Journal of Number Theory 129 (2009) 1456-1463

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Toroidal automorphic forms for some function fields

Gunther Cornelissen*, Oliver Lorscheid

Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, 3508 TA Utrecht, The Netherlands

ARTICLE INFO

Article history: Received 22 May 2008 Available online 15 August 2008 Communicated by David Goss

Keywords: Zeta function Function field Toroidal automorphic form Riemann hypothesis Hasse-Weil theorem

ABSTRACT

Zagier introduced toroidal automorphic forms to study the zeros of zeta functions: an automorphic form on GL₂ is toroidal if all its right translates integrate to zero over all non-split tori in GL₂, and an Eisenstein series is toroidal if its weight is a zero of the zeta function of the corresponding field. We compute the space of such forms for the global function fields of class number one and genus $g \leq 1$, and with a rational place. The space has dimension g and is spanned by the expected Eisenstein series. We deduce an "automorphic" proof for the Riemann hypothesis for the zeta function of those curves.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let *X* denote a smooth projective curve over a finite field \mathbf{F}_q with *q* elements, **A** the adeles over its function field $F := \mathbf{F}_q(X)$, $G = GL_2$, *B* its standard (upper-triangular) Borel subgroup, $K = G(\mathcal{O}_{\mathbf{A}})$ the standard maximal compact subgroup of $G_{\mathbf{A}}$, with $\mathcal{O}_{\mathbf{A}}$ the maximal compact subring of **A**, and *Z* the center of *G*. Let \mathscr{A} denote the space of unramified automorphic forms $f : G_F \setminus G_{\mathbf{A}} / KZ_{\mathbf{A}} \to \mathbf{C}$. We use the following notations for matrices:

diag
$$(a, b) = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
 and $[[a, b]] = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$.

There is a bijection between quadratic separable field extensions E/F and conjugacy classes of maximal non-split tori in G_F via

$$E^{\times} = \operatorname{Aut}_{E}(E) \subset \operatorname{Aut}_{F}(E) \simeq G_{F}.$$

* Corresponding author.

0022-314X/\$ – see front matter $\,$ © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2008.05.011

E-mail addresses: gunther.cornelissen@gmail.com (G. Cornelissen), lorscheid@gmail.com (O. Lorscheid).

If *T* is a non-split torus in *G* with $T_F \cong E^{\times}$, define the space of *toroidal automorphic forms for F with respect to T* (or *E*) to be

$$\mathsf{T}_{F}(E) = \left\{ f \in \mathscr{A} \mid \forall g \in G_{\mathbf{A}}, \int_{T_{F}Z_{\mathbf{A}} \setminus T_{\mathbf{A}}} f(tg) \, dt = 0 \right\}.$$
(1)

The integral makes sense since $T_F Z_A \setminus T_A$ is compact, and the space only depends on *E*, viz., the conjugacy class of *T*. The space of *toroidal automorphic forms for F* is

$$\mathsf{T}_F = \bigcap_E \mathsf{T}_F(E),$$

where the intersection is over all quadratic separable E/F. The interest in these spaces lies in the following version of a formula of Hecke [5, Werke, p. 201]; see Zagier [15, pp. 298–299] for this formulation, in which the result essentially follows from Tate's thesis:

Proposition 1.1. Let ζ_E denote the zeta function of the field E. Let $\varphi : \mathbf{A}^2 \to \mathbf{C}$ be a Schwartz–Bruhat function. Set

$$f(g,s) = |\det g|_F^s \int_{\mathbf{A}^{\times}} \varphi((0,a)g)|a|^{2s} d^{\times}a.$$

An Eisenstein series E(s),

$$E(s)(g) := \sum_{\gamma \in B_F \setminus G_F} f(\gamma g, s) \quad (\operatorname{Re}(s) > 1)$$

satisfies

$$\int_{T_F \mathbb{Z}_{\mathbf{A}} \setminus T_{\mathbf{A}}} E(s)(tg) \, dt = c(\varphi, g, s) |\det g|^s \zeta_E(s)$$

for some holomorphic function $c(\varphi, g, s)$. For every g and s, there exists a function φ such that $c(\varphi, g, s) \neq 0$. In particular, $E(s) \in T_F(E) \Leftrightarrow \zeta_E(s) = 0$.

Remark 1.2. Toroidal integrals of parabolic forms are ubiquitous in the work of Waldspurger ([13], for recent applications, see Clozel and Ullmo [1] and Lysenko [10]). Wielonsky and Lachaud studied analogues for GL_n , $n \ge 2$, and tied up the spaces with Connes' view on zeta functions [2,6,7,14].

Let $\mathcal{H} = C_0^{\infty}(K \setminus G_A/K)$ denote the bi-*K*-invariant Hecke algebra, acting by convolution on \mathscr{A} . There is a correspondence between *K*-invariant G_A -modules and Hecke modules; in particular, we have

Lemma 1.3. The spaces $T_F(E)$ (for each E with corresponding torus T) and T_F are invariant under the Hecke algebra \mathcal{H} , and

$$\mathsf{T}_{F}(E) \subseteq \left\{ f \in \mathscr{A} \mid \forall \Phi \in \mathscr{H}, \int_{T_{F} Z_{\mathbf{A}} \setminus T_{\mathbf{A}}} \Phi(f)(t) \, dt = 0 \right\}.$$

$$\tag{2}$$

Now assume *F* has class number one and there exists a place ∞ of degree one for *F*; let *t* denote a local uniformizer at ∞ . Strong approximation implies that we have a bijection

$$G_F \setminus G_A / KZ_\infty \longrightarrow \Gamma \setminus G_\infty / K_\infty Z_\infty,$$

where $\Gamma = G(A)$ with A the ring of functions in F holomorphic outside ∞ , and a subscript ∞ refers to the ∞ -component. We define a graph \mathscr{T} with vertices $V \mathscr{T} = G_{\infty}/K_{\infty}Z_{\infty}$. If \sim denotes equivalence of matrices modulo $K_{\infty}Z_{\infty}$, then we call vertices in $V \mathscr{T}$ given by classes represented by matrices g_1 and g_2 adjacent, if $g_1^{-1}g_2 \sim [[t,b]]$ or $[[t^{-1},0]]$ for some $b \in \mathscr{O}_{\infty}/t$. Then \mathscr{T} is a tree that only depends on q (the so-called Bruhat–Tits tree of PGL(2, F_{∞}), cf. [11, Chapter II]).

The Hecke operator $\Phi_{\infty} \in \mathscr{H}$ given by the characteristic function of K[[t, 0]]K maps a vertex of \mathscr{T} to its neighboring vertices. The action of Φ_{∞} on the quotient graph $\Gamma \setminus \mathscr{T}$ can be computed from the orders of the Γ -stabilizers of vertices and edges in \mathscr{T} . When drawing a picture of $\Gamma \setminus \mathscr{T}$, we agree to label a vertex along the edge towards an adjacent vertex by the corresponding weight of a Hecke operator, as in the next example.

Example 1.4. In Fig. 1, one sees the graph $\Gamma \setminus \mathscr{T}$ for the function field of $X = \mathbf{P}^1$, with the well-known vertices representing $\{c_i = [[\pi^{-i}, 0]]\}_{i \ge 0}$ and the weights of Φ_{∞} , meaning

for
$$n \ge 1$$
, $\Phi_{\infty}(f)(c_n) = qf(c_{n-1}) + f(c_{n+1})$ and $\Phi_{\infty}(f)(c_0) = (q+1)f(c_1)$. (3)

2. The rational function field

First, assume $X = \mathbf{P}^1$ over \mathbf{F}_q , so F is a rational function field. Set $E = \mathbf{F}_{q^2}F$ the quadratic constant extension of F.

Theorem 2.1. $T_F = T_F(E) = \{0\}.$

Proof. Let *T* be a torus with $T_F = E^{\times}$, that has a basis over *F* contained in the constant extension \mathbf{F}_{q^2} . The integral defining $f \in \mathsf{T}_F(E)$ in Eq. (1) for the element $g = 1 \in G_{\mathbf{A}}$ becomes

$$\int_{T_F Z_{\mathbf{A}} \setminus T_{\mathbf{A}}} f(t) dt = \kappa \cdot \int_{T_F Z_{\mathbf{A}} \setminus T_{\mathbf{A}} / (T_{\mathbf{A}} \cap K)} f(t) dt = \kappa \cdot \int_{E^{\times} \mathbf{A}_F^{\times} \setminus \mathbf{A}_E^{\times} / \mathcal{O}_{\mathbf{A}_F}^{\times}} f(t) dt = \kappa \cdot f(c_0),$$

with $\kappa = \mu(T_{\mathbf{A}} \cap K) \neq 0$. Indeed, by our choice of "constant" basis, we have $T_{\mathbf{A}} \cap K \cong \mathscr{O}_{\mathbf{A}_E}^{\times}$. For the final equality, note that the integration domain $E^{\times}\mathbf{A}_F^{\times} \setminus \mathbf{A}_E^{\times} / \mathscr{O}_{\mathbf{A}_E}^{\times}$ is isomorphic to the quotient of the class group of *E* by that of *F*, and that both of these groups are trivial, so map to the identity matrix c_0 in $\Gamma \setminus \mathscr{T}$.

Hence we first of all find $f(c_0) = 0$. For $\Phi = \Phi_{\infty}^k$, this equation transforms into $(\Phi_{\infty}^k f)(c_0) = 0$ (cf. (2)), and with (3) this leads to a system of equations for $f(c_i)$ (i = 1, 2, ...) that can easily be shown inductively to only have the zero solution f = 0. \Box

Fig. 2. The graph $\Gamma \setminus \mathscr{T}$ for F_q (q = 2, 3, 4).

3. Three elliptic curves

Now assume that *F* is not rational, has class number one, a rational point ∞ and genus \leq 1. In this paper, we focus on such fields *F*, since it turns out that the space T_F can be understood elaborating only on existing structure results about the graph $\Gamma \setminus \mathscr{T}$.

The Hasse–Weil theorem implies that there are only three possibilities for *F*, which we conveniently number as follows: $\{F_q\}_{q=2}^4$ with F_q the function field of the projective curve X_q/\mathbf{F}_q (q = 2, 3, 4) are the respective elliptic curves

$$y^{2} + y = x^{3} + x + 1$$
, $y^{2} = x^{3} - x - 1$ and $y^{2} + y = x^{3} + \alpha$

with $\mathbf{F}_4 = \mathbf{F}_2(\alpha)$. Let $F_q^{(2)} = \mathbf{F}_{q^2} F_q$ denote the quadratic constant extension of F_q .

The graph $\Gamma \setminus \mathscr{T}$ for F_q (q = 2, 3, 4) with the Φ_{∞} -weights is displayed in Fig. 2, cf. Serre [11, 2.4.4 and Exercise 3b) + 3c), p. 117] and/or Takahashi [12] for these facts.

Further useful facts: One easily calculates that $X_q(\mathbf{F}_{q^2})$ is cyclic of order 2q + 1; let Q denote any generator. We will use later on that the vertices t_i correspond to classes of rank-two vector bundles on $X_q(\mathbf{F}_q)$ that are pushed down from line bundles on $X_q(\mathbf{F}_{q^2})$ given by multiples $Q, 2Q, \ldots, qQ$ of Q, cf. Serre [11]. For a representation in terms of matrices, one may refer to [12]: if $iQ = (\ell, *) \in X_q(\mathbf{F}_{q^2})$, then $t_i = [t^2, t^{-1} + \ell t]$.

We denote a function f on $\Gamma \setminus \mathscr{T}$ by a vector

$$f = [f(t_1), \dots, f(t_q) \mid f(z_0), f(z_1) \mid f(c_0), f(c_1), f(c_2), \dots].$$

Proposition 3.1. A function $f \in T_{F_q}(F_q^{(2)})$ (q = 2, 3, 4) belongs to the Φ_{∞} -stable linear space \mathscr{S} of functions

$$\mathscr{S} := \left\{ [T_1, \dots, T_q \mid Z_0, Z_1 \mid C_0, C_1, C_2, \dots] \right\}$$
(4)

with $C_0 = -2(T_1 + \cdots + T_q)$ and for $k \ge 0$,

$$C_k = \begin{cases} \lambda_k Z_0 + \mu_k (T_1 + \dots + T_q) & \text{if } k \text{ even,} \\ \nu_k Z_1 & \text{if } k \text{ odd,} \end{cases}$$
(5)

for some constants λ_k , μ_k , ν_k . In particular,

$$\dim \mathsf{T}_{F_q}(F_q^{(2)}) \leqslant \dim \mathscr{S} = q+2,$$

and dim T_{F_a} is finite.

Proof. We choose arbitrary values T_j at t_j (j = 1, ..., q) and Z_j at z_j (j = 1, 2), and set $\tau = T_1 + \cdots + T_q$. We have

G. Cornelissen, O. Lorscheid / Journal of Number Theory 129 (2009) 1456-1463

$$\int_{T_F Z_{\mathbf{A}} \setminus T_{\mathbf{A}}} f(t) \, dt = C_0 + 2\tau \, .$$

Indeed, by the same reasoning as in the proof of Theorem 2.1, the integration area maps to the image of

$$\operatorname{Pic}(X_q(\mathbf{F}_{q^2}))/\operatorname{Pic}(X_q(\mathbf{F}_q)) = X_q(\mathbf{F}_{q^2})/X_q(\mathbf{F}_q) = X_q(\mathbf{F}_{q^2})$$

(the final equality since X_q is assumed to have class number one) in $\Gamma \setminus \mathscr{T}$, and these are exactly the vertices c_0 and t_j (the latter with multiplicity two, since $\pm Q \in E(\mathbf{F}_{q^2})$ map to the same vertex). The integral is zero exactly if $C_0 = -2\tau$. Applying the Hecke operator Φ_∞ to this equation (cf. (2)) gives $C_1 = -2Z_1$, then applying Φ_∞ again gives $C_2 = -(q+1)Z_0$. The rest follows by induction. If we apply Φ_∞ to Eqs. (5) for $k \ge 2$, we find by induction for k even that

$$C_{k+1} = \lambda_k C_1 + (\lambda_k q + \mu_k q(q+1) - q\nu_{k-1})Z_1$$

and for k odd that

$$C_{k+1} = (\nu_k - q\lambda_{k-1})Z_0 + (\nu_k - q\mu_{k-1})\tau.$$

Lemma 3.2. The space \mathscr{S} from (4) has a basis of $q + 2 \Phi_{\infty}$ -eigenforms, of which exactly q - 1 are cusp forms with eigenvalue zero and support in the set of vertices $\{t_j\}$, and three are non-cuspidal forms with respective eigenvalues 0, q, -q.

Proof. With $\tau = T_1 + \cdots + T_q$, the function

$$f = [T_1, \ldots, T_q \mid Z_0, Z_1 \mid -2\tau, C_1, C_2, \ldots]$$

is a Φ_{∞} -eigenform with eigenvalue λ if and only if

$$\lambda T_j = (q+1)Z_1, \quad \lambda Z_1 = \tau + Z_0, \quad \lambda Z_0 = qZ_1 + C_1, \quad \lambda(-2\tau) = (q+1)C_1, \text{ etc.}$$

We consider two cases:

(a) if $\lambda = 0$, we find *q* forms

$$f_k = [0, \ldots, 0, 1, 0, \ldots, 0 \mid 0, -1 \mid -q, \ldots]$$

with $T_j = 1 \Leftrightarrow j = k$. (b) if $\lambda \neq 0$, we find $\lambda = \pm q$ with eigenforms

$$f_{\pm} = [q+1, \dots, q+1 \mid -q, \pm q \mid -2q(q+1), \pm 2q^2, \dots].$$

Since we found q + 2 eigenforms, they span \mathscr{S} . From the fact that a cusp form satisfies $f(c_i) = 0$ for all *i* sufficiently large (cf. Harder [4, Theorem 1.2.1]), one easily deduces that a basis of cusp forms in \mathscr{S} consists of $f_k - f_1$ for k = 2, ..., q. \Box

Corollary 3.3. The Riemann hypothesis is true for ζ_{F_q} (q = 2, 3, 4).

1460

Proof. From Lemma 3.2, we deduce that the only possible Φ_{∞} -eigenvalue of a toroidal Eisenstein series is $\pm q$ or 0, but on the other hand, from Proposition 1.1, we know this eigenvalue is $q^s + q^{1-s}$ where $\zeta_{F_q}(s) = 0$. We deduce easily that *s* has real part 1/2. \Box

Remark 3.4. One may verify that this proves the Riemann hypothesis for the fields F_q without actually computing ζ_{F_q} : it only uses the expression for the zeta function by a Tate integral. Using a sledge-hammer to crack a nut, one may equally deduce from Theorem 2.1 that ζ_{P_1} does not have any zeros. At least the above corollary shows how enough knowledge about the space of toroidal automorphic forms does allow one to deduce a Riemann hypothesis, in line with a hope expressed by Zagier [15].

Theorem 3.5. For q = 2, 3, 4, T_{F_q} is one-dimensional, spanned by the Eisenstein series of weight *s* equal to a zero of the zeta function ζ_{F_q} of F_q .

Remark 3.6. Note that the functional equation for E(s) implies that E(s) and E(1 - s) are linearly dependent, so it does not matter which zero of ζ_{E_n} is taken.

Proof. By Lemma 3.2, T_{F_q} is a Φ_{∞} -stable subspace of the finite dimensional space \mathscr{S} , and Φ_{∞} is diagonalizable on \mathscr{S} . By linear algebra, the restriction of Φ_{∞} is also diagonalizable on T_{F_q} with a subset of the given eigenvalues, hence T_{F_q} is a subspace of the space of automorphic forms for the corresponding eigenvalues of Φ_{∞} . By [8, Theorem 7.1], it can therefore be split into a direct sum of a space of Eisenstein series \mathscr{E} , a space of residues of Eisenstein series \mathscr{R} , and a space of cusp forms \mathscr{C} (note that in the slightly different notations of [8], "residues of Eisenstein series" are called "Eisenstein series," too). We treat these spaces separately.

 \mathscr{E} : By Proposition 1.1, $\mathsf{T}_{F_q}(F_q^{(2)})$ contains exactly two Eisenstein series, one corresponding to a zero s_0 of ζ_{F_q} , and one corresponding to a zero s_1 of

$$L_q(s) := \zeta_{F_q^{(2)}}(s) / \zeta_{F_q}(s).$$

Now consider the torus \tilde{T} corresponding to the quadratic extension $E_q = F_q(z)/F_q$ of genus two defined by x = z(z + 1). Set

$$\widetilde{L}_q(s) := \zeta_{E_q}(s) / \zeta_{F_q}(s)$$

and $T = q^{-s}$. One computes immediately that $L_q = qT^2 + qT + 1$ but

$$\tilde{L}_2 = 2T^2 + 1$$
, $\tilde{L}_3 = 3T^2 + T + 1$ and $\tilde{L}_4 = 4T^2 + 1$.

Since L_q and \tilde{L}_q have no common zero, the \tilde{T} -integral of the Eisenstein series of weight s_1 is non-zero, and hence it does not belong to T_{F_q} . Hence \mathscr{E} is as expected.

 \mathscr{R} : Elements in \mathscr{R} have Φ_{∞} -eigenvalues $\neq 0, \pm q$, so cannot even occur in \mathscr{S} : since the class number of F_q is one, \mathscr{R} is spanned by the two forms

$$r_{\pm} := [1, \ldots, 1 \mid \pm 1, 1 \mid 1, \pm 1, 1, \pm 1, \ldots]$$

with $r(c_i) = (\pm 1)^i$, and this is a Φ_{∞} -eigenform with eigenvalue $\pm (q + 1)$. (In general, the space is spanned by elements of the form $\chi \circ \det$ with χ a class group character, cf. [3, p. 174].)

 \mathscr{C} : By multiplicity one, \mathscr{C} has a basis of simultaneous \mathscr{H} -eigenforms. From Lemma 3.2, we know that potential cusp forms in T_{F_q} have support in the set of vertices $\{t_i\}$. To prove that $\mathscr{C} = \{0\}$, the following therefore suffices:

Proposition 3.7. The only cusp form which is a simultaneous eigenform for the Hecke algebra \mathcal{H} and has support in $\{t_i\}$ is f = 0.

Proof. Let *f* denote such a form. Fix a vertex $t \in \{t_i\}$. It corresponds to a point $P = (\ell, *)$ on $X_q(\mathbf{F}_{q^2})$, which is a place of degree two of $\mathbf{F}_q(X_q)$. Let Φ_P denote the corresponding Hecke operator. We claim that

Lemma 3.8. $\Phi_P(c_0) = (q+1)c_2 + q(q-1)t$.

Given this claim, we finish the proof as follows: we assume that f is a Φ_P -eigenform with eigenvalue λ_P . Then

$$0 = \lambda_P f(c_0) = \Phi_P f(c_0) = q(q-1)f(t) + (q+1)f(c_2) = q(q-1)f(t)$$

since $f(c_2) = 0$, hence f(t) = 0 for all t. \Box

Proof of Lemma 3.8. As in [3, 3.7], the Hecke operator Φ_P maps the identity matrix (= the vertex c_0) to the set of vertices corresponding to the matrices $m_{\infty} := \text{diag}(\pi, 1)$ and $m_b := \begin{pmatrix} 1 & b \\ 0 & \pi \end{pmatrix}$, where $\pi = x - \ell$ is a local uniformizer at *P* and *b* runs through the residue field at *P*, which is

$$\mathbf{F}_q[X_q]/(x-\ell) = \mathbf{F}_q[y]/F(\ell, y) \cong \mathbf{F}_{q^2}$$

if F(x, y) = 0 is the defining equation for X_q . Hence we can represent every such b as $b = b_0 + b_1 y$. We now reduce these matrices to a standard form in $\Gamma \setminus \mathscr{T}$ from [12, §2]. By right multiplication with $[[1, -b_0]]$, we are reduced to considering only $b = b_1 y$.

If $b_1 = 0$, then the matrix is $m_b = \text{diag}(1, \pi) \sim \text{diag}(\pi^{-1}, 1)$. Recall that t = x/y is a uniformizer at ∞ , so $x - \ell = t^{-2} \cdot A$ for some $A \in \mathbf{F}_q[[t]]^*$. Hence right multiplication by $\text{diag}(A^{-1}, 1)$ gives that this matrix reduces to c_2 . The same is true for m_{∞} .

On the other hand, if $b_1 \neq 0$, multiplication on the left by diag $(1, b_1)$ and on the right by diag $(1, b_1^{-1})$ reduces us to considering m_y . By multiplication on the right with

diag
$$((x - \ell)^{-1} \cdot A, (x - \ell)^{-1}),$$

we get $m_v \sim [[t^2, y/(x-\ell)]]$. Now note that

$$\frac{y}{x-\ell} = \frac{y}{x} \cdot \left(1 + \frac{\ell}{x} + \left(\frac{\ell}{x}\right)^2 + \cdots\right) = t^{-1} + \ell t + \beta(t)t^2$$

for some $\beta \in \mathbf{F}_q[[t]]$. Hence right multiplication with $[[1, -\beta]]$ gives $m_y \sim [[t^2, t^{-1} + \ell t]]$, and this is exactly the vertex t. \Box

Remark 3.9. Using different methods, more akin the geometrical Langlands programme, the second author has proven the following results [9]. For a general function field F of genus g and class number h, one may show that T_F is finite dimensional. Its Eisenstein part is of dimension at least h(g-1) + 1 (in the above examples, the dimension is shown to be exactly equal to this number). For a general function field, residues of Eisenstein series are never toroidal. For general elliptic function fields over a field with q elements with q odd or number of rational places different from q + 1, there are no toroidal cusp forms. For a general function field, the analogue of a result of Waldspurger [13, Proposition 7] implies that the cusp forms in T_F are exactly those having vanishing central L-value.

However, in [9], there is no method to in general compute the Hecke eigenvalues (as in Lemma 3.2), nor to conclude that the Riemann hypothesis holds for a general function field (as in Corollary 3.3), nor to compute the exact space of toroidal forms (as in Theorem 3.5).

References

- [1] Laurent Clozel, Emmanuel Ullmo, Équidistribution de mesures algébriques, Compos. Math. 141 (5) (2005) 1255-1309.
- [2] Alain Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N.S.) 5 (1) (1999) 29–106.
- [3] Stephen S. Gelbart, Automorphic Forms on Adele Groups, Ann. of Math. Stud., vol. 83, Princeton Univ. Press, Princeton, 1975.
- [4] Günter Harder, Chevalley groups over function fields and automorphic forms, Ann. of Math. 100 (2) (1974) 249-306.
- [5] Erich Hecke, Über die Kroneckersche Grenzformel f
 ür reelle quadratische K
 örper und die Klassenzahl relativ-abelscher K
 örper, Verhandlungen der Naturforschenden Gesellschaft in Basel 28 (1917) 363–372, Werke, No. 10, pp. 198–207.
- [6] Gilles Lachaud, Zéros des fonctions L et formes toriques, C. R. Math. Acad. Sci. Paris 335 (3) (2002) 219–222.
- [7] Gilles Lachaud, Spectral analysis and the Riemann hypothesis, J. Comput. Appl. Math. 160 (1-2) (2003) 175-190.
- [8] Wen-Ch'ing Winnie Li, Eisenstein series and decomposition theory over function fields, Math. Ann. 240 (1979) 115-139.
- [9] Oliver Lorscheid, Toroidal automorphic forms for function fields, PhD thesis, Utrecht University, 2008.
- [10] Sergei Lysenko, Geometric Waldspurger periods, Compos. Math. 144 (2) (2008) 377–438, doi:10.1112/S0010437X07003156.
- [11] Jean-Pierre Serre, Trees, Springer Monogr. Math., Springer-Verlag, Berlin, 2003.
- [12] Shuzo Takahashi, The fundamental domain of the tree of GL(2) over the function field of an elliptic curves, Duke Math. J. 72 (1) (1993) 85–97.
- [13] Jean-Loup Waldspurger, Sur les valeurs de certaines fonctions L automorphe en leur centre de symétrie, Compos. Math. 54 (1985) 173–242.
- [14] Franck Wielonsky, Séries d'Eisenstein, intégrales toroïdales et une formule de Hecke, Enseign. Math. (2) 31 (1-2) (1985) 93-135.
- [15] Don Zagier, Eisenstein series and the Riemann zeta function, in: Automorphic Forms, Representation Theory and Arithmetic, Bombay, 1979, in: Tata Inst. Fund. Res. Stud. Math., vol. 10, 1981, pp. 275–301.