mM [Ca21]f, the Z-average began to decrease

with the slight activation of RyR1s, as reflected by the small

increase in [3H]ryanodine binding. When [Ca21]f was

increased from 0.1 mM to 1 mM, the Z-average decreased

sharply from 65.46 3.0 nm (n ¼ 10) to 52.96 1.8 nm (n ¼
10), in close correspondence with the acute increase of RyR1

[3H]ryanodine binding activity. In the range of 1–100 mM
[Ca21]f, the Z-average decreased very slowly. The Hill

constants and coefficients were derived from our Ca21

dependence of [3H]ryanodine binding curves, as described

by Meissner et al. (31). As calculated with these parameters,

the percentage of RyR1 bound with Ca21 at their activation

sites slowly increased from 85.9% at 1 mM [Ca21]f to 99.7%

at 100 mM [Ca21]f. Accordingly, the Z-average decreased

slowly from 52.9 6 1.8 nm (n ¼ 10) at 1 mM [Ca21]f to

48.6 6 1.6 nm (n ¼ 10) at 100 mM [Ca21]f. Such close

correlation between RyR1 de-oligomerization and RyR1

activation by Ca21 suggests that RyR1 oligomerization is

related to RyR1 functional states.

FIGURE 1 Identification of purified RyR1. (A)

Silver-stained polyacrylamide gel (3–20%) of purified

RyR1 preparations (1 mg). (B) Ca21 dependence of

[3H]ryanodine binding to HSR vesicles and purified

RyR1 in binding buffer with 130 mM KCl-20 mM

NaCl. Each assay was performed on duplicate samples

and repeated twice.
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Modulation of RyR1 oligomerization by AMP

ATP, another potent activator of RyR1, exists in resting

skeletal muscle fibers at a concentration of 6–8 mM. In this

study, we investigated the effect of AMP, an ATP analog, on

RyR1 oligomerization. Fig. 4 A shows the results when

RyR1s were activated by 5 mM AMP or/and 50 mM Ca21.

In the absence of Ca21/AMP, the Z-average of 10 mg/ml

RyR1 sample was 67.86 3.0 nm (n¼ 12) when RyR1s were

at their closed state as reflected by the low ryanodine bound.

In the presence of 5 mMAMP, the [3H]ryanodine bound was

increased to 53.9 6 1.8 pmol/mg protein (n ¼ 3), and the

Z-average was decreased to 51.16 1.6 nm (n¼ 8), similar to

that obtained with 50 mM [Ca21]f (49.6 6 1.2 nm (n ¼ 8)).

Thus, the activation of RyR1s by AMP was also accompa-

nied by the de-oligomerization of RyR1s.

When RyR1 was fully activated by the co-presence of

50 mM [Ca21]f and 5 mM AMP, the [3H]ryanodine bound

further increased to 124.8 6 9.7 pmol/mg protein (n ¼ 3),

and the Z-average was further decreased to 38.1 6 0.8 nm

(n ¼ 12) (Fig. 4 A). This indicates the additive effect of acti-

vating Ca21 and AMP on the de-oligomerization of RyR1s.

Such effect was further investigated by measuring the Ca21-

dependent oligomerization of RyR1s in the presence of 5 mM

AMP. As shown in Fig. 4 B, compared to the curve obtained

without AMP, the AMP did not change the overall tendency,

but did lower the Z-average levels at all measured Ca21

concentrations.

Modulation of RyR1 oligomerization by Mg21

Mg21 is an inhibitor of RyR. It also binds to Ca21 activation

sites, but inhibiting RyR1 activity in doing so (4,30). Mg21

modulation of RyR1 oligomerization was also investigated

and the result was shown in Fig. 5. For comparison, the Ca21

dependence of Z-average was also presented in this figure.

Evidently, there was significant difference between the ef-

fects of Ca21 and Mg21 on RyR1 oligomerization. In con-

trast to the continuous decrease of Z-average when [Ca21]f
was increased from 3 nM to 100 mM, the Z-average value

remained at a high level (;68 nm) with [Mg21]f up to 500

mM. These observations indicate that RyR1s retain the high

oligomerization state when RyR1s are ensured at their closed

state by Mg21.

Modulation of RyR1 oligomerization by Ca21

under near-physiological conditions

Under physiological conditions in resting skeletal muscle

fibers, Mg21 and ATP are present at 1 mM and 6–8 mM con-

centrations, respectively (32). During E-C coupling, the con-

centration of Ca21 near RyR1 arrays would increase rapidly.

To investigate the modulation of RyR1-RyR1 interaction

during this process, the Ca21-dependence of Z-average and

FIGURE 3 Correlation of Ca21 dependence of the Z-average and Ca21

dependence of [3H]ryanodine binding for purified RyR1. All experiments were

performed in solution containing 130 mM K1-20 mM Na1. [3H]ryanodine

binding assay was performed on duplicate samples and repeated three times.

The samples for PCS measurements contained 10 mg/ml RyR1. Data are

presented as mean 6 SD for 3–5 independent experiments.

FIGURE 2 Modulation of RyR1 oligomerization by Ca21. (A) Represen-

tative size distributions of RyR1 samples measured by PCS in the presence

of 0.1 mM [Ca21]f (left panel) and 50 mM [Ca21]f (right panel). All the

samples contained 10 mg/ml RyR1. Similar results were obtained in other 10

experiments. (B) The reversibility of Ca21-modulated RyR1 oligomeriza-

tion. Statistical representation of the Z-average of RyR1 sample before and

after the decrease of [Ca21]f. The Z-average obtained in the presence of

0.1 mM [Ca21]f was used as control. All the samples contained 10 mg/ml

RyR1. Data are presented as mean 6 SD for 3–5 independent experiments.
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Ca21-dependence of [3H]ryanodine binding were both ex-

amined (Fig. 6). In the presence of up to 0.1 mM [Ca21]f,

RyR1s retained a high level of oligomerization when RyR1s

were in their closed state, as determined by [3H]ryanodine

binding. When RyR1 was activated by further increasing

[Ca21]f, the Z-average quickly decreased to lower levels, in-

dicating that de-oligomerization of RyR1s also accompanied

the activation of RyR1s under near-physiological aqueous

conditions.

DISCUSSION

Modulation of RyR1-RyR1 interaction by the
functional states of RyR1s

In the present work, Ca21, AMP, and Mg21 modulation of

RyR1 oligomerization was systematically investigated and

the basic rules were obtained. Obviously, several lines of ev-

idence support that the interaction between RyR1s is closely

correlated with their functional states.

First, RyR1-RyR1 interaction decreases accompanying

the activation of the channels. Strong oligomerization is

observed for closed RyR1s with nanomolar Ca21 in solution.

Activation of RyR1s by 50 mM [Ca21]f or 5 mM AMP leads

to the de-oligomerization of RyR1s (Fig. 2 and Fig. 4 A).
Second, the decreased degree of RyR1-RyR1 interaction

is closely correlated with the increased level of RyR1 ac-

tivity. In the presence of Ca21, the decrease in Z-average is

always closely correlated with the Ca21-activation level

of RyR1s (Fig. 3). In the co-presence of Ca21 and AMP,

Z-average decreases to lower level with the additive activa-

tion of RyR1s by Ca21 and AMP (Fig. 4, A and B).

FIGURE 4 Modulation of RyR1 oligomerization by AMP. (A) Correla-
tion of Z-average and ryanodine binding with the activation of RyR1s by

5 mM AMP or/and 50 mM [Ca21]f. (B) Effect of 5 mM AMP on the Ca21

dependence of the Z-average. All experiments were performed in solution

containing 130 mM K1-20 mM Na1. [3H]ryanodine binding assay was

performed on duplicate samples and repeated three times. The samples

for PCS measurements contained 10 mg/ml RyR1. Data are presented as

mean 6 SD for 3–5 independent experiments.

FIGURE 5 Comparison of Mg21 and Ca21 dependence of the Z-average.

All experiments were performed in solution containing 130 mM K1-20 mM

Na1. All samples contained 10 mg/ml RyR1. Data are presented as mean6
SD for 3–5 independent experiments.

FIGURE 6 Correlation of Ca21 dependence of the Z-average and Ca21

dependence of [3H]ryanodine binding obtained in 130 mM K1-20 mM Na1

solutions with 1 mM Mg21 and 5 mM AMP. [3H]ryanodine binding assay

was performed on duplicate samples and repeated three times. All samples

for PCS measurements contained 10 mg/ml RyR1. Data are presented as

mean 6 SD for 3–5 independent experiments.
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Third, RyR1-RyR1 interaction remains at a high level when

RyR1s are stabilized at a closed state by Mg21. Functional

studies have indicated that Ca21 binds to its activation sites

with a Kd of;1 mM, whereas Mg21 binds to these sites with

a Kd of 20;50 mM by inhibiting RyR1 activity (4,30). As

shown in Fig. 5, the increase of Mg21 from low nM to 500

mM, which stabilizes RyR1 in its closed state, does not induce

the de-oligomerization of RyR1. The significant difference

between the effects of Ca21 and Mg21 on RyR1 oligomer-

ization further indicates that the de-oligomerization of RyR1 is

correlated with the activation of RyR1.

Thus, from the analysis of the correlation between RyR1

oligomerization and RyR1 activity, we demonstrate that the

RyR1-RyR1 interaction is potently modulated by their func-

tional states. Strong interaction exists between resting closed

RyR1s. The activation of RyR1s leads to the decrease in

RyR1-RyR1 interaction.

RyR1 conformational relevance
of such modulation

From the intuitive point of view, such modulation of RyR1-

RyR1 interaction is related to the conformational change(s)

of RyR1. Using techniques of electron microscopy, it has

been demonstrated that with activation of RyR1, both

transmembrane domain and cytoplasmic domain undergo

conformational changes (16,17). A profound conforma-

tional change is found on the clamp regions, located on the

four corners of the cytoplasmic domain of the channel

(16,17). It should be noted that this clamp region is the

domain at which RyR1s interact with each other to form

regular lattices in SR membrane or in solution (6–9,15).

The clamp regions undergo a stepwise conformational

change with the transient/full activation of RyR1 (17).

Correspondingly, we found in our work that RyR1-RyR1

interactions decreased step by step with the transient

activation of RyR1 by 50 mM Ca21, and full activation

of RyR1 by 50 mM Ca21 and 5 mM AMP (Fig. 4 A). Such
close correlation between RyR1-RyR1 interaction, as

measured by PCS, and conformational change in clamp

regions suggests that the clamp regions are possibly the

structural basis for the modulation of the interaction be-

tween RyR1s by their functional states. Although it would

be extremely interesting, mechanistically, to know whether

de-oligomerization occurs before or after RyR1 channel

opening, the techniques used here are not kinetically sen-

sitive enough to distinguish between these two possibilities.

Implication for function and operating
mechanism of RyR arrays

The functional state modulated RyR1-RyR1 interaction is also

observed under near-physiological conditions (Fig. 6), sug-

gesting that the interaction between arrayed RyR1s would be

dynamically modulated during E-C coupling. Such modu-

lation provides exciting new information to understand the

function and operating mechanism of RyR arrays.

First, the strong interaction between closed RyR1s pro-

vides a novel stability mechanism for arrayed RyR1s at rest-

ing conditions. By forming a close contact, every RyR1 can

be ensured at a quiescent closed state by the stabilization

from neighboring RyR1s. In skeletal muscle, some RyR1s in

two-dimensional array are respectively apposed to a dihy-

dropyridine receptor (DHPR) tetrad (7,8). Although DHPR

tetrads may exert inhibition on the apposing RyR1s (33–36),

those RyR1s without the apposed DHPR tetrads may be

stabilized by the strong RyR1-RyR1 interaction. In cardiac

muscle, DHPR may not exert inhibition on RyR2s because

DHPRs are randomly arranged, without their tetrad correla-

tion to RyR2s (7,8). In addition, RyR2 is more easily activated

by Ca21 noise due to its higher sensitivity to the activation of

Ca21 (37,38). But the stability of RyR2s still can be achieved

if a strong oligomeric interaction also exists between arrayed

RyR2s under resting conditions. Themodulation of the oligo-

merization of RyR2s by their functional states is required to

be further elucidated.

Second, the activation-induced decrease in RyR1-RyR1

interaction provides insight for understanding the operation

of activated RyR1 arrays during E-C coupling. In native

RyR1 two-dimensional arrays, activated RyR1s may not

de-oligomerize with the support of lipid bilayer. But the

interaction between neighboring RyR1s may also decrease

accompanying the conformational change(s) with the acti-

vation of RyR1s. With the loose association between RyR1s,

opened RyR1s would tend to behave more like independent

channels. Every RyR1 in the array could then be more freely

closed by multiple possible physiological mechanisms, i.e.,

stochastic closing of RyRs, Ca21-induced inactivation of

RyRs, SR Ca21 depletion, etc. (39–41).

Third, the recovered strong interaction between neighbor-

ing closed RyR1s may contribute to the rapid termination of

E-C coupling. During E-C coupling, once the neighboring

RyR1s in two-dimensional array return from activated state

to their resting closed state, the recovered RyR1-RyR1 strong

interaction may stabilize them in closed state, efficiently in-

hibiting the reactivation of these channels. Thus the termi-

nation of E-C coupling could be facilitated.

Many proteins are found to cluster in the membrane, but

their physiological roles are often obscure (42–44). In the

present work, by quantitatively studying RyR1 oligomeri-

zation/de-oligomerization within an aqueous system, we

have discovered a basic rule that RyR1-RyR1 oligomeric in-

teraction is inversely related to their activation level. These

findings provide a new experimental paradigm in our attempts

to understand the functional and operational significance of

RyR arrays. Furthermore, our experimental paradigm opens

the possibility of looking at functional interactions between

RyR-interacting SR proteins on the functional and oligomeric

state of RyR channels.
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