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Abstract

We study the relationship between least and inflationary fixed-point logic. In 1986, Gurevich and
Shelah proved that in the restriction to finite structures, the two logics have the same expressive
power. On infinite structures however, the question whether there is a formula in IFP not equivalent
to any LFP-formula was left open.

In this paper, we answer the question negatively, i.e. we show that the two logics are equally
expressive on arbitrary structures. We give a syntactic translation of IFP-formulae to LFP-formulae
such that the two formulae are equivalent on all structures.

As a consequence of the proof we establish a close correspondence between the LFP-alternation
hierarchy and the IFP-nesting depth hierarchy. We also show that the alternation hierarchy for IFP
collapses to the first level, i.e. the complement of any inflationary fixed point is itself an inflationary
fixed point.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Formal logics have played a crucial role in the development of theoretical computer
science. Features that are pervasive to many diverse areas such as database theory,
computer-aided verification, or computational and descriptive complexity theory are
definitions byrecursionor iteration.

Formalising recursive definitions in a logical language usually involves some kind of
fixed-point construction. This can be incorporated into the logic in various ways. In second-
order logic, recursion is modelled by quantifying over the individual stages of the iteration
process or by defining the intersection of all fixed points, whereas in infinitary logics, the
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same is simulated by infinitary disjunctions defining arbitrary recursion depths. Another
way of modelling recursive definitions is to incorporate an explicit operator for forming
fixed points. Logics following this approach are calledfixed-point logics. In the various
areas of computer science where fixed-point logics have been considered, a huge variety of
such logics has evolved. Regardless of how great the differences are elsewhere, the fixed-
point part of most logics is formed according to the same common principle.

Consider a first-order formulaϕ(R, x) with a free second-order variableR of arity k,
andk free first-order variablesx. On any structureA, such a formula induces an operator
Fϕ taking a setP ⊆ Ak to the set{a : (A, P) � ϕ[a]}. Recursive definitions are now
modelled by considering the various kinds of fixed points such an operator may possess.
Among these,least fixed pointsplay a fundamental role.

Least fixed points are usually incorporated into a logic as follows. Ifϕ is positive inR,
the operatorFϕ is monotone, i.e.X ⊆ Y implies Fϕ(X) ⊆ Fϕ(Y). Monotone operators
always have a least fixed pointlfp(Fϕ) := ⋂{X : Fϕ(X) = X} and therefore, on any
structureA, a first-order formulaϕ(R, x) positive in R naturally induces a setlfp(Fϕ).
This forms the basis ofleast fixed-point logic(LFP), an extension of first-order logic (FO)
equipped with an explicit construct[lfpR,x ϕ(R, x)](x), for ϕ positive in R, defining the
least fixed point ofFϕ .

A different type of fixed point can be obtained by an explicit induction process. Here,
we associate with each formulaϕ(R, x) the inflationary operator Iϕ taking a setP ⊆ Ak

to the setP ∪ Fϕ(P) = P ∪ {a ∈ Ak : (A, P) � ϕ[a]}. The operatorIϕ is used to build up
the following sequence(Rα)α∈Ord of sets, indexed by ordinalsα.

Rα := Iϕ(R
<α) = R<α ∪ {a : (A, R<α) � ϕ[a]},

whereR<α := ⋃
ξ<α Rξ for everyα ∈ Ord. As this sequence is increasing, it leads to a

fixed pointR∞ of Iϕ defined asR∞ := Rα for the least ordinalα such thatRα = Rα+1.
R∞ is called theinflationary fixed pointof ϕ and is used to form theinflationary fixed-
point logic (IFP) as the extension of FO by an operator[ifpR,xϕ(R, x)](x) defining the
inflationary fixed point ofϕ. The existence of this fixed point is independent ofϕ being
positive inR. However, due to a theorem by Knaster and Tarski (seeTheorem 2.2), if ϕ is
positive inR, the inflationary and the least fixed point coincide. Thus, every LFP-formula
is equivalent to a formula in IFP.

Following work in recursion theory on inductive definitions in arithmetic, the first
systematic study of inductive definitions on abstract structures occurred in the 1970s. At
that time, no explicit construct to form fixed points was considered and therefore fixed
points could not be nested. Nevertheless, many fundamental methods in the theory of fixed-
point logics date back to the investigations done then. See [1,9] for surveys of the results
and methods established by then. We will briefly recall some results related to the present
paper inSection 4.2.

Since the 1980s, fixed-point logics in the modern form are studied in various areas of
computer science like database theory or finite model theory. The main evolution over the
cases studied in the 1970s was the introduction of explicit fixed-point operators such as
[lfpR,x ϕ](x) and[ifpR,x ϕ](x). In particular, the formulaeϕ can again contain fixed-point
operators and thus fixed points can be nested and negated. Although different in scope and
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focus, finite model theory and database theory both concentrate on finite structures. One
effect of this is that today a lot more is known about these logics on finite than on infinite
structures.

An important question concerning the logics LFP and IFP is whether IFP is strictly
more expressive than LFP. As noted by Dawar and Gurevich [2] it comes in two forms:

Question. Is there a formulaϕ of IFP and a structureA such that for every formula
ψ of LFP,A � (ϕ ↔ ψ)?

Is there a formulaϕ of IFP such that for every formulaψ of LFP, there is a
structureA such thatA � (ϕ ↔ ψ)?

Using the stage comparison method, Gurevich and Shelah showed in 1986 that in the
restriction to finite structures, the two logics are equivalent. It is clear that the proof does
not extend to infinite structures as it crucially relies on the fact that on finite structures
every fixed-point induction is finite itself and therefore only successor stages occur.

The main contribution of this paper is to show that the two logics are equivalent on
arbitrary structures, rather than just on finite ones. In particular, we show that for every
formula in IFP there is a formula in LFP equivalent to it on all structures. Thus, we give a
negative answer to both questions above.

As a simple consequence of the method used to show this, we establish a close
correspondence between the LFP alternation hierarchy and the IFP nesting-depth
hierarchy. To be precise, the IFP nesting-depth hierarchy is infinite on a structureA, if,
and only if, the alternation hierarchy for LFP is infinite onA.

We also show that there is a negation normal form for IFP, i.e. every formula of
IFP is equivalent to a formula where negation occurs only in front of atoms. Thus, the
alternation hierarchy for IFP collapses to the first level. This contrasts with least fixed-
point logic, for which the strictness of the alternation hierarchy follows from results due to
Moschovakis [9, Chapter 5D].

An extended abstract of the present paper was published in [8].

Organisation. In the next section, we give precise definitions of the fixed-point logics
considered in this paper. The stage comparison relations and theorems are presented in
Section 3. In Section 4we establish our main result, the equivalence of LFP and IFP. We
first give a brief review of the equivalence result for the logics on finite structures and recall
a related theorem by Harrington and Kechris. Finally,Section 5contains results about the
nesting and alternation hierarchies for IFP and LFP.

2. Fixed-point logics

In this section we present the basic definitions for the following explorations. See [2–4]
for details on fixed-point logics. We first present some notation used throughout the paper.

Let A := (A, τ ) be a structure and letR be ak-ary relation symbol not occurring inτ .

• If t is a tuple of terms, we writetA for the interpretation oft in A.
• Let x be ak-tuple of terms and letψ1(x), ψ2(x) be formulae, which may or may not

contain R. We write ϕ(x, Ru/ψ1(u)) for the formula obtained fromϕ by replacing
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every occurrence of an atomRu by ψ1(u), whereu is a tuple of terms. Here,ψ1(u)
means that the variablesx in ψ1(x) are replaced byu, where bound variables inψ1 are
suitably renamed to avoid conflicts.

Sometimes we need to replace positive and negative occurrences of atomsRu by
separate formulae. In this case we writeϕ(x, Ru/ψ1(u),¬Ru/ψ2(u)) to denote the
formula obtained fromϕ by replacing each positive occurrence of atoms of the form
Ru by ψ1(u) and each negative occurrence of atoms of the formRu by ¬ψ2(u). For
instance, ifϕ(R, x) is the formulaRx∨¬Rx, thenϕ(x, Ru/ψ1(u),¬Ru/ψ2(u))would
just beψ1(x) ∨ ¬(¬ψ2(x)) which is equivalent toψ1(x) ∨ ψ2(x).

Clearly, any such formulaϕ(x, Ru/ψ1(u),¬Ru/ψ2(u)) is positive in bothψ1 and
ψ2 and thus positive inR if ψ1 andψ2 are.

• Finally, if L andL′ are logics, we writeL ≤ L′ if the logic L is no more expressive
thanL′, i.e. for every formulaϕ ∈ L there is an equivalent formulaϕ′ ∈ L′.
Let τ be a signature andA := (A, τ ) a τ -structure. Letϕ(R, x) be a first-order formula

with k free variablesx and a free relation symbolR not occurring inτ . The formulaϕ
defines an operator

Fϕ : P(Ak) P(Ak)

R {a : (A, R) � ϕ[a]}.
A fixed point of the operatorFϕ is any setR such thatFϕ(R) = R. Clearly, asϕ is

arbitrary, the corresponding operatorFϕ need not have any fixed points. For instance, the
formulaϕ(R, x) := ¬∀ y Ry defines the operatorFϕ mapping any setR � Ak to Ak and
the setAk itself to the empty set.

However, if the class of admissible formulaeϕ is suitably restricted, then the existence
of fixed points can be guaranteed. A formulaϕ(R, x) is monotone in R, if for all
τ -structuresA := (A, τ ) and all setsR, R′ ⊆ Ak, R ⊆ R′ implies Fϕ(R) ⊆ Fϕ(R′).
It is easily seen that for monotone operatorsFϕ fixed points always exist and in fact even a
least fixed point exists, defined as

lfp(Fϕ) :=
⋂
{R : Fϕ(R) = R}.

A different kind of fixed point is obtained by an explicit induction process. Here we
associate with a formulaϕ(R, x) the inflationary operator

Iϕ : P(Ak) P(Ak)

R R∪ Fϕ(R) = R∪ {a : (A, R) � ϕ[a]}.
The operatorIϕ is used to build up the following sequence(Rα)α∈Ord of sets, indexed by
ordinalsα:

Rα := Iϕ(R
<α) = R<α ∪ {a : (A, R<α) � ϕ[a]}, (1)

whereR<α := ⋃
ξ<α Rξ for everyα ∈ Ord. Clearly this sequence of sets is increasing

and thus leads to a limitR∞ := Rα for the least ordinalα such thatRα = Rα+1. The
setRα is called theinflationary fixed pointof Iϕ , in termsifp(Iϕ). With abuse of notation
we also refer toR∞ as the inflationary fixed point of the formulaϕ. Least and inflationary
fixed points are the basis for the fixed-point logics studied in this paper. Since the three
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fixed-point logics considered here are syntactically all rather similar, we present the three
logics at once.

Definition 2.1. Let A be a structure. The syntax of least, monotone and inflationary fixed-
point logic is defined by the usual rules for first-order logic augmented with the following
formula building rule: Ifϕ(R, x) is a formula with free first-order variablesx := x1, . . . , xk

and a free second-order variableR of arity k then

(i) ψ := [lfpR,x ϕ](t) is a formula ofmonotone fixed-point logic(MFP) if ϕ ∈ MFP
defines on all structures a monotone operator,

(ii) ψ := [lfpR,x ϕ](t) is a formula ofleast fixed-point logic(LFP) provided thatϕ ∈ LFP
is positive inR and

(iii) ψ := [ifpR,x ϕ](t) is a formula ofinflationary fixed-point logic(IFP) for arbitrary
formulaeϕ ∈ IFP.

In each case, the free variables ofψ are the variables occurring int and the free variables
of ϕ other thanx.

Let A be a structure providing an interpretation of the free variables ofϕ except forx.
For formulae in MFP and LFP,A � [lfpR,x ϕ](t) if, and only if, tA ∈ lfp(Fϕ). For IFP,

A � [ifpR,x ϕ](t) if, and only if, tA∈ ifp(Iϕ).

As explained above, for any monotone operatorF the least fixed point ofF always
exists. Therefore the semantics of the monotone fixed-point logic is well defined. However,
the property of a formula to define an operator which is monotone on all structures is
undecidable and therefore the monotone fixed-point logic has an undecidable syntax.

To avoid this, one considers syntactical restrictions of MFP which guarantee
monotonicity of the corresponding operators. The most important of these is the least fixed-
point logic, where the application of the fixed-point rule is restricted to formulaeϕ(R, x)
which are positive in the relation variableR. Clearly, if ϕ(R, x) is positive inR, then the
corresponding operatorFϕ is monotone. Thus, LFP≤ MFP.

As a corollary of the following theorem due to Knaster and Tarski we get that MFP is
contained in inflationary fixed-point logic.

Theorem 2.2 (Knaster and Tarski).Let M be a set. Every monotone operator F:
Pow(M)→ Pow(M) has a least fixed point

lfp(F) =
⋂
{P : F(P) = P}.

Further, this fixed point can also be obtained as the fixed point of the sequence of sets
defined as

Rα := Fϕ(R
<α). (2)

As F is monotone, the sequence in the previous theorem is increasing and therefore
the least fixed point reached in this way must also be the inflationary fixed point ofF .
It follows that

LFP≤ MFP≤ IFP.
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When writing fixed-point formulae it is often convenient to use variants of the logics
where the fixed points of several formulae can be built up simultaneously.

Let R1, . . . , Rk be relation symbols of aritiesr i , respectively.Simultaneous inflationary
fixed-point formulaeare of the formψ(x) := [ifp Ri : S](x), where

S :=




R1x1 ← ϕ1(R1, . . . , Rk, x1)
...

Rkxk ← ϕk(R1, . . . , Rk, xk)

is a system of formulae in (simultaneous) IFP. On any structureA, a formulaϕi in S induces
an operator

Iϕi : Pow(Ar1)× · · · × Pow(Ark) → Pow(Ari )

(R1, . . . , Rk) �→ Ri ∪ {a : (A, R1, . . . , Rk) � ϕi [a]}.
The stagesSα of an induction on such a systemS of formulae are nowk-tuples of sets
(Rα1 , . . . , Rαk ) defined as

Rαi := Iϕi (R
<α
1 , . . . , R<αn ) = R<αi ∪ {a : (A, (R<αj )1≤ j≤n) � ϕi [a]},

where R<αi := ⋃
ξ<α Rξi . For every structureA := (A, τ ) and any tuplea from A,

A � ψ[a] if, and only if, a ∈ R∞i , where R∞i denotes thei -th component of the
simultaneous fixed point of the systemS. The definition of simultaneous LFP is analogous.

It can be shown, that by increasing the arity of the involved fixed-point relations, any
formula in IFP with simultaneous inductions can be transformed into an equivalent IFP
formula without simultaneous fixed points. The same is true for LFP. See e.g. [3].

3. Comparing the stages of inductive definitions

In this section we introduce the stage comparison method, one of the most important
tools to reason about fixed-point logics. The method will be essential for the explorations
below. Let ϕ(R, x) be a formula, e.g. in first-order logic. As mentioned above, the
inflationary and—if it exists—the least fixed point of a formulaϕ(R, x) can be obtained
as the fixed point of the sequence of sets as defined in (1) or (2). We concentrate on such
sequences of sets approximating least or inflationary fixed points.

Let A := (A, τ ) be a τ -structure with universeA. By definition, the sequence of
stages defined in (1) is increasing and thus there is an ordinalα < |A|+ such that
Rα = Rα+1 = R∞. Here |A|+ denotes the least infinite cardinal greater than the
cardinality of A. The individual sets occurring in the sequence induced by a formulaϕ

are called thestages of the induction onϕ. The setRα is called theα-th stage of the
induction. Sometimes we also writeϕα for Rα . As a final bit of notation, we writeR<α or
ϕ<α for the union of all stages up toα, i.e.ϕ<α := ⋃

β<α ϕ
β , and likewise forR<α .

We now define the stage comparison relations for least or inflationary fixed-point
inductions.

Definition 3.1. Let ϕ(R, x) be a formula anda ∈ A. Therank |a|ϕ of a with respect toϕ
is defined as the least ordinalα such thata ∈ ϕα if such an ordinal exists and∞ otherwise.
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Thestage comparison relations≤ϕ and≺ϕ are defined as

x ≤ϕ y x, y ∈ ϕ∞ and |x|ϕ ≤ |y|ϕ,
and

x ≺ϕ y x ∈ ϕ∞ and |x|ϕ < |y|ϕ,
where we allow|y|ϕ =∞.

The proof of the following lemma is immediate from the definition.

Lemma 3.2. Letϕ(R, x) be a formula. For alla ∈ A,

a ∈ ϕ∞ if, and only if, a ≤ϕ a
if, and only if, (A, {u : u ≺ϕ a}) � ϕ[a].

The next theorem shows that the stage comparison relations are themselves definable.
It essentially goes back to Moschovakis, who proved the corresponding theorems for least
and inflationary fixed-point inductions on first-order formulae. The extension of his proofs
to the case of full LFP and IFP is immediate. See [9] and references therein for the case of
LFP and [10] for the IFP-version.

Theorem 3.3 (Stage Comparison Theorem). (i)Let ϕ(R, x) be a formula in LFP
positive in R. Then≤ϕ and≺ϕ are definable in LFP.

(ii) Letϕ(R, x) be a formula inIFP. Then≤ϕ and≺ϕ are definable inIFP.

Proof. We only present the proof for Part (ii), as this case will be used inSection 4below.
The more complicated proof for the first part can be found in [9].

Let ϕ(R, x) be a formula in IFP. W.l.o.g. we assume thatϕ is of the formRx ∨ ϕ′. We
claim that the relations≤ϕ and≺ϕ can be obtained as the simultaneous fixed point of the
following systemS of formulae:

S :=
{

x ≤ y ϕ(x, Ru/u ≺ y) ∧ ϕ(y, Ru/u ≺ y)
x ≺ y ϕ(x, Ru/u ≺ x) ∧ ¬ϕ(y, Ru/u ≺ x).

Here,ϕ(x, Ru/u ≺ y) means that every occurrence of an atomRu in ϕ, for some tuple of
termsu, is replaced by the new atomu ≺ y. Note that, strictly speaking, the simultaneous
induction is unnecessary, as only the≺-relation occurs on the right-hand side of the rules.
We state the system here in the simultaneous form as it will be used as a starting point for
the exploration inSection 4.1below.

As before, let, for every ordinalα, ≤α and≺α denote the relations≤ and≺ at stage
α of the induction onS and let≤<α and≺<α be the union of all stages less thanα, i.e.
≤<α= ⋃

β<α ≤β and≺<α= ⋃
β<α ≺β . We prove by induction that for allα and all pairs

(a,b),

• (a,b) ∈≤α if, and only if, |b|ϕ ≤ α and|a|ϕ ≤ |b|ϕ and
• (a,b) ∈≺α if, and only if, |a|ϕ ≤ α and|a|ϕ < |b|ϕ .

From this, the theorem follows immediately. Letα be an ordinal and suppose that for all
β < α the claim has already been proved, i.e.(a,b) ∈≤<α if, and only if, |a|ϕ ≤ |b|ϕ < α

and likewise for≺<α .
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Supposeb is a tuple of elements of rankξ ≤ α. Then, the set{u : u ≺<α b} contains
precisely the elements of rank less thanξ . Thus,ϕ(y, Ru/u ≺ y) is satisfied byb. Set
y := b. A tuplea satisfiesϕ(x, Ru/u ≺ y) if, and only if, the rank ofa is at mostξ and
therefore|a|ϕ ≤ |b|ϕ .

On the other hand, if the rank ofb is greater thanα, then{u : u ≺<α b} is justϕ<α and
thereforeϕ(y, Ru/u ≺ y) is not satisfied byb. This proves the induction hypothesis for
the first item above.

For≺, let a be a tuple of elements of rankξ ≤ α. Again,{u : u ≺<α a} contains all
elements of rank less thanξ and thereforeϕ(x, Ru/u ≺ x) is satisfied bya. Obviously, if
we setx := a, then¬ϕ(y, Ru/u ≺ x) is satisfied by those tuplesb whose rank is greater
thanξ and therefore greater than the rank ofa. Finally, if a is a tuple of rank greater than
α, it does not satisfyϕ(x, Ru/u ≺ x). This proves the second item above and, with it, the
claim.

Thus, the stage comparison relations≤ϕ and ≺ϕ are defined by the IFP-formulae
[ifp ≤ : S](x, y) and[ifp ≺ : S](x, y) respectively. �

4. Expressive equivalence of least and inflationary fixed-point logic

In this section, we establish the equivalence of least and inflationary fixed-point logic.
As noted above, in the restriction to finite structures, the equivalence has already been
proved by Gurevich and Shelah [5]. We first hint at their proof and explain where its
extension to infinite structures fails.

4.1. Equivalence on finite structures

Consider again the proof ofTheorem 3.3. As shown there, the stage comparison
relations of any IFP-formulaϕ(R, x) are definable by the formulae[ifp ≤ : S](x, y) and
[ifp ≺ : S](x, y) respectively, whereS is the system of formulae defined as

S :=
{

x ≤ y ϕ(x, Ru/u ≺ y) ∧ ϕ(y, Ru/u ≺ y)
x ≺ y ϕ(x, Ru/u ≺ x) ∧ ¬ϕ(y, Ru/u ≺ x).

Now supposeϕ(R, x) is itself an LFP-formula but not necessarily positive inR. It was
shown by Gurevich and Shelah, that in restriction to finite structures, the stage comparison
relations for the inflationary induction onϕ are definable in LFP. For this, they converted
the systemSabove to an equivalent systemT of formulae, which are positive in their free
fixed-point variables. W.l.o.g. we assume thatϕ is of the formRx ∨ ϕ′. The problem to
be solved is that if every atomRu in ϕ is replaced by a new atom involving≺, then at all
places whereR is used negatively, also the new relation≺ is used negatively. Therefore,
we have to come up with a definition of the complementRc of R by a formula positive in
≺ and≤. For this, letA be a finite structure of sizen. Clearly, if k is the arity ofR, then
there is somem ≤ nk such that the induction ofϕ onA reaches its fixed point at stagem.
Now consider the sequence of stages(Rα)α≤m induced byϕ on A. Let≤ϕ and≺ϕ be the
stage comparison relations ofϕ. For every stageRα , with α > 0, there is a tuplez whose
rank is preciselyα, i.e. z ∈ Rα − Rα−1. For any such tuplez, {u : u ≤ϕ z} = Rα and
{u : z ≺ϕ u} = (Rα)c. Thus the stageRα as well as its complement(Rα)c can be defined
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by a positive formula. This is used to define an induction process, positive in≤ and≺,
defining the relations≤ϕ and≺ϕ.

As the inflationary fixed point can easily be obtained from the stage comparison
relations (seeLemma 3.2), this shows that on finite structures, every inflationary fixed point
of an LFP-formula can be obtained as a least fixed point also. By induction on the number
of ifp-operators in the formulae, the equivalence of IFP and LFP on finite structures follows
immediately.

Theorem 4.1 (Gurevich–Shelah [5]). For every formula inIFP there is aLFP-formula
equivalent to it on all finite structures.

We aim at extending the equivalence of IFP and LFP to arbitrary, not necessarily
finite structures. IfA is an infinite structure, the sequence of stages induced by an LFP-
formula ϕ(R, x) on A is no longer guaranteed to be finite. The formulae used in the
Gurevich–Shelah proof still define the correct stage comparison relations up to stageω,
i.e. for all finite stages. However, at stageω—and all other infinite limit stages also—it
is no longer true that there is a tuplez of rank less thanω such thatu ≤ z definesR<ω.
For, each such tuplez is itself of finite rankβ < ω and thereforeu ≤ z defines the stage
Rβ � Rω. Thus, to extend the result to infinite structures, we have to treat the limit stages
differently.

4.2. Equivalence of monotone and inflationary fixed-point logic

As mentioned in the introduction, least and inflationary inductions on infinite structures
were already studied in the 1970s, mainly on the class of acceptable structures. The
research was motivated by questions arising in descriptive set theory. Hence, there are
significant differences in notation and type of questions addressed in the 1970s and in later
work on fixed-point logics in computer science. We briefly recall some of the terminology
and results. Our presentation follows [10].

Let A := (A, τ ) be a structure. Acoding scheme on Ais a triple (N ,≤,<>), with
N ⊆ A, such that the structure(N ,≤) is isomorphic to(ω,≤) and<> is an injective
map from

⋃
n<ω An into A. The imagea of a1, . . . ,an under<> is called thecode of

a1, . . . ,an. We associate with a coding scheme the relationslh giving the length of a coded
sequence,q(a, i ) giving the i -th element of the sequence coded ina, andseqwhich is
true for all codes of sequences. A coding scheme onA allows to code arbitrary finite
sequences of elements into a single element. In particular it allows to code relations of
arbitrary arity by monadic relations. A structure on which a coding scheme is definable is
calledacceptable.

A second-order relation S:= S(x, R) on A is a relation with elementsx and relations
R as arguments. Of particular interest to us are second-order relations with only one
relation as argument, i.e. relations of the formS(x, R), where the arityk of R and x
coincide. Relations of this form are calledoperativeand they naturally induce an operator
FS: Ak → Ak taking any relationR of arity k to the set{a: (a, R) ∈ S}. As in Section 2,
we can form the inflationary and, if the relationS is monotone, also the least fixed point
of FS. Inflationary fixed points were commonly referred to asinductive fixed pointsin the
1970s.
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Let F be a class of second-order relations on the structureA. A k-ary relationR is
calledF -inductiveif there is an operative relationS(x, y, R′) ∈ F , wherex is k-ary, such
that there is a tuple of elementsa in A and for allb, b ∈ R if, and only if, (b,a) ∈ S∞,
whereS∞ denotes the inflationary fixed point ofS. The elementsa are calledparameters.
Analogously,R is calledF -monotone inductive, if it can be obtained in this way as the
least fixed point of a monotone relation inF . Let F -IND denote the class ofF -inductive
andFmon-IND the class ofF -monotone inductive relations.

A line of research active in the 1970s aimed at classifying the classesF -IND and
Fmon-IND according to structural properties of the underlying classF . Of particular
interest were classesF of operators definable in first-order logic or in prefix-classes of
second-order logic.

A result related to the present paper is the next theorem due to Harrington and
Kechris [6]. The following exposition on the Harrington–Kechris theorem and the
consequences derived from it were pointed out to us by Wayne Richter. I am very grateful
for his detailed comments.

Let ¬WF ∈ F be the statement thatF contains a 0-ary relation¬WF(S) which is
true for S if, and only if, S is not well-founded, i.e. contains an infinite descending chain
of elements. Further, a classF of operators is calledadequate, if it contains all the∀1
operators, is closed under∧,∨, ∃ and trivial combinatorial substitutions and contains the
relations and functions of a coding scheme onA, i.e. the relationsseq, lhandq needed to
code and decode a sequence of elements. Finally, byF̆ we denote the class of operators
whose complements are inF .

Theorem 4.2 (Harrington, Kechris).LetA be structure and letF be an adequate class of
operators onA. If ¬WF ∈ F andF̆ ⊆ Fmon-IND, then

Fmon-IND = F -IND.

Now let A be acceptable and takeF as the class of second-order relations definable
in monotone fixed-point logic MFP. AsA is acceptable, it is clear that MFP has all the
closure properties required by the Harrington–Kechris theorem. Thus the theorem states
thatFmon-IND = F -IND, i.e. the monotone and the inflationary closure ofF coincide.
Clearly, any relation definable by a monotone fixed point of a relation in MFP is already
definable in MFP, as the logic is closed under taking least fixed points of monotone
formulae. It follows that any inflationary fixed point of a MFP-formula is definable in
MFP itself and therefore MFP and IFP are equivalent onA. Thus we get the following
corollary.

Corollary 4.3. MFP= IFP on acceptable structures.

In an appendix to their paper [5], Gurevich and Shelah give a proof for the equivalence
of IFP and MFP on finite structures. As explained in [2, pp. 70–71], this can be extended
to infinite structures, generalising the theorem above. Note that the theorem only gives the
equivalence ofmonotoneand inflationary fixed-point logic on acceptable structures and
not the equivalence ofleastand inflationary fixed-point logic. On acceptable structures, the
equivalence of IFP and LFP could be derived from the following theorem by Moschovakis
(see [10, Theorem 15, p. 60]).
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Theorem 4.4 (Moschovakis).If F is a typical, nonmonotone class of second-order
relations on a structureA, thenF -IND is the smallestF -compact spector class onA such
that every relation inF is ∆ on∆.

We refrain from giving precise definitions for the notions mentioned in the theorem.
Note, though, that ifA is acceptable, then the class of first-order definable second-
order relations is ‘typical, nonmonotone‘and so is the class of relations definable in IFP.
Clearly, forF := IFP the inductive closureF -IND is again IFP. Thus, one possibility
to show the equivalence of LFP and IFP is by proving that LFP is an IFP-compact
spector class such that every relation in IFP is∆ on ∆. A description of this approach
can be found in [2, pp. 70–71]. However, proofs of the equivalence of IFP and MFP or
LFP on acceptable structures based on the Harrington–Kechris and Moschovakis result do
not immediately give a constructive translation of formulae of IFP into MFP or LFP. In
particular, in the proofs of these theorems parameters from the structure are used in the
formulae. Thus the resulting LFP and MFP-formulae may vary with different structures.

Therefore, we will not follow this approach but give a direct translation of IFP-formulae
into LFP-formulae. A consequence of our proof is that LFP is indeed the smallest IFP-
compact spector class such that every relation in IFP is∆ on ∆. As we will see in
Proposition 5.8, we really need nested fixed points for this. In particular, ifF is the class
of first-order definable operators, thenFmon-IND is a proper subset ofF -IND. In [1], Aczel
gives an example showing this latter fact.

In the next section we will establish the equivalence of LFP and IFP by giving an
explicit transformation of IFP-formulae into equivalent LFP-formulae. In particular, the
transformation is independent of a given structure and puts no constraints on the admissible
structures.

Note that the Harrington–Kechris Theorem and the equivalence proof given below are
somewhat incomparable. Our proof establishes the equivalence of LFP and IFP on arbitrary
classes of structures. In one way, this is more general than the Harrington–Kechris result
as the equivalence of LFP and IFP implies the equivalence of MFP and IFP and we do not
require the structures to be acceptable.

On the other hand, the theorem by Harrington and Kechris is true for arbitrary classes of
operators—as long as they have some mild closure properties. Thus it applies not only to
the case of MFP-definable operators but also to classes of operators definable in fragments
of second-order logic and even to operators which do not arise from any particular logic.
In this sense the Harrington–Kechris result is more general than our result which is only
true for LFP and IFP and does not easily transfer to other cases.

4.3. Equivalence in the general case

In this section we aim at establishing the equivalence of IFP and LFP on arbitrary
structures. Towards this, letϕ′(R, x) be in LFP, not necessarily positive inR, and consider
the formulaϕ := Rx ∨ ϕ′(x). Clearly,ϕ andϕ′ have the same inflationary fixed point. Fix
ϕ for the rest of the section.

We aim at defining the stage comparison relation≺ϕ for ϕ in LFP. Consider again the
proof of the stage comparisonTheorem 3.3above. We showed that≺ϕ can be defined by
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the inflationary fixed point of the formula

ϕ′(≺, x, y) := ϕ(x, Ru/u ≺ x,¬Ru/¬u ≺ x)

∧¬ϕ(y, Ru/u ≺ x,¬Ru/¬u ≺ x),

where≺ is a second-order variable of appropriate arity.
To turn this into a formula in LFP we have to replace the formula¬u ≺ x by a definition

positive in≺. Essentially, we define a second formulaϑ(�, x, y), with free second-order
variables� and≺, such thatϑ is negative in≺ and if≺ is interpreted by a given stage
≺α, for some ordinalα, then the least fixed point�∞ of ϑ is just≺α . We can then use
[lfp�,x,y ϑ] negatively to get the desired positive definition of≺.

Unfortunately, by definition, the relation defined by such a formula must increase with
increasing stages≺α. On the other hand, asϑ is supposed to be negative—and therefore
antitone—in≺, the relation defined byϑ must decrease with increasing stages≺α. Thus, in
general, we cannot hope for such a formula to exist. Instead we will use a formula defining
a slightly different relation. But it might be helpful to keep the original idea in mind.

Consider the following formula

χ(x, y) := [lfp≺,x,yχ ′(x, y)](x, y),

where

χ ′(x, y) := ϕ(x, Ru/u ≺ x,¬Ru/¬u � x)

∧∀u(u ≺ x ∨ ¬u � x)

∧¬ϕ(y, Ru/u � x,¬Ru/¬u ≺ x) (3)

and

x � y := [lfp�,x,y ϑ(�, x, y)](x, y)

where

ϑ(x, y) := ϕ(x, Ru/u � x,¬Ru/¬u ≺ x})
∧¬∃u(u ≺ x ∧ ¬(u � x ∧ u � y))

∧¬ϕ(y, Ru/u ≺ x,¬Ru/¬(u � x ∧ u � y)).

Obviously, the formulaχ ′ is positive in≺ and is itself a formula in LFP. Thus the least
fixed point (with respect to≺) of χ ′ exists. We claim that this fixed point defines the stage
comparison relation≺ϕ of ϕ. Before proving this we first have to establish some facts
about the sub-formulaϑ . Recall from the beginning of this section thatϕ is supposed to be
of the formRx ∨ ϕ′. This is important for the proofs below as it ensures that whenever a
tuplex satisfiesϕ at a stageα, it satisfiesϕ at all higher stages also.

Lemma 4.5. Consider the fixed-point induction onϑ where≺ is interpreted by≺<α, i.e.
x ≺ y if, and only if,x ∈ ϕ<α and|x|ϕ < |y|ϕ .

(i) If x ∈ ϕα or y ∈ ϕα, then(x, y) ∈ ϑ∞ if, and only if,|x| < |y|.
(ii) For all y such that|y| > α there is anx such that|x| = α and(x, y) ∈ ϑ∞.
(iii) If the fixed-point of≺ has already been reached, i.e. if≺α=≺<α, thenϑ∞ =≺α .
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Proof. Throughout this proof, the variable≺ will always be interpreted by the set≺<α .
Therefore we drop the index and write≺ for ≺<α .

1. We prove by induction onβ that for allβ < α, (x, y) ∈ ϑβ , i.e.

(A,≺<α,�<β) � ϑ(x, y), if, and only if, x ∈ ϕβ and|x|ϕ < |y|ϕ.
Again we omit the index most of the time and write� for�<β .

Suppose that for allγ < β the claim has been proved. We distinguish between the
case wherex ∈ ϕβ andx /∈ ϕβ .
• Supposex ∈ ϕβ . We show that(A,≺<α,�<β) � ϑ(x, y), if, and only if,
|x|ϕ < |y|ϕ.

By induction hypothesis, ifx ∈ ϕβ then for all u, u � x if, and only if,
|u|ϕ < |x|ϕ and, asβ < α, ¬u ≺ x if, and only if, |u|ϕ ≥ |x|ϕ. Thus,

(A,≺<α,�<β) � ϕ(x, Ru/u � x,¬Ru/¬u ≺ x}).
Now considery. If |y|ϕ > |x|ϕ, then¬(u � x ∧ u � y) reduces to¬u � x. As
β < α, ¬u �<β x is equivalent to¬u ≺<α x. Therefore there is nou satisfying
(u ≺ x ∧ ¬(u � x ∧ u � y)) and the second conjunct inϑ is satisfied. Further,y
does not satisfyϕ(y, Ru/u ≺ x,¬Ru/¬(u � x∧u � y)) as otherwise|y|ϕ ≤ |x|ϕ .
Thus,(x, y) ∈ ϑβ .

On the other hand, if|y|ϕ < |x|ϕ, then(u � x ∧ u � y) in the second conjunct
reduces tou ≺ y and thus there is au satisfyingu ≺ x ∧ ¬(u � x ∧ u � y)),
u := y for instance.

Finally, suppose|x|ϕ = |y|ϕ. By the same argument as above we get that in this
case

(A,≺<α,�<β) � ϕ(y, Ru/u ≺ x,¬Ru/¬(u � x ∧ u � y))

and thusϑ is not satisfied.
• Supposex /∈ ϕβ . We show thatϕ(x, Ru/u � x,¬Ru/¬u ≺ x}) is not satisfied. By

induction hypothesis,u � x defines the setM := ϕ<β . Clearly, asx /∈ ϕβ ,

A � ϕ(x, Ru/u ∈ M,¬Ru/u ∈ Mc).

Now consider the setN := {u : ¬u ≺ x}. As x /∈ ϕβ , we getMc ⊇ N, whereMc

denotes the complement ofM.

By monotonicity ofϕ in M andMc it follows that

(A,≺<α,�<β) � ϕ(x, Ru/u � x,¬Ru/¬u ≺ x}.
We get that for any pair(x, y), (A,≺<α,�<β) � ϑ(x, y) if, and only if, x ∈ ϕβ and
|x|ϕ < |y|ϕ .

2. Part 1 implies that(x, y) ∈ ϑ<α if, and only if, x ∈ ϕ<α and |x|ϕ < |y|ϕ. Thus,
�<α=≺<α. Now consider the next induction step. Again we distinguish between
x ∈ ϕα andx /∈ ϕα.
• Supposex ∈ ϕα. Obviously,

(A,≺<α,�<α) � ϕ(x, Ru/u � x,¬Ru/¬u ≺ x).



74 S. Kreutzer / Annals of Pure and Applied Logic 130 (2004) 61–78

If |y|ϕ ≥ |x|ϕ , then(u � x ∧ u � y) reduces tou ≺ x and thus(A,≺<α,�<α) �
¬ϕ(y, Ru/u ≺ x,¬Ru/¬(u � x ∧ u � y)) if, and only if, |y|ϕ > |x|ϕ .

Now suppose|y|ϕ < |x|ϕ . Then |y|ϕ < α and there is au satisfyingu ≺
x ∧ ¬(u � x ∧ u � y), againy being itself a witness for this. Thusϑ(x, y) is
not satisfied.

• Now assumex /∈ ϕα . Then

(A,≺<α,�<α) � ϕ(x, Ru/u � x,¬Ru/¬u ≺ x})
asu � x defines the setu ∈ ϕ<α and¬u ≺ x its complement.

It follows, thatϑα contains all pairs(x, y) such thatx ∈ ϕα and |x|ϕ < |y|ϕ . This
proves part (ii) because if there is a tupley of rank greater thanα there must also be a
tuplex of rank exactlyα and this pair would be inϑα .

Further, if the fixed point of≺ has already been reached, i.e.≺α=≺<α, then there are
no tuplesx of rank exactlyα. In this case, all tuples(x, y) ∈ ϑα already occur inϑ<α

and the fixed point ofϑ has been reached. This proves part (iii) of the lemma. Thus,
from now on, we assume that≺<α�≺α.

3. We show now that at no stageγ > α can a pair(x, y) with x, y ∈ ϕα and|y|ϕ ≤ |x|ϕ
enter the fixed point. Towards a contradiction letγ be the smallest such stage and let
(x, y) be as described. Then the same argument as in the first item of step 1 yields a
contradiction.

4. What is left to be shown is that for nox /∈ ϕα and y ∈ ϕα the pair(x, y) enters the
fixed point at some higher stage. Towards a contradiction, letγ be the least such stage,
i.e. the least stage such that there is a pair(x, y) ∈ ϑγ with x /∈ ϕα and y ∈ ϕα . In
particular,(A,≺<α,�<γ ) � ϑ(x, y).

Now, asx /∈ ϕα, u ≺ x defines justϕ<α and, asγ was chosen minimal, we get
that¬(u � x ∧ u � y) defines the set of tuplesu such that|u|ϕ ≥ |y|ϕ . Thus, if
|y|ϕ < α then there is a tupleu satisfyingu ≺ x ∧ ¬(u � x ∧ u � y) and thus
ϑ is not satisfied by(x, y). On the other hand, if|y|ϕ = α, then(A,≺<α,�<α) �
ϕ(y, Ru/u ≺ x,¬Ru/¬(u � x ∧ u � y)) and againϑ is not satisfied.

This finishes the proof of the lemma.�

We now prove a technical lemma which will establish the induction step in the proof
that the fixed point ofχ ′ defines≺ϕ .

Lemma 4.6. For all ordinals α, (A,≺<α) � χ ′(x, y), if, and only if, x ∈ ϕα and
|x|ϕ < |y|ϕ.

Proof. We distinguish between the cases wherex ∈ ϕα andx /∈ ϕα.

• Supposex ∈ ϕα. By assumption,u ≺<α x defines the set{u : |u|ϕ < |x|ϕ} and, by
part (i) ofLemma 4.5, ¬u � x defines its complement. Thus,(A,≺<α) � ϕ(x, Ru/u ≺
x,¬Ru/¬u � x) and allu satisfyu ≺ x ∨ ¬u � x.

Now, (A,≺<α) � ¬ϕ(y, Ru/u � x,¬Ru/¬u ≺ x) if, and only if, |y|ϕ > |x|ϕ .

Thus,(A,≺<α) � χ ′(x, y) if, and only if, |y|ϕ > |x|ϕ .
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• Supposex /∈ ϕα . Thenu ≺ x defines the set{u : u ∈ ϕ<α}. If ϕ<α = ϕα, i.e. if the
fixed point ofϕ has been reached, then, by part (iii) ofLemma 4.5, we get� =≺ and
(A,≺<α) � ϕ(x, Ru/u ≺ x,¬Ru/¬u � x) and thereforeχ ′ is not satisfied.

Otherwise, i.e. ifϕ<α � ϕα, then, by part (ii) ofLemma 4.5, there is a tuplea of
rankα with a � x. Thus, the conjunct∀u(u ≺ x ∨ ¬u� ≺ x) is not satisfied asa � x
buta ⊀ x.

This finishes the proof of the lemma.�

As corollary we get that the relation≺ϕ is definable in LFP.

Corollary 4.7. Letϕ(R, x) be a formula inLFP. Then the stage comparison relation≺ϕ
of the inflationary fixed point ofϕ is definable inLFP.

Proof. A simple induction on the stages using the previous lemma shows that≺ϕ is defined
by the formulaχ above. �

The equivalence of LFP and IFP follows immediately.

Theorem 4.8. For every formula inIFP there is an equivalent formula inLFP.

Proof. By Corollary 4.7, for everyϕ(R, x) ∈ LFP the relation≺ϕ is definable in LFP.
Thus, for allx, x ∈ ϕ∞ if, and only if, A � ϕ(x, Ru/χ(u, x)), whereχ is the formula
defining≺ϕ . Thus, the inflationary fixed point of an LFP-formula can be defined in LFP.

For arbitrary formulaeϕ ∈ IFP, the theorem follows by induction on the number of
inflationary fixed points inϕ converting them to least fixed points from the inside out.�

The theorem shows that also on infinite structures, least and inflationary fixed-point
logic have the same expressive power. But, contrary to the case of finite structures where
the translation of IFP-formulae to equivalent LFP-formulae does not alter the fixed-point
structure, in the general case their structure in terms of alternations betweenlfp-operators
and negation and the nesting depth of fixed-point operators becomes more complicated.
It might be possible to reduce the increase in the number of alternations of the resulting
LFP-formulae. However, we will show below that an increase in the number of alternations
cannot be avoided.

5. Normal forms and hierarchies

There are various natural parameters that may influence the expressive power of fixed-
point logics. In this section we are particularly interested in two such parameters: the
number of fixed-point operators that are nested within each other and the number of
alternations between fixed-point operators and negation symbols. For this we first need
some technical definitions.

Definition 5.1 (Alternation and Nesting-depth Hierarchy). Letϕ ∈ LFP be a formula
such that no fixed-point variable is bound twice in it and letX1, . . . , Xk be the fixed-
point variables occurring inϕ. Let for all i , ϕi be the formula bindingXi in ϕ, i.e.
ϕi := [lfpXi ,xi

ϕ′i ](t i ) for suitablexi , t i andϕ′i .
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We define a partial order"ϕ on the variablesX1, . . . , Xk as

Xi "ϕ X j if, and only if, ϕi is a sub-formula ofϕ j .

• Thenesting-depth ofϕ is defined as the maximal cardinality of a subset of{X1, . . . , Xk}
linearly ordered by"ϕ.

• The alternation-level ofϕ is defined as the maximal cardinality of a subsetM of
{X1, . . . , Xk}, linearly ordered by"ϕ , such that in addition for allXi , X j ∈ M, if
Xi is a direct predecessor ofX j with respect to"ϕ , thenϕi occurs negative inϕ j .

Then-th level of thealternation hierarchy(LFPa
n)n∈ω consists of all formulae of LFP with

alternation-leveln. Analogously, then-th level of thenesting-depth hierarchy(LFPd
n)n∈ω

of LFP is defined as the class of formulae in LFP of nesting-depthn. Finally, by
(pLFPd

n)n∈ω we denote thepositive nesting-depth hierarchy, consisting of formulae with
nesting-depthn but with only positive applications of the fixed-point operators.

The hierarchies for IFP are defined analogously.

By definition, LFPa
1 consists of all LFP-formulae where nolfp-operator occurs

negatively, whereas LFPa0 and LFPd
0 are just the class of first-order formulae.

The following theorem, due to Moschovakis, shows that in LFP, nested positive fixed
points can be eliminated. See [9, Theorem 1C.3] for a proof. The presentation given here
follows [3, Lemma 8.2.6 on p. 182].

Theorem 5.2 (Transitivity Theorem).Let ϕ(R, Q, x) and ψ(R, Q, y) be first-order
formulae positive in R and Q such that no free first-order variables ofψ are bound in
χ := [lfpR,x ϕ(Qu/[lfpQ,yψ](u))](x). Thenχ is equivalent to a formula with only one
application of anlfp-operator.

An immediate consequence of the theorem is the following.

Corollary 5.3. For all n, pLFPd
n = pLFPd

1, i.e. every formulaϕ ∈ LFP in which all fixed-
point operators occur only positively is equivalent to a formula with only one application
of a fixed-point operator, i.e. the positive nesting-depth hierarchy forLFP collapses.

Obviously, the nesting-depth hierarchy is finer than the alternation hierarchy in the sense
that a formula with alternation depthn also has nesting-depth at leastn. Using simple
diagonalisation arguments it can be shown that in general the nesting-depth hierarchy is
strict, i.e. there is no constantk < ω such that every LFP formula is equivalent to a formula
with nesting depth at mostk.

On the other hand,Theorem 5.2implies that for LFP the nesting-depth hierarchy
collapses to the alternation hierarchy. An immediate consequence of this is, that in general
the alternation hierarchy for LFP is strict. (See e.g. [9, Chapter 5] for a proof of this.)

Theorem 5.4. The alternation hierarchy forLFP is strict.

The proof of this theorem uses a diagonalisation argument which relies on structures
being infinite. And indeed, as proved by Immerman [7], the nesting depth and therefore
also the alternation hierarchy for LFP collapses on finite structures.
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We now turn towards alternation and nesting of inflationary fixed points. As the
following theorem shows, alternation between inflationary fixed points and negation does
not result in an increase in expressive power.

Theorem 5.5. Every formula inIFP is equivalent to a formula where negation occurs only
in front of atoms.

Proof. The theorem is proved by induction on the structure of the formula. For the case of
the ifp-operator note that a formula¬[ifpR,x ϕ](t) is equivalent to the simultaneous fixed
point [ifpQ : S](t) of the system

S :=
{

Rx ← ϕ(R, x)
Qx ← ∀ y (ϕ(R, y)→ Ry) ∧ ¬Rx.

On structures with at least two elements this is equivalent to the inflationary fixed point of
a single formula whereas on structures with only one element, IFP collapses to FO anyway
and the theorem is trivial. �

Theorem 5.5above shows that the alternation hierarchy of IFP collapses to level one.
Again, simple diagonalisation arguments show that the nesting depth hierarchy for IFP is
strict in general and therefore, unlike for least fixed points, also the positive nesting-depth
hierarchy is strict for IFP.

Using the results fromSection 4, we can establish a close correspondence between the
strictness of the alternation hierarchy for LFP on a structureA and the strictness of the
nesting-depth hierarchy for IFP onA.

Theorem 5.6. For every n≥ 0,

LFPa
n ≤ IFPd

n ≤ LFPa
3n .

Proof. Letϕ ∈ LFPn be a formula with alternation depthn. By the transitivity theorem5.2,
nestedlfp-operators which all occur positively can be contracted to a singlelfp-operator
increasing the arity. Thus, every formula in LFPn is equivalent to a formula withn nested
fixed points and therefore equivalent to an IFP formula with nesting depthn.

Towards the second containment, note that using the method ofTheorem 4.8to convert
an IFP-formula to an equivalent LFP-formula, the translation of each individualifp-
operator at most triples the alternation depth. The theorem now follows by induction.�

We immediately get the following corollaries.

Corollary 5.7. For any structure, the alternation depth hierarchy forLFPcollapses if, and
only if, the nesting depth hierarchy forIFP collapses.

An example of a class of structures where the hierarchies are strict is the class of
acceptable structures (see [9] for instance).

It is open whether there are infinite structures on which the alternation and nesting depth
hierarchies for LFP and IFP collapse but where LFP is still more expressive than FO.

The previous theorem implies that every LFP-formula with alternation-depthn can
be converted into an IFP-formula with nesting depthn. We show next that the converse
does not hold, i.e. there are IFP-formulae withn fixed-point operators which are not
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equivalent to any LFP-formula of nesting-depth at mostn. In particular, this shows that
the Harrington–KechrisTheorem 4.2cannot be strengthened to positive inductions, i.e. the
inductive closureof FO does not coincide with thepositivemonotone closure.

Proposition 5.8. For every n> 1, LFPa
n � IFPd

n.

Proof. Suppose IFPdn = LFPa
n for somen. For every formulaϕ ∈ LFPa

n, ϕ and¬ϕ are
equivalent to formulaeψ and¬ψ in IFPd

n. As by assumption IFPdn = LFPa
n, the formulae

¬ψ andψ are both equivalent to a formula in LFPa
n and therefore LFPan is closed under

complementation contradicting the strictness of the alternation hierarchy for LFP.�
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