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1. INTRODUCTION

Let f(t, ¥1 » Y2 5. Yn) De a real valued function on (g, b) X R™ Then the
boundary value problem

YO = f(t, 9, ¥,y YD) (1)

YOt;) = ¢, 0<<iKm—1, 1 <5<k, )

where 2 <k <n a<t)<ty<<"<tbh<b m=1 for 1 <j<k,
and Z;"':l m; = n will be called a k-point boundary value problem. During
the past decade a number of papers have appeared which are concerned with
conditions under which the existence of solutions of such problems is implied
by the uniqueness of solutions. Hartman [1] and Klaasen [2] have given inde-
pendent proofs of the following Theorem.

THEOREM |. Assume that with vespect to equation (1) the following four
conditions are satisfied:

[A] f(t,¥1,Y2,..., ¥n) is continuous on (a, b) X R,

[B] Solutions of initial value problems for (1) are unique and ail solutions
extend to (a, b),

[C] Tf [c, d] is a compact subinterval of (@, b) and if { y,(¢)} is a sequence
of solutions of (1) which is uniformly bounded on [¢, d], then there is a sub-
sequence {y;(#)} such that {7i)(2)} converges uniformly on [c, ] for each
i=20,1,.,n2—1,and

D] Ifa <t <ty <<+ <%, <band if y(t) and 2(t) are solutions of
(1) such that ¥(¢;) = 2(t;) for 1 <{j < n, then y(t) = 2(z) on (a, b).
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Then it follows that for any a < #; < #, < *** < t, < b and any real numbers
¢; » 1 <j < m, the n-point boundary value problem for (1) with y(t) = ¢;
for 1 <{j < # has a solution.

Hartman [3] has proven that, if an equation (1) satisfies conditions [A},
[B], and [D], and also satisfies the conclusion of Theorem 1, then all k-point
boundary value problems, 2 < k& < n, for (1) have solutions which are unique.

In this paper we shall be concerned with equations (1) which satisfy condition
Lipschitz condition:

[E] Foreachjwithl <j<n

kf(t)( Yi— z;i) <f(ts Viseres Virerns yn) -‘f(ts Ve 35 r'-ayn)
< I{(e)(y; — =)

for all points (2, ¥y ,oos ¥jseers Vo) @nd (&, ¥y 5eee, 2550y Yp) in (g, B) X R® with
¥y == %; where k{1), [(t) are continuous functions on (a, b) with &,{t) < [{?)
on (a, b) foreach 1 <{j << n.

If an equation (1) satisfies conditions [A] and [E], then condition [B] is satis-
fied. Furthermore, since conditions [A] and [E] imply that #-point boundary
value problems for (1) are uniquely solvable on small enough subintervals of
{a, ), condition [C] is also satisfied. Thus, if an equation (1) satisfies conditions
[A], [E], and [D] on a subinterval (a, B) C (g, b), then all k-point boundary
value problems, 2 <C & <{ #, for (1) have unique solutions on (g, ).

The purpose of this paper is to characterize in terms of the Lipschitz coeffi-
cients k;(t), [(t), 1 <j < #, the subintervals («, B) of (a, b) of maximal length
on which condition [D] is satisfied for all equations (1) satisfying [A] and [E].
Such intervals will then be intervals on which all k-point boundary value
problems, 2 <L & < », will be uniquely solvable for all differential equations
(1) satisfying conditions [A] and [E]. This will be accomplished by an appli-
cation of control theory methods which is motivated by the work in [4]. In the
remainder of the paper we will assume that we are dealing with an arbitrary
but fixed equation (1) which satisfies conditions [A] and [E].

2. Ax ArpricaTioN oF CoNTROL THEORY METHODS

Assume that 5(t) and 2(¢) are distinct solutions of (1) on (a, b) and for 0 <j < »
define the functions 4;(z) by

hot) = £t 5@, ¥ (B YD),
hit) = f(t, 2(2), &' (D),..., 20-D(t), YO(2),..., yD(2))

for 1 <j<n—1,and

R, () = f(&, 2(t), 2'(2),..., 27 1(F)).
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Then define the functions u,(t), 1 <j <, by

s h;_1(t) — Ay(2)
) = 159°00) — 5010
ky(t) for yU-D(t) = 2Y-D(z).

for yU-D(t) £ 2U-1(t)

It follows from the continuity of the functions involved and from condition
[E], that, for each 1 <{j < #, u,(¢) is measurable on (a, b) and

k(1) < (1) < I(2) ©)

on (a, b). Furthermore, the difference x() = y(t) — 2(¢) is a solution of the
linear equation

n

X == Z u,()xU-D 4
j=1
on (g, b). Now assume that ¥(z) and 2(f) are distinct solutions of (1) and that
there are points a <<t <<i, < - <t, < b such that y(t;) = 2(z;) for
1 <j < n. Then, if ¢ and d are chosen so that ¢ < ¢ < #; and £, < d < b,
the difference x(z) = y(¢) — 2(¢) is 2 nontrivial solution of (4) having # distinct
zeros on the compact interval [e, d].

For an integer & with 1 <{ k2 <{n — 1 a solution w(z) of (4) will be said to
have an (r — k, k) pair of zeros on the interval [¢, d] in case there exist #; and £,
with ¢ <, < 1, < d such that #(¢) has a zero of order at least » — k at 1,
and a zero of order at least & at ¢, . In [9] Sherman has proven that, if for each
k with 1 <k <\ n — 1 there is no nontrivial solution of (4) with an (n — &, &)
pair of zeros on [¢, d], then (4) is disconjugate on [¢, ], that is, no nontrivial
solution of (4) has n zeros on [¢, d] counting multiplicities of the zeros. Thus,
since x(¢) = y(t) — 2(¢) is a nontrivial solution of (4) with # zeros on [c, 4],
there is a k, with 1 <C &k, <{ 7 — 1 such that (4) has a nontrivial solution with
an (n — ky, ky) pair of zeros on [¢, d].

Now let U be the set of all vector functions # = (u;(£), #y(t),..., #,(¢)) such
that the components #,(¢) are Lebesgue measureable on (a, &) and satisfy inequali-
ties (3) on (4, b), and consider the collection of all 2-point boundary value
problems of the form

n
x(n) — Z uj(t)x”—l)
j=1

x0(2,) = 0, 0L eiKn—ky— 1, ()

XO(t) =0, 0<i<h —1,

where (2,(2), #5(2),..., #,(¢)) € U and ¢ < t; < #, < d. As remarked above there
is a problem in this collection that has a nontrivial solution. This being the case,
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it follows from standard arguments that there is a boundary value problem in
the collection (5) which has a nontrivial solution which is time optimal, that is,
which is such that the spacing, #, — ; , between its zeros is a minimum among
all nontrivial solutions of boundary value problems in the collection (5).

For each ue U let 2’ = Afu(t)] # be the first order vector system corre-
sponding to the nth order scalar equation x = Z;-Ll u;(t) x99, Let x(t)
be a time optimal solution in the set of boundary value problems (5), let u* e U
be an associated time optimal control, and let ¢ < & << ¢, << d be zeros of
x(t) of respective orders n — k, and k, such that #, — ¢, is 2 minimum. Then it
follows from the Pontryagin Maximum Principle {5, p. 310] that the adjoint
system

¢ = — AT o, (6)

where A7 represents the transpose of ., has a nontrivial sclution (1) =
(y(1),..., $.(£))7 such that for almost all £ with ¢, < £ < ¢,

n

Y, X0 §i(t) = ((8), $(8)) = Max{(A[u(2)] 5(t), ) wec U} (7)
i=1
where 2(f) = (x(2), £'(t),..., ®™(¢t)) and (-, -) represents the inner product.
Furthermore, §(¢) is such that (2, §(#,)) == 0 for all vectors z = (2, 25 ,..., )
with 2; = 0 for | <{j <{ n — kyand (2, ¥(t,)) = O for all vectors z with z; =0
for 1 <{j < ky . These conditions imply that

hi(t) =0 for n—ky+1<j7<n and (8}
Sty =0 for A+l <j<n (9)
Since
n—1 n
(Alu()] 2(2), (2)) = Zl x(8) hi(t) +- plt) Z} w;($)xU-1(z),

the maximum condition (7) can be written as

% .(2) i w¥()x () = Max{y, (7) Zn: u(Q)xD() [ue U} (10)

In our applications of (10) it will be the case that the time optimal solution
x(¢) will be positive on (¢, , #,;) and the associated solution #)(¢) of the corre-
sponding adjoint system will be such that its #th component i, (¢) will have
no zeros on (t; , ). In this case it follows from (10) that, if $,(t) << Oon (4 , %),
then

i (t) = ky(?) (11)

505/32/1-6
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and for 2 <j <=

E;(£) when xU-D(t) >0

ui(t) = 1{t) when x¢-1(z) < 0. (12)

Similarly, if 4,(¢) > O on (¢, , t,), then
ul (1) = L(2) (13)
andfor2 <j<n

L(t) when xUD(#) =0

%) = {kt) when x9-9(z) < 0. (14

It follows that, if we define the differential operators L, , L, by

Loty %, ey 500 = Bt 5 3 TH0) + RO (15)
j=2
and
Ly, &, &"50, 27 D) = % Zn [L() — Ry(2)] | x4 D |, (16)
j=2

then, under the assumptions that x() > 0 and ¢,() < 0 on (t;, t,), the time
optimal solution is a solution of

atm = Ly(2, %, &,..., £ V) — Ly(t, &, &,..., (77D}, (17

and, under the assumptions that x(f) > 0 and $,(¢) > 0 on (#; , ,), the time
optimal solution is a solution of

& = [I(t) — k(1)) x + Ly(t, %, ..., x»)
+ Ly(t, &', &",..., x*-1), (18)
It should be noted that the differential equations (17) and (18) both satisfy
conditions [A] and [E]. Of course it is still true that u* € U whether defined
by (11), (12) or by (13), (14) and the time optimal solution is a solution of a

differential equation appearing in the collection of boundary value problems (5).
To conclude this section we consider the collection of boundary value problems

= —ATu(t)]

bt) =0, n—hk+1<j<n, (19)
bt =0, k+1<j<n,
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wherex € Uand ¢ < t; < 1, < d. A solution vector i(t) of one of these problems
will be said to have a (k, , n — k) pair of zeros on [c, d] with zero of order k&,
at ¢, and zero of order n — k, at £, . Again it can be argued that, if there is a
problem in the collection (19) with a nontrivial solution, then there will exist
a problem in the collection which has a nontrivial time optimal solution. If u* e U
is an associated time optimal control vector and if the “time optimal” zeros
are at ; and 2, with ¢ << t; <7 i, < d, then the Pontryagin Maximum Principle
can be applied to conclude that the boundary value problem

7
Oy 'Z uik(t)x(i~1)
j=1

X)) =0, 0<i<
X)) =0, 0<i<hk —1,

has a nontrivial solution. Thus the Maximum Principle associates with each
time optimal solution in the collection (5) a time optimal solution in the collec-
tion (19), and conversely.

3. ToE (n-1,1) Zrro BoUNDARY VALUE PROBLEM

Let [¢, d] be a compact subinterval of (4, b), let k, = 1, and consider the
corresponding collection of boundary value problems (5). Assume that there is
a problem in the collection for which the solution x(t) is time optimal and that
the associated zeros are at #; and 7, with ¢ <{ f; <, <{ d. Then from the con-
cluding remarks of the last section it follows that, if (2} is the solution of the
adjoint system associated with x(¢) by the Maximum Principle, then i,(¢) =4 0
on (1 , ;). For if this were not the case #(¢) would not be time optimal. In this
section we shall prove that 4,(f) << O on ( , #,) and that the time optimal sclution
is a solution of (17) on [#, , £].

TrEOREM 2.  Assume that there is a subinierval [t, , £,] C (a, b) and a solution
x(t) of equation (18) with x'V(t)) = 0 for 0 < i < n — 2, with x(t,) = 0, and with
x(t) > 0 on (t,, t,). Then there is a proper subinterval [s;, s,] C[t;,1,] and a
solution ©(t) of (17) such that v¥(s)) =0 for 0 < i < n— 2, (s} = 0, and
o(s) > 0 on (51, $5).

Proof. Assume that no such solution o(t) of (17) exists. Let a«(z, 5) be the
solution of the initial value problem
2 = L(¢, x, x,..., x{nD)
¥s) =0, 0<Li<n—2,
x-D(s) = 1.
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Then w(t;, 5) > 0 for all £; <'s < #,. To see this assume that z(/; 5) <0
for some s, with #; <{s, <t,. Then there exist t,, #, such that s, < t; <
Iy <1y, wlty, &) =0, and w(#;,5) > 0 for all £; <s < #,. Let o(t) be the
solution of (17) satisfying the intial conditions 2@(t,) =0, 0 <7 < n — 2,
and 2*-Y(¢,) = 1. Then

[7

1
o(t) = wlte, 1) — [ wlty, ) Lafs, 9'(5), 0"(s)yrey 0PD(5)) ds
v,

3

from which we conclude v(t,) < 0. Thus v(f) = 0 for some ¢ with 7, < t < 2,
which contradicts our assumption that there are no such solutions (). From
this contradiction we conclude that w(z,, s) > 0 for #; <s < #,. However,
this fact and the following representation for x(,),

x(ty) = w(ly , 1) (ty) + ftz w(ty » $) {[4() — ky(s)] x(s)
+ Ly(s, ¥'(s),..., £0=(s)} ds,

leads to the conclusion x(2,) > 0 which contradicts x(z,) = 0. From this final
contradiction we conclude the existence of solutions of (17) of the specified type.

Turorem 3.  Assume that x(t) is a time optimal solution of the (n — 1,1)
zevo boundary wvalue problem

n
&) — Z u; ()i~
=1

) =0, 0<Lig<n—2,

a(t) =0

where a < ¢ <ty <t, <<d<<b and ue U and assume x(¢) >0 on (¢, Ly).
If §(t) is the associated time optimal solution of the (1,n — 1) zero boundary
value problem for the adjoint system, then s, (t) < 0 on (8, , t,) and x(t) is a solution
of (17) on [#; , 1.

Proof. Since x(t) can be replaced by —=x(t), there is no loss in generality
in assuming x(t) > 0 on (¢, , t,). From the fact that the solution (#) of the
(1, 2 — 1) zero boundary value problem for the adjoint system associated with
x(t) by the Maximum Principle is time optimal, we conclude that ,(¢) 5= 0
on (1 , 1,). Thus x(t) is a solution of (17) on [¢, , #,] or is a solution of (18) on
{t; , £5)- If x(¢?) is a solution of (18) on [#,, £,], then it follows from Theorem 2
that there is a nontrivial solution of (17) with an (z — 1, 1) pair of zeros on
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a proper subinterval of [#,,1,]. This contradicts the time optimality of x(z).
Hence, ,(t) < 0 on (¢, , f,) and x(?) is a solution of (17) on [¢; , ,].

4. (n-fz, k) ZErRO BounpaRY VALUE PROBLEMS WITH 2 <C k <C -]

Assume that the compact interval [c, d] C (g, b) is such that for each control
vector u € U the corresponding differential equation '™ = 2721 u(t)x'9~1) has
no nontrivial solution with an (n — f,§) pair of zeros on [¢, ] for any j with
I <j<k—1 where k£ is a fixed integer satisfying 2 <k <Cw — 1.
Assume that there is a control # € U such that #'" = Y7 ; u,(t) a1 does have
a nontrivial solution with an (n — k, k) pair of zeros on [c, d]. Then there is a
control which produces a time optimal such solution x(#) with corresponding
time optimal zeros at t, , f, with ¢ < #; << t, < d. In this section we prove that

in this case x(¢) is either a solution of (17) on [#;, &] or a solution of (18) on
[t}_ H tZ]‘

THEOREM 4. Assume that the conditions stated in the above paragraph are
satisfied on the compact interval [c, d] C (a, b) and assume uwe U is a control such
that x™ =3, u(t) ¥V has a time optimal solution x(t) with an (n — k, k)
pair of zervos at the respective poinis t; and t, with ¢ < t, < t, < d. Then
x(t) = O on (1, &)

Proof. The conclusion of this Theorem is an immediate consequence of
Lemma 4 in [6].

If in the adjoint system ¢" = — AT[u(#)] 6 corresponding to a fixed ue U/
we reverse the order of the components of i, that is, define the vector
Y = (¥1s 30)7 by setting v; = ¢, ; for 1 <{j <{n, we obtain a system

¥ = Blu(t)] y {20)

which is of the type studied by Hinton in [7]. We will say that a solution y() =
(31(2)s--, 3.(8))" has an (n — k, k) pair of zeros at the respective points ¢ = #,
and t = tyin case y,(t;) =0for | <j<n—kand yft) =0for 1 <j <k
Thus, if a solution i(f) of ' == —AT[u(t)] ¢ has an (n — &, k) pair of zeros
at £ = t; and f = #, respectively as defined earlier, then the corresponding
solution y(¢) of (20) also has an (n — &, k) pair of zeros at t = ¢, and £ = 1,
as defined above.

For solution vectors yX(t),..., ¥2(2) of (20) let W(31,..., ¥*} be the pth order
determinant in which the ith row, | <{7 <{ p, consists of the respective ith
components of the solutions yi(),..., v?(t). Then Theorem 2.1 of [7] can be
formulated in the following way.
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TaroREM 5. Assume that y\(t),..., y™(t) ave linearly independent solutions
of (20) and that y°(t) is also a solution of (20). Let Yy = y,°(¢) and for 1 < i < n
let V; = W( ..., ¥%, y°) and W, = W(y\,..., ¥%). Then, for each i such that W,
does not have a zero on the interval | C (a, b), we have

a Wi Y = WY /W) 2n

on | where Wy=1,a;, = ~1for | <i<n—1anda, = +1I.

THEOREM 6. Assume that for a fixed u € U and a fixed integer k wwith 2 < k <
n— 1 and k < n— k the system (20) and the interval JC (a, b) are such that
there is no nontrivial solution of (20) with a (j, n — f) pair of zeros on J for any
jwith | <j<k— 1. Assume that there is a nontrivial solution y%(t) of (20)
with a zevo of order k at t, and a zero of order n — kat ty with t; <t,and ty ,t,e [
and assume that there is no nontrivial solution of (20) with a zero of order n — k
att = t,and a zero of order k at a point in (¢, , ty). Then y,%(t) = Oon(t , ty).

Proof For each i with 1 < ¢ < #nlet y(¢) be the solution of (20) with y¥(¢,) =
(81 se-ey Bpe)T Where §;; is the Ixronecker delta. Then the solutions yi(£),..., y*(¢)
are linearly independent and, since ¥°(z) has a zero of order n — k at t = 1,
there are constants ¢;, # — & + 1 <{j < n, such that

P(B) = enpma ") A+ o - (D) 22)

Since no nontrivial solution of (20) has a (f, # — j) pair of zeros on J for any j
with 1 <j<<k—1, it follows that for each j with I <j <k -1,
W(y—+1,..., y") 5 0 for all te J with ¢ < £, . Furthermore, since y(t) does
not have a zero of order % between #, and 4, , it follows that W{ y* %+ .., y*) £ 0
on (¢ , 1)

Now in Theorem 5 let us change notation to fit the present situation, that is,
set Y, = 3%¢) and for | <7<k set YV, = W(y%...,y""1,y%) and W; =
W(yn,..., y»=i1). Then as observed above W, 7 0 on (1‘:l , 1) for each i with
1 <1 k Now assume that 1,%(#;) = O for some #; with #; < f; < £,. Then
applying Theorem 5 we conclude that Y; has a zero at some #, with #; <{t, <1, .
A second application of Theorem 5 yields the existence of a zero of Y, at some
point in (2, , £,). After repeated applications of Theorem 5 we reach the con-
clusion that there is a #, with £, <C #, < #, such that ¥, has a zero at £ = ¢, .
In view of (22) this implies that

CpopaW(y* 52,90 =0

at t = #,. Since it was assumed that (20) has no nentrivial solution with a

(8 — 1, n — k -+ 1) pair of zeros on J, it follows that ¢, ,; # 0. Therefore
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W(yn*+1,..., y") = 0 at t = 1, which implies that (20) has a nontrivial solution
with a zero of order # — k at # = f, and a zero of order % at ¢, & (i, , &) which
contradicts our hypotheses. We conclude that y,%(#) 5% 0 on (4 , t,).

CoROLLARY. Assume that the compact interval [c, d} C (a, b) and the integer
k with 2 << k < n— 1 are such that for each control ue U and each inleger j
with 1 <j <k—1 the equation x™ =37, u(t) s has no nontrivial
solution with an (n — j,J) pair of zeros on [e, d]. Assume that there is a ue U
such that the corresponding differential equation does have a nontrivial solution with
an(n — k, k) pair of zeros on [c, d}. Then, if x(t) is a time optimal such soluiion with
zero of order n — kat t = ty and zeroof order kat t = tywith ¢ < & < 1, < d,
it follows that for the associated solution J(t) = (fu(2),-.., ${))T of the corve-
sponding adjoint system we have i, (t) 5= 0 on (4, t,). Then, since by Theorem 4
¥{t) # 0 on (ty, ), we can assume x(t) > 0 on (t; , %,) and it follows that x(t)
is either a solution of (17) or a solution of (18) on [#,, t,] depending on whether
zlbn(t) < 0 or l1L’n(t) >0on (tl 4 t-z)-

TueoreM 7.  Assume that in the collection of boundary value problems

n

xmh = N ()t
i1
x(t;) =0

20(t) =0, 0<i<n—2,

where ue U and ¢ <ty <1, < d, x(t) is a time optimal solution. Then x is
a solution of (17) on [ty , 1] if n is even and is a sulution of (18) on [t , 5] if
is odd.

Proof. If x(t) is a solution of x™ =3 u,(¢) 291 with x(2,) = 0, xD(£,) = 0
for 0 <Ci <Cn — 2, and &(f) > 0 on (% , t,), then y(f) = x(—1) is a solution of

n

PO = 3 (1) () 23)
j=1
on —b <t < —a with y?(—t,) =0 for 0 <iCn—2, y(—5) =0, and
¥t) >0 on (—1%,, —1). Hence, if x(f) is time optimal for a (1,7 — 1) pair
of zeros on [c, d] C (g, b), then y(z) = x(—t) is time optimal for an (n — 1, 1}
pair of zeros on [—d, —c] C(—b, —a), and conversely.
For the equation (23) the inequalities satisfied by the controls depend on
whether # is even or odd. When # is even, we have

B(—1) < (— 1) u(—1) < I(—1) for odd j

~
and —l(—1t) < (1) uy(—t) << —ki(—t) for even j,
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and when # is odd, we have

7

—l(—1) < (=1 u(—1) < —kj(—1)  for odd
<

and k(—t) < (=11 yy(—1) < L(—1) for even j.

Applying Theorem 3 on the interval (—b, —a) we conclude that, if ¥(z) is a time
optimal solution of (23) with an (z — 1, 1) pair of zeros respectively at ¢ = —1,
and ¢t = —1#, , then when # is even y(¢) is a solution of

PO = Ry} Y (~1PAL(—) - Ry

— 3 D) — (D] 550 |

on [—%,, —1] and, when # is odd, y(t) is a solution of

P = —h()y 4 b S (17 )+ A0l

j=

— 1 Y =) — k(=01 |52 |
=2
on [—t,, —t;]. When these equations are translated back in terms of x(z) =
3(—1) we obtain the desired conclusion.

5. THIRD AND FOURTH ORDER DIFFERENTIAL EQUATIONS

In this section we use the results of the previous sections to obtain subintervals
of (a,b) on which all k-point boundary value problems, 2 <k < n, for
Eq. (1) have unique solutions in the cases where (1) is of order three or of
order four.

THEOREM 8. Assume that the equation

Y =ft5,") (24)

satisfies conditions [A] and [E] on (a, b) X R®. Assume that [c, d] C (a, b) is such
that for any ¢ < t, < d the solution x(t) of the third order equation (17) with
x(ty) = ' (f) = 0 and x"(ty) = 1 satisfies x(t) >0 on (fy,d] and for any
¢ < ty < d the solution x(t) of the third order equation (18) with x(t,) = x'(f;) = 0
and x"(t)) = 1 satisfies x(t) > 0 on [c,ty). Then all 2-point and all 3-point
boundary value problems for (24) on (c, d) have solutions and these solutions are
unique.
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Proof. As observed in the Introduction it suffices to show that condition [D]
with # = 3 is satisfied on (¢, d). If condition [D] is not satisfied on (¢, d), then
as noted in Section 2 there is a ue U such that 4" = Z?=1 u;{t) xU1 has a
nontrivial solution with three zeros on [¢, d]. This implies that the same diffe-
rential equation has a nontrivial solution with a (2, 1) pair of zeros on [¢, d] or a
nontrivial solution with a (1, 2) pair of zeros on [c, d]. Thus there is either a
time optimal solution with a (2, 1) pair of zeros on [¢, d] or a time optimal solution
with a (1, 2) pair of zeros on [¢, d]. In the first case the time optimal solution
is a solution of (17) and in the second case is a solution of (18). Both of these
cases are ruled out by the hypotheses of the Theorem.

COROLLARY. Assume that f(¢, v, V', y") is continuous and satisfies the Lipschitz
condition

(63,959 = flt 22, 2) S K|y —z|+ L1y —2' | =My —2"|

on (a, b) X R® where K, L, and M are positive constants. Let x(t) be the solution
of the initial value problem
X" = —Kse —L|x'|—M|x"]

(25)
©(0) = %'(0) =0,  #"(0) = +1.

Let t = h be the first zero of x(t) to the right of t = Q. Then on any open subinter-
val of (a, b) of length less than k all 2-point and all 3-point boundary value problems
for (24) have unique solutions. This corollary is essentially coniained in Theorem 4
of reference [4].

Proof. In the case of the specified Lipschitz condition the corresponding
third order forms of equations (17) and (18) are respectively
X" = ~Kx—Lx'|—M|x"]|
and X" =Kx~+L|x'|-+Mjx".
Furthermore, since these equations are autonomous, in applying Theorem §
we need only consider the solutions of the initial value problems (25) and
" = Kx -+ Ljx" |+ M|x"|

(26)

x(0) = «'(0) =0, «"(0)=1L
Tor the solution of (25) we are concerned with the first zero to the right of t = 0
and for the solution of (26) we are concerned with the first zero to the left of
t = 0. However, if x(t) is a solution of the initial value problem (26), ¥(¢) =
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x(—1) is a solution of the initial value problem (25). Hence the interval length
for solvability of boundary value problems in this case is determined by the
first zero to the right of # = 0 of the solution of (25).

Since equations (17) and (18) themselves satisfy the Lipschitz condition
[E], the results stated in Theorem 8 and its Corollary are best possible for
differential equations (24) in which the function f(¢, v, y', ¥") satisfies the stated
Lipschitz condition. If f(t,y,y’,»") satisfies the Lipschitz condition of the
Corollary of Theorem § on (2, b) X R?, it is known that 2-point boundary value
problems for (24) have unique solutions on subintervals of (4, b) of length less
than % where 7 is the positive root of the equation

2 ks Yype o 20

B3 Kk +6Lh —l—gﬂlh =1,

see [8] for example. In the case K =L = M =1 this yields - = 1.1284 as
compared to the best possible result 2z = 2.7353 obtained from the Corollary.

THEOREM 9.  Assume that the equation

YO =ft, 5,55 (27)

satisfies conditions [A] and [E] on (a, b) X R:. Assume that the interval [c, d] C
(a, b) is such that

(1) For any ¢ < ty, < d the solution x(t) of the fourth order equation (17)
with x(t,) = x'(¢)) = x"(8,) = 0 and x"(t,) = +1 satisfies x(t) > 0 on (%, , 4],

(2) For any ¢ < t, < d the solution x(t) of (17) with x(ty) = x'(3y) =
x"(t)) = 0 and x"(t;) = — 1 satisfies x(2) > 0 on [c, &), and

(3) There is no nontrivial solution of (18) with a (2, 2) pair of zeros on [c, d].
Then all k-point boundary value problems, 2 < k < 4, for equation (27) have
solutions on (¢, d) and these solutions are unique.

Proof. As was remarked in the proof of Theorem 8 it suffices to show that
condition [D] is satisfied on (¢, ). Then again as noted in Section 2, if this were
not so, there would exist a w€ U such that the associated equation x® =
}:?:1 u;(t) =D has a nontrivial solution with either a (3, 1), a (2, 2), or a (1, 3)
pair of zeros on [¢, d]. In any one of these cases there would exist a time optimal
solution with the same type of pair of zeros on [¢, d]. This being the case con-
ditions (1) and (2) of Theorem 9 and Theorems 3 and 7 rule out the possibility
of a nontrivial solution having a (3, 1) or a (1, 3) pair of zeros on [, d] for solutions
of any equation x¥ = Z?=1 u;(t) x99V withue U.

On the other hand, if there is 2 ue U such that the equation x* —
Z?=1 u;(t) x0-D has a nontrivial solution with a (2, 2) pair of zeros on [¢, d], then
there is a time optimal such solution x(¢) with associated zeros of order two at
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fyand 1,, ¢ <t < t, < d. Then by Theorem 4 x(t) # 0 on (¢, , 1,) and we
may assume that x(#) > 0 on (#; , t,). Furthermore, if () = (y(2),.-., $alt))”
is the associated solution of the adjoint system paired with x(¢} by the Maximum
Principle, then by the Corollary of Theorem 6 ,(f) 7= 0 on (¢, , £,). The Maxi-
mum Principle also asserts that Z;%:l x9(t) $(2) is a non-positive constant on
[t,,t,]. By the condition (1) of Theorem 9 the order of the zero of x(¢) at
t = t, is exactly 2 and by the condition (2) of Theorem 9 the order of the zero
of () at ¢ = £, is also exactly 2. Hence

4
Y 898 dyty) = (8 a(ty) # 0
=1
and, therefore, since Zj'=1 x0() ¥(¢) 1s non-positive it follows that
x"(2)) y(t) < 0. Then, since x(¢) > 0 on (f,, 1), x"(1;) > 0 and #,(t;) < 0.
Finally, referring to the adjoint system one sees easily that ¢i,(,) <0, $y(t)) =0,
and $,(1,) = O implies that ,(z) > 0 on (¢, , £,). Thus the time optimal solution
x(t) is a slution of (18) on [¢, , #,] but condition (3) of Theorem 9 rules this out.
It follows that equation (27) satisfies condition [D] on {c, d) and the proof
of Theorem 9 is complete.

CoroLLARY. Assume that Eq. (27) satisfies condition [A] and the Lipschitz
condition
Ef(t7 ¥, y,y ,\’”; J’m) '_f(ta 2, Z,, 2”; 2”’)!
<Kiy—z|+L|Y —¢ | +My —&" |+ Ny —2"|

on (a, b) > R Let x(t) be the solution of the initial value problem
X = Ky —L|x|—M|x"|—Njx"|
2(0) = ¥'(0) =s"(0) =0, «"(0) = 1.

If x(t) has a positive zero, let t = dy be its smallest positive zero; otherwise, let
dy = -+oo. If the boundary value problem

P =Ky +L|a|+-Mjx"|+Nix"]

x(0) = x'(0) =0, #(d) =x'(d) =0
has a nontrivial solution for some d > 0, let d, be the smallest d > O for which
it has a nontrivial solution. If the boundary value problem has no nontrivial solution,
let dy = +cc. Then on any open subinterval of (a, b) of length less than

d, = Minld, , d,} all k-point boundary value problems, 2 < k < 4, for Eq. (27}
have solutions which are unique.

Again the results contained in Theorem 9 and its Corollary are the best that
can be obtained in terms of the Lipschitz coefficients.
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To extend the results of Theorems 8 and 9 to equations of arbitrary order
we must determine for each integer k with 2 <C k& <{n — 2 the sign of #,(¢)
where ¢,(2) is the last component of the solution (t) of the adjoint system asso-
ciated with a solution x(z) of x® = Z;;l u;(t) x91 having a time optimal
(n — k, k) pair of zeros. The method for doing this used for the (2, 2) pair of
zeros in the proof of Theorem 9 breaks down for equations of order greater
than four. For example, if the equation is of order five and if x(#) is a solution with
a time optimal (3, 2) pair of zeros, the first zero in the (2, 3) pair of zeros of the
associated solution (2) of the adjoint system might actually be of order 3
instead of 2.

However, it seems reasonable to conjecture that, if for a fixed integer % with
2 <k << n — 2 the interval [c, d] C (a, b) has been determined so that for each
u € U and each integer j with | <{j <{ & — 1 the equation

n
2 = 3 ug)xt-0
i=1

has no nontrivial solution with an (# — j, j) or a (j, n — j) pair of zeros on [c, d]
and if there is a w e U such that the corresponding equation has a nontrivial
solution with an (# — &, k) pair of zeros on [c¢, d], then a time optimal such
solution will be a solution of [17] if % is odd and will be a solution of (18) if & is
even. This is equivalent to saying that between the (&, n — &) pair of zeros of the
solution () of the associated adjoint system sign #,(t) = (—1)* where ,(¢) is
the last component of (¢) and the time optimal solution x(¢) is assumed to be
positive between its (n — k&, £) pair of zeros.
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