

Toroidal automorphic forms for some function fields

Gunther Cornelissen *, Oliver Lorscheid
Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, 3508 TA Utrecht, The Netherlands

A R T I C L E I N F O

Article history:

Received 22 May 2008
Available online 15 August 2008
Communicated by David Goss

Keywords:

Zeta function
Function field
Toroidal automorphic form
Riemann hypothesis
Hasse-Weil theorem

Abstract

Zagier introduced toroidal automorphic forms to study the zeros of zeta functions: an automorphic form on GL_{2} is toroidal if all its right translates integrate to zero over all non-split tori in GL_{2}, and an Eisenstein series is toroidal if its weight is a zero of the zeta function of the corresponding field. We compute the space of such forms for the global function fields of class number one and genus $g \leqslant 1$, and with a rational place. The space has dimension g and is spanned by the expected Eisenstein series. We deduce an "automorphic" proof for the Riemann hypothesis for the zeta function of those curves.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let X denote a smooth projective curve over a finite field \mathbf{F}_{q} with q elements, A the adeles over its function field $F:=\mathbf{F}_{q}(X), G=G L_{2}, B$ its standard (upper-triangular) Borel subgroup, $K=G\left(\mathscr{O}_{\mathbf{A}}\right)$ the standard maximal compact subgroup of $G_{\mathbf{A}}$, with $\mathscr{O}_{\mathbf{A}}$ the maximal compact subring of \mathbf{A}, and Z the center of G. Let \mathscr{A} denote the space of unramified automorphic forms $f: G_{F} \backslash G_{\mathbf{A}} / K Z_{\mathbf{A}} \rightarrow \mathbf{C}$. We use the following notations for matrices:

$$
\operatorname{diag}(a, b)=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \quad \text { and } \quad \llbracket a, b \rrbracket=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)
$$

There is a bijection between quadratic separable field extensions E / F and conjugacy classes of maximal non-split tori in G_{F} via

$$
E^{\times}=\operatorname{Aut}_{E}(E) \subset \operatorname{Aut}_{F}(E) \simeq G_{F} .
$$

[^0]If T is a non-split torus in G with $T_{F} \cong E^{\times}$, define the space of toroidal automorphic forms for F with respect to T (or E) to be

$$
\begin{equation*}
\mathrm{T}_{F}(E)=\left\{f \in \mathscr{A} \mid \forall g \in G_{\mathbf{A}}, \int_{T_{F} Z_{\mathbf{A}} \backslash T_{\mathbf{A}}} f(t g) d t=0\right\} . \tag{1}
\end{equation*}
$$

The integral makes sense since $T_{F} Z_{\mathbf{A}} \backslash T_{\mathbf{A}}$ is compact, and the space only depends on E, viz., the conjugacy class of T. The space of toroidal automorphic forms for F is

$$
\mathrm{T}_{F}=\bigcap_{E} \mathrm{~T}_{F}(E),
$$

where the intersection is over all quadratic separable E / F. The interest in these spaces lies in the following version of a formula of Hecke [5, Werke, p. 201]; see Zagier [15, pp. 298-299] for this formulation, in which the result essentially follows from Tate's thesis:

Proposition 1.1. Let ζ_{E} denote the zeta function of the field E. Let $\varphi: \mathbf{A}^{2} \rightarrow \mathbf{C}$ be a Schwartz-Bruhat function. Set

$$
f(g, s)=|\operatorname{det} g|_{F}^{s} \int_{\mathbf{A}^{\times}} \varphi((0, a) g)|a|^{2 s} d^{\times} a
$$

An Eisenstein series $E(s)$,

$$
E(s)(g):=\sum_{\gamma \in B_{F} \backslash G_{F}} f(\gamma g, s) \quad(\operatorname{Re}(s)>1)
$$

satisfies

$$
\int_{T_{F} Z_{\mathbf{A}} \backslash T_{\mathbf{A}}} E(s)(t g) d t=c(\varphi, g, s)|\operatorname{det} g|^{s} \zeta_{E}(s)
$$

for some holomorphic function $c(\varphi, g, s)$. For every g and s, there exists a function φ such that $c(\varphi, g, s) \neq 0$. In particular, $E(s) \in \mathrm{T}_{F}(E) \Leftrightarrow \zeta_{E}(s)=0$.

Remark 1.2. Toroidal integrals of parabolic forms are ubiquitous in the work of Waldspurger ([13], for recent applications, see Clozel and Ullmo [1] and Lysenko [10]). Wielonsky and Lachaud studied analogues for $\mathrm{GL}_{n}, n \geqslant 2$, and tied up the spaces with Connes' view on zeta functions [2,6,7,14].

Let $\mathscr{H}=C_{0}^{\infty}\left(K \backslash G_{\mathbf{A}} / K\right)$ denote the bi- K-invariant Hecke algebra, acting by convolution on \mathscr{A}. There is a correspondence between K-invariant G_{A}-modules and Hecke modules; in particular, we have

Lemma 1.3. The spaces $\mathrm{T}_{F}(E)$ (for each E with corresponding torus T) and T_{F} are invariant under the Hecke algebra \mathscr{H}, and

$$
\begin{equation*}
\mathrm{T}_{F}(E) \subseteq\left\{f \in \mathscr{A} \mid \forall \Phi \in \mathscr{H}, \int_{T_{F} Z_{\mathbf{A}} \backslash T_{\mathbf{A}}} \Phi(f)(t) d t=0\right\} \tag{2}
\end{equation*}
$$

Fig. 1. The graph $\Gamma \backslash \mathscr{T}$ for $X=\mathbf{P}^{1}$.

Now assume F has class number one and there exists a place ∞ of degree one for F; let t denote a local uniformizer at ∞. Strong approximation implies that we have a bijection

$$
G_{F} \backslash G_{A} / K Z_{\infty} \xrightarrow{\sim} \Gamma \backslash G_{\infty} / K_{\infty} Z_{\infty},
$$

where $\Gamma=G(A)$ with A the ring of functions in F holomorphic outside ∞, and a subscript ∞ refers to the ∞-component. We define a graph \mathscr{T} with vertices $V \mathscr{T}=G_{\infty} / K_{\infty} Z_{\infty}$. If \sim denotes equivalence of matrices modulo $K_{\infty} Z_{\infty}$, then we call vertices in $V \mathscr{T}$ given by classes represented by matrices g_{1} and g_{2} adjacent, if $g_{1}^{-1} g_{2} \sim \llbracket t, b \rrbracket$ or $\llbracket t^{-1}, 0 \rrbracket$ for some $b \in \mathscr{O}_{\infty} / t$. Then \mathscr{T} is a tree that only depends on q (the so-called Bruhat-Tits tree of $\operatorname{PGL}\left(2, F_{\infty}\right)$, cf. [11, Chapter II]).

The Hecke operator $\Phi_{\infty} \in \mathscr{H}$ given by the characteristic function of $K \llbracket t, 0 \rrbracket K$ maps a vertex of \mathscr{T} to its neighboring vertices. The action of Φ_{∞} on the quotient graph $\Gamma \backslash \mathscr{T}$ can be computed from the orders of the Γ-stabilizers of vertices and edges in \mathscr{T}. When drawing a picture of $\Gamma \backslash \mathscr{T}$, we agree to label a vertex along the edge towards an adjacent vertex by the corresponding weight of a Hecke operator, as in the next example.

Example 1.4. In Fig. 1, one sees the graph $\Gamma \backslash \mathscr{T}$ for the function field of $X=\mathbf{P}^{1}$, with the well-known vertices representing $\left\{c_{i}=\llbracket \pi^{-i}, 0 \|\right\}_{i \geqslant 0}$ and the weights of Φ_{∞}, meaning

$$
\begin{equation*}
\text { for } n \geqslant 1, \quad \Phi_{\infty}(f)\left(c_{n}\right)=q f\left(c_{n-1}\right)+f\left(c_{n+1}\right) \quad \text { and } \quad \Phi_{\infty}(f)\left(c_{0}\right)=(q+1) f\left(c_{1}\right) . \tag{3}
\end{equation*}
$$

2. The rational function field

First, assume $X=\mathbf{P}^{1}$ over \mathbf{F}_{q}, so F is a rational function field. Set $E=\mathbf{F}_{q^{2}} F$ the quadratic constant extension of F.

Theorem 2.1. $\mathrm{T}_{F}=\mathrm{T}_{F}(E)=\{0\}$.

Proof. Let T be a torus with $T_{F}=E^{\times}$, that has a basis over F contained in the constant extension $\mathbf{F}_{q^{2}}$. The integral defining $f \in \mathrm{~T}_{F}(E)$ in Eq. (1) for the element $g=1 \in G_{\mathbf{A}}$ becomes

$$
\int_{T_{F} Z_{\mathbf{A}} \backslash T_{\mathbf{A}}} f(t) d t=\kappa \cdot \int_{T_{F} Z_{\mathbf{A}} \backslash T_{\mathbf{A}} /\left(T_{\mathbf{A}} \cap K\right)} f(t) d t=\kappa \cdot \int_{E^{\times} \mathbf{A}_{F}^{\times} \backslash \mathbf{A}_{E}^{\times} / \mathscr{O}_{\mathbf{A}_{E}}^{\times}} f(t) d t=\kappa \cdot f\left(c_{0}\right),
$$

with $\kappa=\mu\left(T_{\mathbf{A}} \cap K\right) \neq 0$. Indeed, by our choice of "constant" basis, we have $T_{\mathbf{A}} \cap K \cong \mathscr{O}_{\mathbf{A}_{\boldsymbol{E}}}^{\times}$. For the final equality, note that the integration domain $E^{\times} \mathbf{A}_{F}^{\times} \backslash \mathbf{A}_{E}^{\times} / \mathscr{O}_{\mathbf{A}_{E}}^{\times}$is isomorphic to the quotient of the class group of E by that of F, and that both of these groups are trivial, so map to the identity matrix c_{0} in $\Gamma \backslash \mathscr{T}$.

Hence we first of all find $f\left(c_{0}\right)=0$. For $\Phi=\Phi_{\infty}^{k}$, this equation transforms into $\left(\Phi_{\infty}^{k} f\right)\left(c_{0}\right)=0$ (cf. (2)), and with (3) this leads to a system of equations for $f\left(c_{i}\right)(i=1,2, \ldots)$ that can easily be shown inductively to only have the zero solution $f=0$.

Fig. 2. The graph $\Gamma \backslash \mathscr{T}$ for $F_{q}(q=2,3,4)$.

3. Three elliptic curves

Now assume that F is not rational, has class number one, a rational point ∞ and genus $\leqslant 1$. In this paper, we focus on such fields F, since it turns out that the space T_{F} can be understood elaborating only on existing structure results about the graph $\Gamma \backslash \mathscr{T}$.

The Hasse-Weil theorem implies that there are only three possibilities for F, which we conveniently number as follows: $\left\{F_{q}\right\}_{q=2}^{4}$ with F_{q} the function field of the projective curve X_{q} / \mathbf{F}_{q} ($q=2,3,4$) are the respective elliptic curves

$$
y^{2}+y=x^{3}+x+1, \quad y^{2}=x^{3}-x-1 \quad \text { and } \quad y^{2}+y=x^{3}+\alpha
$$

with $\mathbf{F}_{4}=\mathbf{F}_{2}(\alpha)$. Let $F_{q}^{(2)}=\mathbf{F}_{q^{2}} F_{q}$ denote the quadratic constant extension of F_{q}.
The graph $\Gamma \backslash \mathscr{T}$ for $F_{q}(q=2,3,4)$ with the Φ_{∞}-weights is displayed in Fig. 2, cf. Serre [11, 2.4.4 and Exercise 3b) +3 c), p. 117] and/or Takahashi [12] for these facts.

Further useful facts: One easily calculates that $X_{q}\left(\mathbf{F}_{q^{2}}\right)$ is cyclic of order $2 q+1$; let Q denote any generator. We will use later on that the vertices t_{i} correspond to classes of rank-two vector bundles on $X_{q}\left(\mathbf{F}_{q}\right)$ that are pushed down from line bundles on $X_{q}\left(\mathbf{F}_{q^{2}}\right)$ given by multiples $Q, 2 Q, \ldots, q Q$ of Q, cf. Serre [11]. For a representation in terms of matrices, one may refer to [12]: if $i Q=(\ell, *) \in X_{q}\left(\mathbf{F}_{q^{2}}\right)$, then $t_{i}=\llbracket t^{2}, t^{-1}+\ell t \rrbracket$.

We denote a function f on $\Gamma \backslash \mathscr{T}$ by a vector

$$
f=\left[f\left(t_{1}\right), \ldots, f\left(t_{q}\right)\left|f\left(z_{0}\right), f\left(z_{1}\right)\right| f\left(c_{0}\right), f\left(c_{1}\right), f\left(c_{2}\right), \ldots\right]
$$

Proposition 3.1. A function $f \in \mathrm{~T}_{F_{q}}\left(F_{q}^{(2)}\right)(q=2,3,4)$ belongs to the Φ_{∞}-stable linear space \mathscr{S} of functions

$$
\begin{equation*}
\mathscr{S}:=\left\{\left[T_{1}, \ldots, T_{q}\left|Z_{0}, Z_{1}\right| C_{0}, C_{1}, C_{2}, \ldots\right]\right\} \tag{4}
\end{equation*}
$$

with $C_{0}=-2\left(T_{1}+\cdots+T_{q}\right)$ and for $k \geqslant 0$,

$$
C_{k}= \begin{cases}\lambda_{k} Z_{0}+\mu_{k}\left(T_{1}+\cdots+T_{q}\right) & \text { if } k \text { even } \tag{5}\\ v_{k} Z_{1} & \text { if } k \text { odd }\end{cases}
$$

for some constants $\lambda_{k}, \mu_{k}, \nu_{k}$. In particular,

$$
\operatorname{dim} \mathrm{T}_{F_{q}}\left(F_{q}^{(2)}\right) \leqslant \operatorname{dim} \mathscr{S}=q+2
$$

and $\operatorname{dim} \mathrm{T}_{F_{q}}$ is finite.

Proof. We choose arbitrary values T_{j} at $t_{j}(j=1, \ldots, q)$ and Z_{j} at $z_{j}(j=1,2)$, and set $\tau=T_{1}+$ $\cdots+T_{q}$. We have

$$
\int_{T_{F} Z_{\mathbf{A}} \backslash T_{\mathbf{A}}} f(t) d t=C_{0}+2 \tau
$$

Indeed, by the same reasoning as in the proof of Theorem 2.1, the integration area maps to the image of

$$
\operatorname{Pic}\left(X_{q}\left(\mathbf{F}_{q^{2}}\right)\right) / \operatorname{Pic}\left(X_{q}\left(\mathbf{F}_{q}\right)\right)=X_{q}\left(\mathbf{F}_{q^{2}}\right) / X_{q}\left(\mathbf{F}_{q}\right)=X_{q}\left(\mathbf{F}_{q^{2}}\right)
$$

(the final equality since X_{q} is assumed to have class number one) in $\Gamma \backslash \mathscr{T}$, and these are exactly the vertices c_{0} and t_{j} (the latter with multiplicity two, since $\pm Q \in E\left(\mathbf{F}_{q^{2}}\right)$ map to the same vertex). The integral is zero exactly if $C_{0}=-2 \tau$. Applying the Hecke operator Φ_{∞} to this equation (cf. (2)) gives $C_{1}=-2 Z_{1}$, then applying Φ_{∞} again gives $C_{2}=-(q+1) Z_{0}$. The rest follows by induction. If we apply Φ_{∞} to Eqs. (5) for $k \geqslant 2$, we find by induction for k even that

$$
C_{k+1}=\lambda_{k} C_{1}+\left(\lambda_{k} q+\mu_{k} q(q+1)-q \nu_{k-1}\right) Z_{1}
$$

and for k odd that

$$
C_{k+1}=\left(\nu_{k}-q \lambda_{k-1}\right) Z_{0}+\left(\nu_{k}-q \mu_{k-1}\right) \tau .
$$

Lemma 3.2. The space \mathscr{S} from (4) has a basis of $q+2 \Phi_{\infty}$-eigenforms, of which exactly $q-1$ are cusp forms with eigenvalue zero and support in the set of vertices $\left\{t_{j}\right\}$, and three are non-cuspidal forms with respective eigenvalues $0, q,-q$.

Proof. With $\tau=T_{1}+\cdots+T_{q}$, the function

$$
f=\left[T_{1}, \ldots, T_{q}\left|Z_{0}, Z_{1}\right|-2 \tau, C_{1}, C_{2}, \ldots\right]
$$

is a Φ_{∞}-eigenform with eigenvalue λ if and only if

$$
\lambda T_{j}=(q+1) Z_{1}, \quad \lambda Z_{1}=\tau+Z_{0}, \quad \lambda Z_{0}=q Z_{1}+C_{1}, \quad \lambda(-2 \tau)=(q+1) C_{1}, \quad \text { etc. }
$$

We consider two cases:
(a) if $\lambda=0$, we find q forms

$$
f_{k}=[0, \ldots, 0,1,0, \ldots, 0|0,-1|-q, \ldots]
$$

with $T_{j}=1 \Leftrightarrow j=k$.
(b) if $\lambda \neq 0$, we find $\lambda= \pm q$ with eigenforms

$$
f_{ \pm}=\left[q+1, \ldots, q+1|-q, \pm q|-2 q(q+1), \mp 2 q^{2}, \ldots\right] .
$$

Since we found $q+2$ eigenforms, they span \mathscr{S}. From the fact that a cusp form satisfies $f\left(c_{i}\right)=0$ for all i sufficiently large (cf. Harder [4, Theorem 1.2.1]), one easily deduces that a basis of cusp forms in \mathscr{S} consists of $f_{k}-f_{1}$ for $k=2, \ldots, q$.

Corollary 3.3. The Riemann hypothesis is true for $\zeta_{F_{q}}(q=2,3,4)$.

Proof. From Lemma 3.2, we deduce that the only possible Φ_{∞}-eigenvalue of a toroidal Eisenstein series is $\pm q$ or 0 , but on the other hand, from Proposition 1.1 , we know this eigenvalue is $q^{s}+q^{1-s}$ where $\zeta_{F_{q}}(s)=0$. We deduce easily that s has real part $1 / 2$.

Remark 3.4. One may verify that this proves the Riemann hypothesis for the fields F_{q} without actually computing $\zeta_{F_{q}}$: it only uses the expression for the zeta function by a Tate integral. Using a sledgehammer to crack a nut, one may equally deduce from Theorem 2.1 that $\zeta_{\mathbf{P}_{1}}$ does not have any zeros. At least the above corollary shows how enough knowledge about the space of toroidal automorphic forms does allow one to deduce a Riemann hypothesis, in line with a hope expressed by Zagier [15].

Theorem 3.5. For $q=2,3,4, \mathrm{~T}_{F_{q}}$ is one-dimensional, spanned by the Eisenstein series of weight s equal to a zero of the zeta function $\zeta_{F_{q}}$ of F_{q}.

Remark 3.6. Note that the functional equation for $E(s)$ implies that $E(s)$ and $E(1-s)$ are linearly dependent, so it does not matter which zero of $\zeta_{F_{q}}$ is taken.

Proof. By Lemma 3.2, $\mathrm{T}_{F_{q}}$ is a Φ_{∞}-stable subspace of the finite dimensional space \mathscr{S}, and Φ_{∞} is diagonalizable on \mathscr{S}. By linear algebra, the restriction of Φ_{∞} is also diagonalizable on $\mathrm{T}_{F_{q}}$ with a subset of the given eigenvalues, hence $\mathrm{T}_{F_{q}}$ is a subspace of the space of automorphic forms for the corresponding eigenvalues of Φ_{∞}. By [8, Theorem 7.1], it can therefore be split into a direct sum of a space of Eisenstein series \mathscr{E}, a space of residues of Eisenstein series \mathscr{R}, and a space of cusp forms \mathscr{C} (note that in the slightly different notations of [8], "residues of Eisenstein series" are called "Eisenstein series," too). We treat these spaces separately.
\mathscr{E} : By Proposition 1.1, $\mathrm{T}_{F_{q}}\left(F_{q}^{(2)}\right)$ contains exactly two Eisenstein series, one corresponding to a zero s_{0} of $\zeta_{F_{q}}$, and one corresponding to a zero s_{1} of

$$
L_{q}(s):=\zeta_{F_{q}^{(2)}}(s) / \zeta_{F_{q}}(s)
$$

Now consider the torus \widetilde{T} corresponding to the quadratic extension $E_{q}=F_{q}(z) / F_{q}$ of genus two defined by $x=z(z+1)$. Set

$$
\widetilde{L}_{q}(s):=\zeta_{E_{q}}(s) / \zeta_{F_{q}}(s)
$$

and $T=q^{-s}$. One computes immediately that $L_{q}=q T^{2}+q T+1$ but

$$
\widetilde{L}_{2}=2 T^{2}+1, \quad \widetilde{L}_{3}=3 T^{2}+T+1 \quad \text { and } \quad \widetilde{L}_{4}=4 T^{2}+1
$$

Since L_{q} and \widetilde{L}_{q} have no common zero, the \widetilde{T}-integral of the Eisenstein series of weight s_{1} is non-zero, and hence it does not belong to $\mathrm{T}_{F_{q}}$. Hence \mathscr{E} is as expected.
\mathscr{R} : Elements in \mathscr{R} have Φ_{∞}-eigenvalues $\neq 0, \pm q$, so cannot even occur in \mathscr{S} : since the class number of F_{q} is one, \mathscr{R} is spanned by the two forms

$$
r_{ \pm}:=[1, \ldots, 1| \pm 1,1| 1, \pm 1,1, \pm 1, \ldots]
$$

with $r\left(c_{i}\right)=(\pm 1)^{i}$, and this is a Φ_{∞}-eigenform with eigenvalue $\pm(q+1)$. (In general, the space is spanned by elements of the form $\chi \circ$ det with χ a class group character, cf. [3, p. 174].)
\mathscr{C} : By multiplicity one, \mathscr{C} has a basis of simultaneous \mathscr{H}-eigenforms. From Lemma 3.2, we know that potential cusp forms in $\mathrm{T}_{F_{q}}$ have support in the set of vertices $\left\{t_{i}\right\}$. To prove that $\mathscr{C}=\{0\}$, the following therefore suffices:

Proposition 3.7. The only cusp form which is a simultaneous eigenform for the Hecke algebra \mathscr{H} and has support in $\left\{t_{i}\right\}$ is $f=0$.

Proof. Let f denote such a form. Fix a vertex $\mathfrak{t} \in\left\{t_{i}\right\}$. It corresponds to a point $P=(\ell, *)$ on $X_{q}\left(\mathbf{F}_{q^{2}}\right)$, which is a place of degree two of $\mathbf{F}_{q}\left(X_{q}\right)$. Let Φ_{P} denote the corresponding Hecke operator. We claim that

Lemma 3.8. $\Phi_{P}\left(c_{0}\right)=(q+1) c_{2}+q(q-1) t$.
Given this claim, we finish the proof as follows: we assume that f is a Φ_{P}-eigenform with eigenvalue λ_{p}. Then

$$
0=\lambda_{P} f\left(c_{0}\right)=\Phi_{P} f\left(c_{0}\right)=q(q-1) f(\mathfrak{t})+(q+1) f\left(c_{2}\right)=q(q-1) f(\mathfrak{t})
$$

since $f\left(c_{2}\right)=0$, hence $f(t)=0$ for all \mathfrak{t}.
Proof of Lemma 3.8. As in [3, 3.7], the Hecke operator Φ_{P} maps the identity matrix ($=$ the vertex c_{0}) to the set of vertices corresponding to the matrices $m_{\infty}:=\operatorname{diag}(\pi, 1)$ and $m_{b}:=\left(\begin{array}{ll}1 & b \\ 0 & \pi\end{array}\right)$, where $\pi=$ $x-\ell$ is a local uniformizer at P and b runs through the residue field at P, which is

$$
\mathbf{F}_{q}\left[X_{q}\right] /(x-\ell)=\mathbf{F}_{q}[y] / F(\ell, y) \cong \mathbf{F}_{q^{2}}
$$

if $F(x, y)=0$ is the defining equation for X_{q}. Hence we can represent every such b as $b=b_{0}+b_{1} y$. We now reduce these matrices to a standard form in $\Gamma \backslash \mathscr{T}$ from [12, §2]. By right multiplication with $\llbracket 1,-b_{0} \rrbracket$, we are reduced to considering only $b=b_{1} y$.

If $b_{1}=0$, then the matrix is $m_{b}=\operatorname{diag}(1, \pi) \sim \operatorname{diag}\left(\pi^{-1}, 1\right)$. Recall that $t=x / y$ is a uniformizer at ∞, so $x-\ell=t^{-2} \cdot A$ for some $A \in \mathbf{F}_{q} \llbracket t \rrbracket^{*}$. Hence right multiplication by $\operatorname{diag}\left(A^{-1}, 1\right)$ gives that this matrix reduces to c_{2}. The same is true for m_{∞}.

On the other hand, if $b_{1} \neq 0$, multiplication on the left by $\operatorname{diag}\left(1, b_{1}\right)$ and on the right by $\operatorname{diag}\left(1, b_{1}^{-1}\right)$ reduces us to considering m_{y}. By multiplication on the right with

$$
\operatorname{diag}\left((x-\ell)^{-1} \cdot A,(x-\ell)^{-1}\right)
$$

we get $m_{y} \sim \llbracket t^{2}, y /(x-\ell) \rrbracket$. Now note that

$$
\frac{y}{x-\ell}=\frac{y}{x} \cdot\left(1+\frac{\ell}{x}+\left(\frac{\ell}{x}\right)^{2}+\cdots\right)=t^{-1}+\ell t+\beta(t) t^{2}
$$

for some $\beta \in \mathbf{F}_{q} \llbracket t \rrbracket$. Hence right multiplication with $\llbracket 1,-\beta \rrbracket$ gives $m_{y} \sim \llbracket t^{2}, t^{-1}+\ell t \rrbracket$, and this is exactly the vertex t .

Remark 3.9. Using different methods, more akin the geometrical Langlands programme, the second author has proven the following results [9]. For a general function field F of genus g and class number h, one may show that T_{F} is finite dimensional. Its Eisenstein part is of dimension at least $h(g-1)+1$ (in the above examples, the dimension is shown to be exactly equal to this number). For a general function field, residues of Eisenstein series are never toroidal. For general elliptic function fields over a field with q elements with q odd or number of rational places different from $q+1$, there are no toroidal cusp forms. For a general function field, the analogue of a result of Waldspurger [13, Proposition 7] implies that the cusp forms in T_{F} are exactly those having vanishing central L-value.

However, in [9], there is no method to in general compute the Hecke eigenvalues (as in Lemma 3.2), nor to conclude that the Riemann hypothesis holds for a general function field (as in Corollary 3.3), nor to compute the exact space of toroidal forms (as in Theorem 3.5).

References

[1] Laurent Clozel, Emmanuel Ullmo, Équidistribution de mesures algébriques, Compos. Math. 141 (5) (2005) 1255-1309.
[2] Alain Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N.S.) 5 (1) (1999) 29-106.
[3] Stephen S. Gelbart, Automorphic Forms on Adele Groups, Ann. of Math. Stud., vol. 83, Princeton Univ. Press, Princeton, 1975.
[4] Günter Harder, Chevalley groups over function fields and automorphic forms, Ann. of Math. 100 (2) (1974) 249-306.
[5] Erich Hecke, Über die Kroneckersche Grenzformel für reelle quadratische Körper und die Klassenzahl relativ-abelscher Körper, Verhandlungen der Naturforschenden Gesellschaft in Basel 28 (1917) 363-372, Werke, No. 10, pp. 198-207.
[6] Gilles Lachaud, Zéros des fonctions L et formes toriques, C. R. Math. Acad. Sci. Paris 335 (3) (2002) 219-222.
[7] Gilles Lachaud, Spectral analysis and the Riemann hypothesis, J. Comput. Appl. Math. 160 (1-2) (2003) 175-190.
[8] Wen-Ch'ing Winnie Li, Eisenstein series and decomposition theory over function fields, Math. Ann. 240 (1979) 115-139.
[9] Oliver Lorscheid, Toroidal automorphic forms for function fields, PhD thesis, Utrecht University, 2008.
[10] Sergei Lysenko, Geometric Waldspurger periods, Compos. Math. 144 (2) (2008) 377-438, doi:10.1112/S0010437X07003156.
[11] Jean-Pierre Serre, Trees, Springer Monogr. Math., Springer-Verlag, Berlin, 2003.
[12] Shuzo Takahashi, The fundamental domain of the tree of $\mathrm{GL}(2)$ over the function field of an elliptic curves, Duke Math. J. 72 (1) (1993) 85-97.
[13] Jean-Loup Waldspurger, Sur les valeurs de certaines fonctions L automorphe en leur centre de symétrie, Compos. Math. 54 (1985) 173-242.
[14] Franck Wielonsky, Séries d'Eisenstein, intégrales toroïdales et une formule de Hecke, Enseign. Math. (2) 31 (1-2) (1985) 93-135.
[15] Don Zagier, Eisenstein series and the Riemann zeta function, in: Automorphic Forms, Representation Theory and Arithmetic, Bombay, 1979, in: Tata Inst. Fund. Res. Stud. Math., vol. 10, 1981, pp. 275-301.

[^0]: * Corresponding author.

 E-mail addresses: gunther.cornelissen@gmail.com (G. Cornelissen), lorscheid@gmail.com (O. Lorscheid).
 0022-314X/\$ - see front matter © 2008 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jnt.2008.05.011

