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Abstract

We study the relationship between least and inflationary fixed-point logic. In 1986, Gurevich and
Shelah proved that in the restriction to finite structures, the two logics have the same expressive
power. On infinite structures however, the question whether there is a formula in IFP not equivalent
to any LFP-formula was left open.

In this paper, we answer the question negatively, i.e. we show that the two logics are equally
expressive on arbitrary structures. We give a syntactic translation of IFP-formulae to LFP-formulae
such that the two formulae are equivalent on all structures.

As a consequence of the proof we establish a close correspondence between the LFP-alternation
hierarchy and the IFP-nesting depth hierarchy. We also show that the alternation hierarchy for IFP
collapses to the first level, i.e. the complement of any inflationary fixed point is itself an inflationary
fixed point.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Formal logics have played a crucial role in the development of theoretical computer
science. Features that are pervasive to many diverse areas such as database theory,
computer-aided verification, or computational and descriptive complexity theory are
definitions byrecursionor iteration.

Formalising recursive definitions in a logical language usually involves some kind of
fixed-point construction. This can be incorporated into the logic in various ways. In second-
order logic, recursion is modelled by quantifying over the individual stages of the iteration
process or by defining the intersection of all fixed points, whereas in infinitary logics, the

E-mail addresskreutzer@informatik.hu-berlin.de (S. Kreutzer).

0168-0072/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2004.02.001


https://core.ac.uk/display/82146356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/apal

62 S. Kreutzer / Annals of Pure and Applied Logic 130 (2004) 61-78

same is simulated by infinitary disjunctions defining arbitrary recursion depths. Another
way of modelling recursive definitions is to incorporate an explicit operator for forming
fixed points. Logics following this approach are calfieded-point logicsIn the various

areas of computer science where fixed-point logics have been considered, a huge variety of
such logics has evolved. Regardless of how great the differences are elsewhere, the fixed-
point part of most logics is formed according to the same common principle.

Consider a first-order formula(R, X) with a free second-order variabR of arity Kk,
andk free first-order variableX. On any structuré@, such a formula induces an operator
F, taking a setP < AKX to the set{a : (2, P) £ ¢[a]}. Recursive definitions are now
modelled by considering the various kinds of fixed points such an operator may possess.
Among theseleast fixed pointplay a fundamental role.

Least fixed points are usually incorporated into a logic as followg.i#f positive inR,
the operatoiF, is monotone, i.eX C Y implies F,(X) € F,(Y). Monotone operators
always have a least fixed poitip(F,) := ({X : F,(X) = X} and therefore, on any
structure®!, a first-order formulap(R, X) positive in R naturally induces a sétp(F,).

This forms the basis déast fixed-point logi€LFP), an extension of first-order logic (FO)
equipped with an explicit construfifpg x (R, X)1(X), for ¢ positive in R, defining the
least fixed point of,.

A different type of fixed point can be obtained by an explicit induction process. Here,
we associate with each formulgR, X) theinflationary operator }, taking a setP < AK
totheseP UF,(P) = PU{ae Ak, P) E g[al}. The operatot,, is used to build up
the following sequenceéR*),corq Of sets, indexed by ordinals

R := [,(R™) = R U {@: (% R™) F g[al),

whereR=* = | J; _, R for everya e Ord. As this sequence is increasing, it leads to a
fixed pointR*® of I, defined asR™ := R* for the least ordinak such thatR* = R+1,

R is called theinflationary fixed poinbf ¢ and is used to form thimflationary fixed-
point logic (IFP) as the extension of FO by an operdlibpg ¢ (R, X)](X) defining the
inflationary fixed point ofp. The existence of this fixed point is independenfdbeing
positive inR. However, due to a theorem by Knaster and Tarski {demorem 2.3, if ¢ is
positive inR, the inflationary and the least fixed point coincide. Thus, every LFP-formula
is equivalent to a formulain IFP.

Following work in recursion theory on inductive definitions in arithmetic, the first
systematic study of inductive definitions on abstract structures occurred in the 1970s. At
that time, no explicit construct to form fixed points was considered and therefore fixed
points could not be nested. Nevertheless, many fundamental methods in the theory of fixed-
point logics date back to the investigations done then. $8gfpr surveys of the results
and methods established by then. We will briefly recall some results related to the present
paper inSection 4.2

Since the 1980s, fixed-point logics in the modern form are studied in various areas of
computer science like database theory or finite model theory. The main evolution over the
cases studied in the 1970s was the introduction of explicit fixed-point operators such as
[Ifpr x ¢1(X) and[ifpg x ¢]1(X). In particular, the formulag can again contain fixed-point
operators and thus fixed points can be nested and negated. Although different in scope and
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focus, finite model theory and database theory both concentrate on finite structures. One
effect of this is that today a lot more is known about these logics on finite than on infinite
structures.

An important question concerning the logics LFP and IFP is whether IFP is strictly
more expressive than LFP. As noted by Dawar and Gure@jch¢omes in two forms:

Question. Is there a formula of IFP and a structur@ such that for every formula
Y Of LFP,2LZ (¢ <> ¥)?

Is there a formulap of IFP such that for every formulg of LFP, there is a
structure?l such tha®l # (¢ < ¥)?

Using the stage comparison method, Gurevich and Shelah showed in 1986 that in the
restriction to finite structures, the two logics are equivalent. It is clear that the proof does
not extend to infinite structures as it crucially relies on the fact that on finite structures
every fixed-point induction is finite itself and therefore only successor stages occur.

The main contribution of this paper is to show that the two logics are equivalent on
arbitrary structures, rather than just on finite ones. In particular, we show that for every
formulain IFP there is a formula in LFP equivalent to it on all structures. Thus, we give a
negative answer to both questions above.

As a simple consequence of the method used to show this, we establish a close
correspondence between the LFP alternation hierarchy and the IFP nesting-depth
hierarchy. To be precise, the IFP nesting-depth hierarchy is infinite on a strattufre
and only if, the alternation hierarchy for LFP is infinite 2in

We also show that there is a negation normal form for IFP, i.e. every formula of
IFP is equivalent to a formula where negation occurs only in front of atoms. Thus, the
alternation hierarchy for IFP collapses to the first level. This contrasts with least fixed-
point logic, for which the strictness of the alternation hierarchy follows from results due to
Moschovakis 9, Chapter 5D].

An extended abstract of the present paper was publishél in [

Organisation. In the next section, we give precise definitions of the fixed-point logics
considered in this paper. The stage comparison relations and theorems are presented in
Section 3 In Section 4we establish our main result, the equivalence of LFP and IFP. We
first give a brief review of the equivalence result for the logics on finite structures and recall

a related theorem by Harrington and Kechris. FingBlgction Scontains results about the
nesting and alternation hierarchies for IFP and LFP.

2. Fixed-point logics
In this section we present the basic definitions for the following explorations 2S€E [
for details on fixed-point logics. We first present some notation used throughout the paper.
Let2( := (A, ) be a structure and I8 be ak-ary relation symbol not occurring in
e If tis atuple of terms, we write* for the interpretation of in 2L.

e LetX be ak-tuple of terms and let/1(X), ¥2(X) be formulae, which may or may not
contain R. We write ¢ (X, Ru/y1(0)) for the formula obtained fronp by replacing
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every occurrence of an atoRRu by vr1(U), wherel is a tuple of terms. Heraj1(U)
means that the variabl&sin /1 (X) are replaced by, where bound variables ifi; are
suitably renamed to avoid conflicts.

Sometimes we need to replace positive and negative occurrences of Rtbbys
separate formulae. In this case we wiité, Ru/v1(U), —RU/v¥»2(U)) to denote the
formula obtained fronmy by replacing each positive occurrence of atoms of the form
RU by 1 (U) and each negative occurrence of atoms of the f&urby —y»(U). For
instance, ifp (R, X) is the formulaRX v —RX, theng (X, RU/yr1 (U), =RU/v2(0)) would
just beyr1(X) v =(—¢2(X)) which is equivalent tay1 (X) Vv ¢2(X).

Clearly, any such formula (X, RU/y1(U), =RU/v¥»(0)) is positive in bothy, and
Y2 and thus positive iR if 1 andy, are.

e Finally, if £ and£’ are logics, we writel < £’ if the logic £ is no more expressive
than/’, i.e. for every formula € L there is an equivalent formuda € £'.

Let T be a signature ard := (A, t) at-structure. Letp(R, X) be a first-order formula
with k free variablex and a free relation symbd® not occurring int. The formulag
defines an operator

Fo: P(AY) — P(AX)
R +— {&@: &, R) F ¢l[a]}.

A fixed point of the operatoF,, is any setR such thatF,(R) = R. Clearly, asyp is
arbitrary, the corresponding operafey need not have any fixed points. For instance, the
formulag(R, X) := —VYy Ry defines the operatdf, mapping any seR C Ak to AX and
the setAK itself to the empty set.

However, if the class of admissible formulaés suitably restricted, then the existence
of fixed points can be guaranteed. A formu&R, X) is monotone in Rif for all
t-structuresA = (A, ) and all setsR, R € AX, R C R implies F,(R) € F,(R).

It is easily seen that for monotone operatbgsfixed points always exist and in fact even a
least fixed point exists, defined as

Ifp(Fy) == ({R: Fy(R) = R}.
A different kind of fixed point is obtained by an explicit induction process. Here we
associate with a formula(R, X) theinflationary operator
l,: P(AY) — P(AK)
R — RUF,(R)=RU({a: &, R) F ¢[al}.

The operatot, is used to build up the following sequend®”),corq Of sets, indexed by
ordinalso:

RD{ = I(p(R<C{) — R<D{ U {ﬁ (2[, R<C{) ': (p[a]}’ (1)

whereR=* = | J; _, RS for everya e Ord. Clearly this sequence of sets is increasing
and thus leads to a limiR>® := R? for the least ordinad such thatR* = R**!, The

setR” is called theinflationary fixed poinbf I, in termsifp(l,). With abuse of notation

we also refer tdR*° as the inflationary fixed point of the formuja Least and inflationary
fixed points are the basis for the fixed-point logics studied in this paper. Since the three
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fixed-point logics considered here are syntactically all rather similar, we present the three
logics at once.

Definition 2.1. Let2( be a structure. The syntax of least, monotone and inflationary fixed-
point logic is defined by the usual rules for first-order logic augmented with the following
formula building rule: lfp (R, X) is a formula with free first-order variabl@&s= x, . . ., Xk

and a free second-order varialiReof arity k then

() ¥ = [Ifprx ¢l(D) is a formula ofmonotone fixed-point logiMFP) if ¢ € MFP
defines on all structures a monotone operator,

(i) ¥ = [Ifprx ¢](® is a formula ofleast fixed-point logi¢LFP) provided thap € LFP
is positive inR and

(i) v = [ifprx 1) is a formula ofinflationary fixed-point logiqIFP) for arbitrary
formulaeg € IFP.

In each case, the free variablesyofare the variables occurring Trand the free variables
of ¢ other thark.

Let 2( be a structure providing an interpretation of the free variables efcept forx.
For formulae in MFP and LFR( F [Ifpr x ¢](1) if, and only if, e Ifp(F,). For IFP,

A k= [ifpr 5 ¢1(D) if, and only if, T € ifp(l,).

As explained above, for any monotone operdtothe least fixed point of always
exists. Therefore the semantics of the monotone fixed-pointlogic is well defined. However,
the property of a formula to define an operator which is monotone on all structures is
undecidable and therefore the monotone fixed-point logic has an undecidable syntax.

To avoid this, one considers syntactical restrictions of MFP which guarantee
monotonicity of the corresponding operators. The mostimportant of these is the least fixed-
point logic, where the application of the fixed-point rule is restricted to formu{d@ X)
which are positive in the relation variabRe Clearly, if o(R, X) is positive inR, then the
corresponding operatdi, is monotone. Thus, LFR MFP.

As a corollary of the following theorem due to Knaster and Tarski we get that MFP is
contained in inflationary fixed-point logic.

Theorem 2.2 (Knaster and Tarski)Let M be a set. Every monotone operator F
Pow(M) — Pow(M) has a least fixed point

Ifp(F) = ({P: F(P) = P}.

Further, this fixed point can also be obtained as the fixed point of the sequence of sets
defined as

RY := F,(R™%). )

As F is monotone, the sequence in the previous theorem is increasing and therefore
the least fixed point reached in this way must also be the inflationary fixed point of
It follows that

LFP < MFP < IFP.
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When writing fixed-point formulae it is often convenient to use variants of the logics
where the fixed points of several formulae can be built up simultaneously.

Let Ry, ..., R be relation symbols of arities, respectivelySimultaneous inflationary
fixed-point formulaare of the formy (X) .= [ifp R : S|(X), where

RiX1 < ¢1(Ry,..., R, X2)
S:=
RkYk % wk(Rlﬂ AR Rk’ 7I()

is a system of formulae in (simultaneous) IFP. On any stru@egformulag; in Sinduces
an operator

lg: POMA™) x - - - x POWMA®) — Pow(A")
(R,...,R0) » RuUfa:® Ry,..., R)F gi[al}.

The stagess® of an induction on such a systeof formulae are novk-tuples of sets
(RT, ..., RY) defined as

R =1y (RT%, ..., RF) = RT* U {@: @& (R7")1<j=<n) F gilal},

where R~ = (J; _, Rf. For every structur@l = (A, t) and any tuplea from A,
2 F y[a] if, and only if, a € R, where R* denotes thé-th component of the
simultaneous fixed point of the syste3nThe definition of simultaneous LFP is analogous.

It can be shown, that by increasing the arity of the involved fixed-point relations, any
formula in IFP with simultaneous inductions can be transformed into an equivalent IFP
formula without simultaneous fixed points. The same is true for LFP. See3g.g. [

3. Comparing the stages of inductive definitions

In this section we introduce the stage comparison method, one of the most important
tools to reason about fixed-point logics. The method will be essential for the explorations
below. Let ¢(R,X) be a formula, e.g. in first-order logic. As mentioned above, the
inflationary and—if it exists—the least fixed point of a formgléR, X) can be obtained
as the fixed point of the sequence of sets as definet)iar((2). We concentrate on such
sequences of sets approximating least or inflationary fixed points.

Let 2l := (A, r) be arz-structure with universéA. By definition, the sequence of
stages defined inlj is increasing and thus there is an ordimal< |A|™ such that
R = Retl = R>. Here |A|t denotes the least infinite cardinal greater than the
cardinality of A. The individual sets occurring in the sequence induced by a forpula
are called thestages of the induction op. The setR* is called thex-th stage of the
induction. Sometimes we also wrigg for R¥. As a final bit of notation, we writ&k<¢ or
¢=* for the union of all stages up to, i.e.¢~* := (g _,, ¢#, and likewise forR<*.

We now define the stage comparison relations for least or inflationary fixed-point
inductions.

Definition 3.1. Let¢(R, X) be a formula and € A. Therank[a|, of @ with respect tg
is defined as the least ordirnakuch thag € ¢ if such an ordinal exists ansb otherwise.
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Thestage comparison relations, and <, are defined as
X Zp Y =X, yee™ and  |x|y < |Yly,
and
X <p Y= X € ¢ and Xy < |Ylg,
where we allowy/|, = co.
The proof of the following lemma is immediate from the definition.
Lemma3.2. Letp(R, X) be a formula. For alla € A,

ac ™ iffandonlyif a<,a
if,and onlyif (2, {u:U <, a}) F ¢[al.

The next theorem shows that the stage comparison relations are themselves definable.
It essentially goes back to Moschovakis, who proved the corresponding theorems for least
and inflationary fixed-point inductions on first-order formulae. The extension of his proofs
to the case of full LFP and IFP is immediate. S8ednd references therein for the case of
LFP and [LO] for the IFP-version.

Theorem 3.3 (Stage Comparison Theorem). (et ¢(R,X) be a formula in LFP
positive in R. Ther:, and<,, are definable in LFP.
(i) Lety(R,X) be aformulainFP. Then<, and<,, are definable inFP.

Proof. We only present the proof for Part (i), as this case will be useskiction 4below.
The more complicated proof for the first part can be foun®]n [

Let (R, X) be a formula in IFP. W.l.0.g. we assume that of the formRxX v ¢’. We
claim that the relationg, and <, can be obtained as the simultaneous fixed point of the
following systemS of formulae:

_ XSV <+<—o(X, RU/U<Y) Ay, RU/U=<Y)
- {7 <Y+«— (X, Ru/u < X) A =p(y, RU/U < X).
Here,p(X, RU/U < y) means that every occurrence of an atBmin ¢, for some tuple of
termstu, is replaced by the new atomh< y. Note that, strictly speaking, the simultaneous
induction is unnecessary, as only therelation occurs on the right-hand side of the rules.
We state the system here in the simultaneous form as it will be used as a starting point for
the exploration irSection 4.lbelow.

As before, let, for every ordinal, <* and <* denote the relations and < at stage
« of the induction onS and let<=<“ and <<% be the union of all stages less thani.e.
<=*= g, <# and<=*=Jy_, <*. We prove by induction that for al and all pairs

@b,
e (3, b) e<*if, and only f, |bl, < « and|al, < |b|, and
e (@ b) e<*if,and only if,|al, < « and|al, < |b|,.
From this, the theorem follows immediately. leebe an ordinal and suppose that for all

B < a the claim has already been proved, {&.b) € <= if, and only if, |a|, < |b|, < «
and likewise for<=<*.
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Suppose is a tuple of elements of rarkk < «. Then, the sefl : U <<* b} contains
precisely the elements of rank less tharThus,¢(y, RU/T < V) is satisfied byb. Set
¥ == b. A tuplea satisfiesp(X, RU/U < V) if, and only if, the rank ofa is at mostt and
thereforeal, < [bl,.

On the other hand, if the rank bfis greater thaw, then{u : U <<% b} is justy<* and
thereforep(y, RU/U < V) is not satisfied by. This proves the induction hypothesis for
the first item above.

For <, leta be a tuple of elements of rargk< «. Again,{U : U <<% @} contains all
elements of rank less thgnand therefore (X, Ru/U < X) is satisfied bya. Obviously, if
we setX := 3@, then—¢(y, RU/U < X) is satisfied by those tupléswhose rank is greater
than& and therefore greater than the rankaofinally, if @ is a tuple of rank greater than
«a, it does not satisfy (X, Ru/U < X). This proves the second item above and, with it, the
claim.

Thus, the stage comparison relationg and <, are defined by the IFP-formulae
[ifp < : SI(X,y) and[ifp < : S|(X,Y) respectively. [

4. Expressive equivalence of least and inflationary fixed-point logic

In this section, we establish the equivalence of least and inflationary fixed-point logic.
As noted above, in the restriction to finite structures, the equivalence has already been
proved by Gurevich and Shelab][ We first hint at their proof and explain where its
extension to infinite structures fails.

4.1. Equivalence on finite structures

Consider again the proof ofheorem 3.3 As shown there, the stage comparison
relations of any IFP-formula(R, X) are definable by the formuldé&p < : S|(X,y) and
[ifp < : S|(X,Y) respectively, wher&is the system of formulae defined as

_ XY «— oX RU/U<Y) Ay, RU/u=<Yy)
TIX<Y «— @& RU/TU<X)A—¢(y, RU/T < X).

Now supposey(R, X) is itself an LFP-formula but not necessarily positiveRn It was
shown by Gurevich and Shelah, that in restriction to finite structures, the stage comparison
relations for the inflationary induction gmare definable in LFP. For this, they converted
the systents above to an equivalent systéemof formulae, which are positive in their free
fixed-point variables. W.l.o.g. we assume thais of the formRX Vv ¢’. The problem to
be solved is that if every atofRU in ¢ is replaced by a new atom involving, then at all
places whereR is used negatively, also the new relatiaris used negatively. Therefore,
we have to come up with a definition of the complemBfiof R by a formula positive in

< and<. For this, let be a finite structure of size. Clearly, ifk is the arity ofR, then
there is somen < nX such that the induction af on2 reaches its fixed point at stage
Now consider the sequence of stagB8),<m induced byy on%l. Let <, and<,, be the
stage comparison relations of For every stag®*, with « > 0, there is a tupl& whose
rank is precisely, i.e.z € R* — R*~. For any such tuplg, {U : U <, zZ} = R* and
{U:Z <, 0} = (R¥C. Thus the stag®” as well as its complemexR*)¢ can be defined
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by a positive formula. This is used to define an induction process, positigednd <,
defining the relations:, and~<,,.

As the inflationary fixed point can easily be obtained from the stage comparison
relations (se&emma 3.2, this shows that on finite structures, every inflationary fixed point
of an LFP-formula can be obtained as a least fixed point also. By induction on the number
of ifp-operators in the formulae, the equivalence of IFP and LFP on finite structures follows
immediately.

Theorem 4.1 (Gurevich—Shelahd]). For every formula inlFP there is aLFP-formula
equivalent to it on all finite structures.

We aim at extending the equivalence of IFP and LFP to arbitrary, not necessarily
finite structures. IRl is an infinite structure, the sequence of stages induced by an LFP-
formula ¢(R, X) on 2 is no longer guaranteed to be finite. The formulae used in the
Gurevich-Shelah proof still define the correct stage comparison relations up tastage
i.e. for all finite stages. However, at stage—and all other infinite limit stages also—it
is no longer true that there is a tu@eof rank less tham such thati < Z definesR=®.

For, each such tupl®is itself of finite rank8 < » and therefor@ < Z defines the stage
R? C R®. Thus, to extend the result to infinite structures, we have to treat the limit stages
differently.

4.2. Equivalence of monotone and inflationary fixed-point logic

As mentioned in the introduction, least and inflationary inductions on infinite structures
were already studied in the 1970s, mainly on the class of acceptable structures. The
research was motivated by questions arising in descriptive set theory. Hence, there are
significant differences in notation and type of questions addressed in the 1970s and in later
work on fixed-point logics in computer science. We briefly recall some of the terminology
and results. Our presentation followisJ.

Let 2 := (A, 7) be a structure. Aoding scheme on & a triple (N, <, <>), with
N C A, such that the structurgV, <) is isomorphic to(w, <) and <> is an injective
map from|J,,_,, A" into A. The imagea of a, ..., a, under<> is called thecode of
ai, ..., an. We associate with a coding scheme the relatibmggving the length of a coded
sequenceg(a, i) giving thei-th element of the sequence codedainand seqwhich is
true for all codes of sequences. A coding schemeAoallows to code arbitrary finite
sequences of elements into a single element. In particular it allows to code relations of
arbitrary arity by monadic relations. A structure on which a coding scheme is definable is
calledacceptable

A second-order relation S= S(X, R) on2l is a relation with elements and relations
R as arguments. Of particular interest to us are second-order relations with only one
relation as argument, i.e. relations of the foB8(X, R), where the arityk of R andX
coincide. Relations of this form are callegerativeand they naturally induce an operator
Fs: AX — AKX taking any relatiorR of arity k to the sef{@: (a, R) € S}. As in Section 2
we can form the inflationary and, if the relati@is monotone, also the least fixed point
of Fs. Inflationary fixed points were commonly referred toirductive fixed points the
1970s.
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Let F be a class of second-order relations on the structurA k-ary relationR is
called F-inductiveif there is an operative relatiog&X, y, R) € F, wherex is k-ary, such
that there is a tuple of elemerdisin A and for allb, b € R if, and only if, (b, ) € S,
whereS> denotes the inflationary fixed point 8f The elementa are calledparameters
Analogously,R is called 7-monotone inductivdf it can be obtained in this way as the
least fixed point of a monotone relationfa Let 7-IND denote the class of-inductive
andFM"-IND the class ofF-monotone inductive relations.

A line of research active in the 1970s aimed at classifying the clagsksD and
FMOIND according to structural properties of the underlying classOf particular
interest were classeg of operators definable in first-order logic or in prefix-classes of
second-order logic.

A result related to the present paper is the next theorem due to Harrington and
Kechris [B]. The following exposition on the Harrington—Kechris theorem and the
consequences derived from it were pointed out to us by Wayne Richter. | am very grateful
for his detailed comments.

Let -\WF < F be the statement th&& contains a 0-ary relatiorWF(S) which is
true for Sif, and only if, Sis not well-founded, i.e. contains an infinite descending chain
of elements. Further, a class of operators is calleddequateif it contains all thev;
operators, is closed under, v, 3 and trivial combinatorial substitutions and contains the
relations and functions of a coding scheme2gri.e. the relationseq, Ihandg needed to
code and decode a sequence of elements. Finally; e denote the class of operators
whose complements are Jj.

Theorem 4.2 (Harrington, Kechris).Let2l be structure and lef be an adequate class of
operators orRl. If -WF € F andF C FM°"-IND, then

FMOLIND = F-IND.

Now let 21 be acceptable and takgE as the class of second-order relations definable
in monotone fixed-point logic MFP. AY is acceptable, it is clear that MFP has all the
closure properties required by the Harrington—Kechris theorem. Thus the theorem states
that F™"-IND = F-IND, i.e. the monotone and the inflationary closurefotoincide.
Clearly, any relation definable by a monotone fixed point of a relation in MFP is already
definable in MFP, as the logic is closed under taking least fixed points of monotone
formulae. It follows that any inflationary fixed point of a MFP-formula is definable in
MFP itself and therefore MFP and IFP are equivalen®brThus we get the following
corollary.

Corollary 4.3. MFP = IFP on acceptable structures.

In an appendix to their papées]j Gurevich and Shelah give a proof for the equivalence
of IFP and MFP on finite structures. As explained2ppp. 70-71], this can be extended
to infinite structures, generalising the theorem above. Note that the theorem only gives the
equivalence ofmonotoneand inflationary fixed-point logic on acceptable structures and
not the equivalence déastand inflationary fixed-point logic. On acceptable structures, the
equivalence of IFP and LFP could be derived from the following theorem by Moschovakis
(see PO, Theorem 15, p. 60]).
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Theorem 4.4 (Moschovakis).If F is a typical, nonmonotone class of second-order
relations on a structur@l, thenF-IND is the smallesfF-compact spector class @such
that every relation inF is A on A.

We refrain from giving precise definitions for the notions mentioned in the theorem.
Note, though, that if2 is acceptable, then the class of first-order definable second-
order relations is ‘typical, nonmonotone‘and so is the class of relations definable in IFP.
Clearly, for 7 = IFP the inductive closure--IND is again IFP. Thus, one possibility
to show the equivalence of LFP and IFP is by proving that LFP is an IFP-compact
spector class such that every relation in IFRAion A. A description of this approach
can be found inZ, pp. 70-71]. However, proofs of the equivalence of IFP and MFP or
LFP on acceptable structures based on the Harrington—Kechris and Moschovakis result do
not immediately give a constructive translation of formulae of IFP into MFP or LFP. In
particular, in the proofs of these theorems parameters from the structure are used in the
formulae. Thus the resulting LFP and MFP-formulae may vary with different structures.

Therefore, we will not follow this approach but give a direct translation of IFP-formulae
into LFP-formulae. A consequence of our proof is that LFP is indeed the smallest IFP-
compact spector class such that every relation in IFRlisn A. As we will see in
Proposition 5.8we really need nested fixed points for this. In particulaf ifs the class
of first-order definable operators, th&f'°"™-IND is a proper subset of-IND. In [1], Aczel
gives an example showing this latter fact.

In the next section we will establish the equivalence of LFP and IFP by giving an
explicit transformation of IFP-formulae into equivalent LFP-formulae. In particular, the
transformationis independent of a given structure and puts no constraints on the admissible
structures.

Note that the Harrington—Kechris Theorem and the equivalence proof given below are
somewhatincomparable. Our proof establishes the equivalence of LFP and IFP on arbitrary
classes of structures. In one way, this is more general than the Harrington—-Kechris result
as the equivalence of LFP and IFP implies the equivalence of MFP and IFP and we do not
require the structures to be acceptable.

On the other hand, the theorem by Harrington and Kechris is true for arbitrary classes of
operators—as long as they have some mild closure properties. Thus it applies not only to
the case of MFP-definable operators but also to classes of operators definable in fragments
of second-order logic and even to operators which do not arise from any particular logic.
In this sense the Harrington—Kechris result is more general than our result which is only
true for LFP and IFP and does not easily transfer to other cases.

4.3. Equivalence in the general case

In this section we aim at establishing the equivalence of IFP and LFP on arbitrary
structures. Towards this, let(R, X) be in LFP, not necessarily positive Ry and consider
the formulap := RX Vv ¢'(X). Clearly,p andg’ have the same inflationary fixed point. Fix
¢ for the rest of the section.

We aim at defining the stage comparison relatignfor ¢ in LFP. Consider again the
proof of the stage comparisdrneorem 3.3above. We showed that, can be defined by
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the inflationary fixed point of the formula
¢'(<,X,Y) = ¢(X, RU/U < X, =RU/—U < X)
A —¢(y, Ru/u < X, =RuU/—U < X),

where< is a second-order variable of appropriate arity.

To turn this into a formula in LFP we have to replace the formtlia< X by a definition
positive in<. Essentially, we define a second formulék, X, y), with free second-order
variables« and <, such that? is negative in< and if < is interpreted by a given stage
<%, for some ordinal, then the least fixed poirk® of ¥ is just <. We can then use
[Ifp« x .y ?1 negatively to get the desired positive definition-af

Unfortunately, by definition, the relation defined by such a formula must increase with
increasing stages®. On the other hand, a% is supposed to be negative—and therefore
antitone—in<, the relation defined b§ must decrease with increasing stagé€s Thus, in
general, we cannot hope for such a formula to exist. Instead we will use a formula defining
a slightly different relation. But it might be helpful to keep the original idea in mind.

Consider the following formula

XX, Y) = [Ifp_ zyx' X, PIX, V),
where
¥ (X,Y) == (X, RU/u < X, =RU/—=U < X)
AVUU < XV —-U«<X)
A= (Y, RU/U<X, =RU/—T < X) (3)
and

X<y = [|fp<<,7,y (KL, X, VIX,Y)
where

(X, y) = ¢(X, RU/U K« X, —RU/—U < X})
A-JUU < XA-UKXAUKY))
A=Y, RU/U< X, -RU/—~(U K X AU KY)).

Obviously, the formulg’ is positive in< and is itself a formula in LFP. Thus the least
fixed point (with respect te<) of x’ exists. We claim that this fixed point defines the stage
comparison relationk,, of ¢. Before proving this we first have to establish some facts
about the sub-formulé. Recall from the beginning of this section thais supposed to be
of the formRX v ¢’. This is important for the proofs below as it ensures that whenever a
tupleX satisfiesp at a stagey, it satisfiesp at all higher stages also.

Lemma4.5. Consider the fixed-point induction ahwhere< is interpreted by< <%, i.e.
X < yif,and only if, X € ¢=* and|X|, < [Yl,.

(i) IfX € p* ory € ¢%, then(x,y) € 9 if, and only if,|X| < |y].
(ii) Forall y such thaly| > « there is arX such tha{X| = « and(X,y) € 9.
(iii) If the fixed-point ok has already been reached, i.e<f=<~<%, theny>* =<,
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Proof. Throughout this proof, the variable will always be interpreted by the set<*.
Therefore we drop the index and writefor <=<¢.

1. We prove by induction off that for allg < «, (X,y) € 9#, i.e.
@A, <=, «=P) E 9(X,y), if, and only if, X € ¢# and[X]|, < [yl,.

Again we omit the index most of the time and writefor « <#.
Suppose that for al} < g the claim has been proved. We distinguish between the
case wher& e ¢ andX ¢ ¢f.
e Supposex € ¢f. We show that(, <<¢, «<#) E ®(X,V), if, and only if,
|Y|<p < |V|<p
By induction hypothesis, ik e ¢f then for allti, U « X if, and only if,
[dl, < |X|, and, as8 < «, —U < X if, and only if, [t], > |X|,. Thus,
@A, <<%, <) E ¢(X, RU/U < X, —=RU/=T < X}).
Now considety. If |y], > [X|,, then—(U < X AU < y) reduces to-U <« X. As
B < a, ~U « <P X is equivalent to-u <<% X. Therefore there is na satisfying
(U <XA—=(UKXAUKY)) and the second conjunct ihis satisfied. Furthely
does not satisfy(y, RU/U < X, =RU/—(U K XAU K Y)) as otherwisgy|, < |X|,.
Thus,(X,y) € 97.
On the other hand, ify|, < [X|,, then(U < X AU « ¥) in the second conjunct
reduces tal < y and thus there is & satisfyingu < X A =(U €K X AU K Y)),
u .= y for instance.
Finally, suppos¢x|, = |yl|,. By the same argument as above we get that in this
case
@& <=, <) F oy, RU/T <X, =RI/=~0 <X AT <))
and thus? is not satisfied.
e Suppos& ¢ ¢f. We show thaip (X, RU/U « X, =RU/—U < X}) is not satisfied. By
induction hypothesigj « X defines the seM = ¢<F. Clearly, axx ¢ ¢?,
A¥ o(X, RU/U e M, =RU/U € M®).
Now consider the sel := {U : =0 < X}. AsX ¢ ¢f, we getM® D N, whereM¢
denotes the complement bf.
By monotonicity ofp in M andMF€ it follows that

@A, <<%, «<P) ¥ ¢(X, RU/T < X, —~RU/—T < X}.

We get that for any paifx, y), (A, <<%, «<#) £ 9(X,y) if, and only if, X € ¢# and
|7|(p < |7|(p
2. Part 1 implies thatx,y) € v<* if, and only if, X € ¢=* and|X|, < |Yl,. Thus,
KL <*=<<% Now consider the next induction step. Again we distinguish between
X € ¢* andX ¢ ¢“.
e SUppoOs& € ¢“. Obviously,
@, <%, <% E ¢(X, RU/U « X, ~RU/—U < X).
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If Y|, > [X|p, then(U « X AT <« Y) reduces tai < X and thug(2, <<%, «=%) F
—¢(Y, RU/U < X, ~RU/=(U K X AT K Y)) if, and only if, [¥|, > [X],.
Now supposdyl, < [X|,. Then|y|, < « and there is & satisfyingu <
XA =0 K€ X AU K Y), againy being itself a witness for this. Thus(X,y) is
not satisfied.
e Now assum& ¢ ¢“. Then

A, <Y, <« K o(X, RU/U « X, —RU/-T < X})

asu « X defines the sdi € ¢=* and—U < X its complement.
It follows, that ¥ contains all pairgX, y) such thatix € ¢“ and|X|, < [yl|,. This
proves part (ii) because if there is a tugl®f rank greater than there must also be a
tupleX of rank exactlyx and this pair would be ir#“.

Further, if the fixed point ok has already been reached, k& =<~<%, then there are
no tuplesx of rank exactlyx. In this case, all tuple&,y) € v* already occur iny <%
and the fixed point off has been reached. This proves part (iii) of the lemma. Thus,
from now on, we assume that~*C <.

. We show now that at no stage> « can a pairX, y) with X, y € ¢* and|yl, < |X|,

enter the fixed point. Towards a contradictionjebe the smallest such stage and let
(X, y) be as described. Then the same argument as in the first item of step 1 yields a
contradiction.

. What is left to be shown is that for no ¢ ¢* andy € ¢* the pair(X,y) enters the

fixed point at some higher stage. Towards a contradictiory, & the least such stage,
i.e. the least stage such that there is a g&ily) € 0¥ with X ¢ ¢* andy € ¢*. In
particular,(R, <<%, «<Y) F 3 (X, V).

Now, asX ¢ ¢%, U < X defines justp=* and, asy was chosen minimal, we get
that —(U <« X A U < y) defines the set of tuples such thattu|, > |y|,. Thus, if
[¥l, < « then there is a tupla satisfyingi < X A =(U < X A U < y) and thus
¥ is not satisfied byX, y). On the other hand, ify|, = «, then(, <<%, «=%) F
¢(Y, RU/U < X, -RU/—~(U « X AT K Y)) and again? is not satisfied.

This finishes the proof of the lemmal]

We now prove a technical lemma which will establish the induction step in the proof

that the fixed point of¢” defines<,,.

Lemma4.6. For all ordinals «, (2, <<% E x/(X,V), if, and only if, X € ¢% and
|7|<p < |7|<p

Proof. We distinguish between the cases where ¢* andX ¢ ¢“.

Suppos& € ¢“. By assumptionyi << X defines the sefu : [U], < [X|,} and, by
part (i) of Lemma 4.5—-U <« X defines its complement. Thug@l, <<%*) E ¢(X, RU/uU <
X, =RU/—U < X) and alltu satisfytu < X v =0 < X.

Now, (A, <=%) F —=¢(y, RU/U <X, ~Ru/—U < X) if, and only if, [y], > [X],.
Thus,(&, <=%) E x'(X,y) if, and only if, [y], > |X],.
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e SUpPPOSK ¢ ¢*. Thenu < X defines the sefd : U € ¢=%}. If p=* = ¢%, i.e. if the
fixed point ofp has been reached, then, by part (iii)lefmma 4.5 we get« = < and
A, <=*) ¥ ¢(X, Ru/u < X, —=RU/—=U <« X) and therefore(’ is not satisfied.

Otherwise, i.e. ifp=* C ¢%, then, by part (ii) ofLemma 4.5 there is a tupl@ of

ranka with @ < X. Thus, the conjund{U(U < X v —U< < X) is not satisfied ag <« X
buta £ X.

This finishes the proof of the lemmall

As corollary we get that the relatior,, is definable in LFP.

Corollary 4.7. Letp(R, X) be a formula inLFP. Then the stage comparison relatied,
of the inflationary fixed point af is definable irLFP.

Proof. A simple induction on the stages using the previous lemma shows hatdefined
by the formulay above. O

The equivalence of LFP and IFP follows immediately.
Theorem 4.8. For every formula inFP there is an equivalent formula ioFP.

Proof. By Corollary 4.7 for everyp(R,X) € LFP the relation<,, is definable in LFP.
Thus, for allX, X € ¢ if, and only if, 2l F ¢(X, RU/x (U, X)), wherey is the formula
defining<,. Thus, the inflationary fixed point of an LFP-formula can be defined in LFP.
For arbitrary formulaey € IFP, the theorem follows by induction on the number of
inflationary fixed points ip converting them to least fixed points from the inside ol

The theorem shows that also on infinite structures, least and inflationary fixed-point
logic have the same expressive power. But, contrary to the case of finite structures where
the translation of IFP-formulae to equivalent LFP-formulae does not alter the fixed-point
structure, in the general case their structure in terms of alternations befipegperators
and negation and the nesting depth of fixed-point operators becomes more complicated.
It might be possible to reduce the increase in the number of alternations of the resulting
LFP-formulae. However, we will show below that an increase in the number of alternations
cannot be avoided.

5. Normal formsand hierarchies

There are various natural parameters that may influence the expressive power of fixed-
point logics. In this section we are particularly interested in two such parameters: the
number of fixed-point operators that are nested within each other and the number of
alternations between fixed-point operators and negation symbols. For this we first need
some technical definitions.

Definition 5.1 (Alternation and Nesting-depth Hierarchy). Let € LFP be a formula
such that no fixed-point variable is bound twice in it andXat ..., Xk be the fixed-
point variables occurring irp. Let for all i, ¢; be the formula bindingX; in ¢, i.e.

¢i == [Ifpx, % ¢{1(Ti) for suitablex;, tj andy;.
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We define a partial order, on the variablexy, ..., X as

Xi B, Xj if, and only if, ¢ is a sub-formula of;.

e Thenesting-depth of is defined as the maximal cardinality of a subs€éf, . . ., X}
linearly ordered by—,,.

e The alternation-level of¢ is defined as the maximal cardinality of a subget of
{X1,..., Xk}, linearly ordered by=,, such that in addition for alXj, X; € M, if
Xi is a direct predecessor &fj with respect ta=,, theng; occurs negative ip;.

Then-th level of thealternation hierarchy(LFP3)ne,, consists of all formulae of LFP with
alternation-leveh. Analogously, then-th level of thenesting-depth hierarchy_FPﬁ)new
of LFP is defined as the class of formulae in LFP of nesting-deptirinally, by
(pLFPﬂ)new we denote theositive nesting-depth hierarchgonsisting of formulae with
nesting-deptim but with only positive applications of the fixed-point operators.

The hierarchies for IFP are defined analogously.

By definition, LFF} consists of all LFP-formulae where niép-operator occurs
negatively, whereas LFRand LFI—’?‘) are just the class of first-order formulae.

The following theorem, due to Moschovakis, shows that in LFP, nested positive fixed
points can be eliminated. Se@ [Theorem 1C.3] for a proof. The presentation given here
follows [3, Lemma 8.2.6 on p. 182].

Theorem 5.2 (Transitivity Theorem).Let ¢(R, Q,X) and ¥ (R, Q,y) be first-order
formulae positive in R and Q such that no free first-order variableg @fre bound in
x = [Ifprx 9(QU/[Ifpg y ¥1(@)1(X). Theny is equivalent to a formula with only one
application of anlfp-operator.

An immediate consequence of the theorem is the following.

Corollary 5.3. Foralln, pLFP4 = pLFP4, i.e. every formula e LFPin which all fixed-
point operators occur only positively is equivalent to a formula with only one application
of a fixed-point operator, i.e. the positive nesting-depth hierarchi.Fét collapses.

Obviously, the nesting-depth hierarchy is finer than the alternation hierarchy in the sense
that a formula with alternation depth also has nesting-depth at leastUsing simple
diagonalisation arguments it can be shown that in general the nesting-depth hierarchy is
strict, i.e. there is no constakt< » such that every LFP formula is equivalent to a formula
with nesting depth at mo&t

On the other handTheorem 5.2implies that for LFP the nesting-depth hierarchy
collapses to the alternation hierarchy. An immediate consequence of this is, that in general
the alternation hierarchy for LFP is strict. (See egGhapter 5] for a proof of this.)

Theorem 5.4. The alternation hierarchy foLFP is strict.

The proof of this theorem uses a diagonalisation argument which relies on structures
being infinite. And indeed, as proved by Immerm&h fhe nesting depth and therefore
also the alternation hierarchy for LFP collapses on finite structures.
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We now turn towards alternation and nesting of inflationary fixed points. As the
following theorem shows, alternation between inflationary fixed points and negation does
not result in an increase in expressive power.

Theorem 5.5. Every formula inFPis equivalent to a formula where negation occurs only
in front of atoms.

Proof. The theorem is proved by induction on the structure of the formula. For the case of
theifp-operator note that a formuta[ifpg x ¢1(D) is equivalent to the simultaneous fixed
point[ifpQ : S](t) of the system

S {RY «~ ¢(R,X)
T 10X « VYV (@(R,Y) = Ry) A —=RX.

On structures with at least two elements this is equivalent to the inflationary fixed point of
a single formula whereas on structures with only one element, IFP collapses to FO anyway
and the theorem is trivial. O

Theorem 5.5above shows that the alternation hierarchy of IFP collapses to level one.
Again, simple diagonalisation arguments show that the nesting depth hierarchy for IFP is
strict in general and therefore, unlike for least fixed points, also the positive nesting-depth
hierarchy is strict for IFP.

Using the results fronsection 4 we can establish a close correspondence between the
strictness of the alternation hierarchy for LFP on a strucfir@nd the strictness of the
nesting-depth hierarchy for IFP é@h

Theorem 5.6. For every n> 0,
LFP2 < IFPY < LFP3,.

Proof. Lety € LFP, be aformula with alternation depth By the transitivity theorers.2,
nestedfp-operators which all occur positively can be contracted to a sirfigleperator
increasing the arity. Thus, every formula in LB equivalent to a formula with nested
fixed points and therefore equivalent to an IFP formula with nesting depth

Towards the second containment, note that using the methbldeafrem 4.80 convert
an IFP-formula to an equivalent LFP-formula, the translation of each individpal
operator at most triples the alternation depth. The theorem now follows by inducfion.

We immediately get the following corollaries.

Corollary 5.7. For any structure, the alternation depth hierarchy fd¥P collapses if, and
only if, the nesting depth hierarchy ftfP collapses.

An example of a class of structures where the hierarchies are strict is the class of
acceptable structures (s for instance).

Itis open whether there are infinite structures on which the alternation and nesting depth
hierarchies for LFP and IFP collapse but where LFP is still more expressive than FO.

The previous theorem implies that every LFP-formula with alternation-depthn
be converted into an IFP-formula with nesting depthMe show next that the converse
does not hold, i.e. there are IFP-formulae withfixed-point operators which are not
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equivalent to any LFP-formula of nesting-depth at msin particular, this shows that
the Harrington—Kechri¥heorem 4.Zannot be strengthened to positive inductions, i.e. the
inductive closuref FO does not coincide with thgositivemonotone closure.

Proposition 5.8. For every n> 1, LFP2 < IFPY,

Proof. Suppose IFE’ = LFP3 for somen. For every formulay € LFP3, ¢ and—¢ are

equivalent to formulagr and—y in IFPA. As by assumption IFP= LFP3, the formulae
—¢ andy are both equivalent to a formula in LERNd therefore LFPis closed under
complementation contradicting the strictness of the alternation hierarchy for ILFP.
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