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1. INTRODUCTION 

Let f(t, y1 ,y2 ,.-, yn) be a real valued function on (a, b) x R’“. Then the 

boundary value problem 

y(vt) = f(t, y, y’,..., y’“-1’) (1) 

y(f)&.) = cjc ) O<i<nZj-1, 1 <j<k, (2) 

where 2<k<n, a<t,<t,<...<tl,<b, nlj>l for 1 <j<k, 
and ‘& nzj = n will be called a k-point boundary value problem. During 
the past decade a number of papers have appeared which are concerned with 
conditions under which the existence of solutions of such problems is implied 

by the uniqueness of solutions. Hartman [l] and Klaasen [2] have given inde- 
pendent proofs of the following Theorem. 

THEOREM 1. Assume that with respect to equation (1) the following four 
conditions are satisJied: 

[Al f  (t, yx , ye 3..-,Y,) is continuous on (a, b) x Rn, 

[B] Solutions of initial value problems for (1) are unique and all solutions 
extend to (a, b), 

[C] If  [c, d] is a compact subinterval of (a, b) and if { yw(t)} is a sequence 
of solutions of (1) which is uniformly bounded on [c, d], then there is a sub- 
sequence (yk.Jt)) such that ( yg(t)} converges uniformly on [c, d] for each 
i = 0, l,..., n - 1, and 

[D] If  a < t, < t, < ..- < t, < b and if y(t) and z(t) are solutions of 
(1) such that y(tJ = z(tj) for 1 < j < n, then y(t) = z(t) on (a, b). 
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Then it follows that for any n < tr < t, < ... < t, < b and any real numbers 
cj , 1 < j < n, the n-point boundary value problem for (1) with ~(t,;) = 61 
for 1 < j < n has a solution. 

Hartman [3] has proven that, if an equation (1) satisfies conditions [A], 
[B], and [D], and also satisfies the conclusion of Theorem 1, then all k-point 
boundary value problems, 2 < k < ~a, for (I) have solutions which are unique. 

In this paper we shall be concerned with equations (1) which satisfy condition 
Lipschitz condition: 

[E] For each j with 1 < j < n 

k,(t)(yj - 2:j) <f(t,y1 ,..., yj ,..., Jk) -f(t,y1 >.I., zj ,...,m> 

G zj(t)(Yj - zi) 

for all points (t, yr ,..., yj ,..., yn) and (t, y1 ,..., zj ,..., yn) in (a, b) x Rn with 
yj > zj where k,(t), Zj(t) are continuous functions on (a, b) with kj(t) < Zj(t) 

on (a, b) for each 1 <j < n. 
If  an equation (1) satisfies conditions [A] and [El, then condition [B] is satis- 

fied. Furthermore, since conditions [-41 and [E] imply that n-point boundary 
value problems for (1) are uniquely solvable on small enough subintervals of 

(a, 6), condition [Cl is also satisfied. Thus, if an equation (I) satisfies conditions 
[A], [El, and [D] on a subinterval (a, /I) C (a, b), then all k-point boundary 
value problems, 2 < k < n, for (1) have unique solutions on (01~8). 

The purpose of this paper is to characterize in terms of the Lipschitz coeffi- 
cients k,(t), &(t), 1 < j < n, the subintervals (a, 8) of (a, 6) of maximal length 
on which condition [D] is satisfied for all equations (1) satisfying [A] and [El. 
Such intervals will then be intervals on which all k-point boundary value 

problems, 2 < k < n, will be uniquely solvable for all differential equations 
(1) satisfying conditions [A] and p]. Th is will be accomplished by an appli- 
cation of control theory methods which is motivated by the work in [J]. In the 
remainder of the paper we will assume that we are dealing with an arbitrary 
but fixed equation (1) which satisfies conditions [A] and [E]. 

2. AN APPLICATION OF CONTROL THEORY METHODS 

Assume thaty(t) and z(t) are distinct solutions of (1) on (n, b) and for 0 <j < n 
define the functions h,(t) by 

k-J(t) = f(t, Y(f), Y’(b, Y(-yt)), 
k#) = f(t, x(t), z’(t) ,...) .+yq, y(j)(t),..., y’“-“(t)) 

forl<j<n-1,and 

kn(t) = f(t, x(t), z’(t) ,...) d-(t)). 
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Then define the functions z~(t), 1 < j < n, bJ 

5 

hj-l(t) -  hj(t) 

Qt) = y+l)(t) - ,&-U(t) 
for y(+r)(t) f ,$-i)(t) 

t k,(t) for y(j-l'(t) = ,$-l’(t)* 

It follows from the continuity of the functions involved and from condition 
[El, that, for each 1 < j < n, uj(t) is measurable on (a, b) and 

k,(t) < dt) < 4(t) (3) 

on (a, b). Furthermore, the difference a(t) = y(t) - z(t) is a solution of the 
linear equation 

33”) = il z4j(t)x’j-1J (4) 

on (a, b). Now assume that y(t) and z(t) are distinct solutions of (1) and that 
there are points a < tl < t, < ... < t, < b such that y(tj) = .z(tj) for 
1 <j<n.Then,ifcanddarechosensothata<c<t,and t,<d<b, 
the difference x(t) = y(t) - z(t) . IS a nontrivial solution of (4) having tz distinct 
zeros on the compact interval [c, d]. 

For an integer k with 1 < k < fz - 1 a solution w(t) of (4) will be said to 
have an (Z - k, k) pair of zeros on the interval [c, d] in case there exist tl and t, 
with c < t1 < t, ,( d such that w(t) has a zero of order at least n - k at t, 
and a zero of order at least k at t, . In [9] Sherman has proven that, if for each 
k with 1 < k < n - 1 there is no nontrivial solution of (4) with an (n - k, k) 
pair of zeros on [c, d], then (4) is disconjugate on [c, d], that is, no nontrivial 
solution of (4) has n zeros on [c, d] counting multiplicities of the zeros. Thus, 
since x(t) = y(t) - x(t) is a nontrivial solution of (4) with n zeros on [c, d], 
there is a k, with I < k. < n - 1 such that (4) has a nontrivial solution with 
an (n - k, , k,) pair of zeros on [c, d]. 

Now let U be the set of all vector functions u = (q(t), u,(t),..., un(t)) such 
that the components z+(t) are Lebesgue measureable on (a, b) and satisfy inequali- 
ties (3) on (a, b), and consider the collection of all Z-point boundary value 
problems of the form 

x(n) = g1 z$(t)x’j-1) 

“yt,) = 0, O<i<n-k,,-1, 

“‘yt,) = 0, O<i<kR,-1, 

(5) 

where (ai(t), us(t),..., am) E U and c < tl < t, < d. As remarked above there 
is a problem in this collection that has a nontrivial solution. This being the case, 
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it follows from standard arguments that there is a boundary value problem in 
the collection (5) which has a nontrivial solution which is time optimal, that is, 
which is such that the spacing, t, - t, , between its zeros is a minimum among 
all nontrivial solutions of boundary value problems in the collection (5). 

For each u E U let Z’ = A[u(t)] z be the first order vector system corre- 
sponding to the nth order scalar equation x(lZ) = Cy=, f+(t) d-l). Let x(t) 
be a time optimal solution in the set of boundary value problems (5), let U* E U 
be an associated time optimal control, and let c < t, < t, < d be zeros of 
x(t) of respective orders n - k, and k, such that t, - t, is a minimum. Then it 
follows from the Pontryagin Maximum Principle [5, p. 3101 that the adjoint 
system 

$b’ = -AyU*(t)] *, (6) 

where A* represents the transpose of d, has a nontrivial solution +(t) = 
(&(t),..., #n(t))T such that for almost all t with t, < t < t, 

(7) 

where z(t) = (x(t), r’(t),..., @-l)(t)) and (., .) represents the inner product. 
Furthermore, 4(t) is such that (x, #(tJ) = 0 for all vectors z = (x1, xg ,..., x,~> 
with zj = 0 for 1 < j < n - k, and (x, c,b(tJ) = 0 for all vectors x with x, = 0 
for 1 < j < k, = These conditions imply that 

#j(tl) = O for lz--kk,+ 1 <j<n and @> 

h(tz) = 0 for iz, + 1 <i < 11. (9) 

Since 

n-1 
(A[24(t)] Z(t), t)(t)) = C G(t) 7&(t) + &(t) 5 ~~(t)d-~)(t), 

j=l j=l 

the maximum condition (7) can be written as 

$$(t) f u;(t)+*)(t) = luax{$n(t) ,$ qt)X(j-yt) j 21 E U). (10) 
i=l 

In our applications of (10) it will be the case that the time optimal solution 
s(t) will be positive on (tx , tJ and the associated solution z/~(t) of the corre- 
sponding adjoint system will be such that its nth component c,,&(t) will have 
no zeros on (tr , tJ. In this case it follows from (10) that, if s,!+(t) < 0 on (tl , tp), 
then 

505/3211-6 
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andfor2<j<n 

uf(t) = 
k,(t) when .@-l)(t) >, 0 
Zj(t) when x(j-r)(t) < 0. (12) 

Similarly, if &(t) > 0 on (tr , ta), then 

andfor <j<n 

ul*(t) = w (13) 

ut(t) = i 
Z,(t) when x(j-r)(t) 3 0 
k,(t) when x+1)(t) < 0. (14) 

It follows that, if we define the differential operators L, , L, by 

and 

L,(t, x, SC’)...) x(+1)) = k,(t)x + ‘2 g [zj(t) + iqt)]x’j-1’ (15) 
34 

L,(t, x’, d )..., d-) = ; f [zj(t) - kj(t)] 1 uy(j-l) I) 
12 

(16) 

then, under the assumptions that x(t) > 0 and &(t) < 0 on (tr , tJ, the time 
optimal solution is a solution of 

x(‘L) = L,(t, x, XI,..., x(+1)) - L,(t, d, x” )...) x(+1)), (17) 

and, under the assumptions that x(t) > 0 and &(t) > 0 on (tr , t?), the time 
optimal solution is a solution of 

A+‘) = [Z1(t) - k,(t)] x + L,(t, x, x’,..., x(+1)) 

+ L&, A!‘, XN )...) x(+1)). (18) 

It should be noted that the differential equations (17) and (18) both satisfy 
conditions [A] and [El. Of course it is still true that u* E U whether defined 
by (1 l), (12) or by (13), (14) and the time optimal solution is a solution of a 
differential equation appearing in the collection of boundary value problems (5). 

To conclude this section we consider the collection of boundary value problems 

4’ = -A’[u(t)] 7) 

Ywl) = 09 n-&,+1 <j<n, (19) 

Y4G2) = 0, k+l bj<n, 
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where24 E Candc < t, <t, < d. A solution vector #(t) of one of these problems 

will be said to have a (kc, , IZ - k,) pair of zeros on [c, d] with zero of order K, 
at t, and zero of order II - Ku at t, . Again it can be argued that, if there is a 

problem in the collection (19) with a nontrivial solution, then there will exist 
a problem in the collection which has a nontrivial time optimal solution. If  ZL* E U 

is an associated time optimal control vector and if the “time optimal” zeros 
are at t, and t, with c < t, < t, < d, then the Pontryagin Maximum Principle 
can be applied to conclude that the boundary value problem 

x(n) = g U:(t)+1) 

x’i’(t,) = 0, O<i<n-ho-l, 

.qt,) = 0, O<i<k,-1, 

has a nontrivial solution. Thus the Maximum Principle associates with each 
time optimal solution in the collection (5) a time optimal solution in the collec- 
tion (19), and comersely. 

3. THE (n-1, 1) ZERO BOUNDARY VALUE PROBLEM 

Let [c, d] be a compact subinterval of (n, b), let k, = 1, and consider the 
corresponding collection of boundary value problems (5). Assume that there is 
a problem in the collection for which the solution x(t) is time optimal and that 
the associated zeros are at t, and t, with c < t, < t, < d. Then from the con- 
cluding remarks of the last section it follows that, if t&t) is the solution of the 
adjoint system associated with x(t) by the Maximum Principle, then &(tj f  0 

on (t, , t,). For if this were not the case $(t) would not be time optimal. In this 
section we shall prove that z&(t) < 0 on (tr , t2) and that the time optimal solution 
is a solution of (17) on [tl , t2]. 

THEOREM 2. Amme that there is n szrbinterval [tl , tP] C (a, B) and n solution 
x(t) of equation (18) witlz G(t,) = Ofor 0 < i < n - 2, with x(tZ) = 0, rind with 
x(t) > 0 on (tl , t2). Then there is a proper sz~binteranl [sl , s2] C [tl , t2] and a 

solution a(t) of (17) such that G(sl) = 0 for 0 < i < y1 - 2, z(s2) = 0, arrd 
n(s) > 0 012 (bj ) S.J. 

Proof. Assume that no such solution a(t) of (17) exists. Let w(t, s) be the 
solution of the initial value problem 

A”(“) = I&, 32, cd)...) .Y(f--1)) 

.z’(i)(s) = 0, O<i<n--2, 

x(-)(s) = 1. 
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Then zu(t, , S) > 0 for all tl < s < t, . To see this assume that ru(t, , sa) < 0 
for some so with t, < s0 < t, . Then there exist t3, t4 such that s, < ta < 
t4 < ta , ~(t, , ta) = 0, and ru(tg , s) > 0 for all t3 < s < t, . Let v(t) be the 
solution of (17) satisfying the intial conditions ~(i’(t,) = 0, 0 < i < z - 2, 

and d+l)(tJ = 1. Then 

r t, ,z&) = zu(t, , t3) - zu(t, , s) &(s, u’(s), d’(s) ,..., d-(s)) ds 
’ h 

from which we conclude .u(&) < 0. Thus e)(t) = 0 for some t with t, < t < t, 
which contradicts our assumption that there are no such solutions v(t). From 
this contradiction we conclude that zu(t, , s) > 0 for t, < s < t, . However, 
this fact and the following representation for x(ta), 

S(&) = zu(t, ) t,)x (n-1vl) + J’ “(4 , s> {[Al - k,(s)] x(s) 

+ I& s’(s) ,...) A+“-l)(s)} ds, 

leads to the conclusion x(tJ > 0 which contradicts x(t2) = 0. From this final 
contradiction we conclude the existence of solutions of (17) of the specified type. 

THEOREM 3. Assume that x(t) is a time optimal solution of the (n - 1, 1) 

zero boundary o&e problem 

x’i’(t,) = 0, O<i<n-2, 

x(t,) = 0 

where n < c < tl < t, < d < b and u c U and assume x(t) > 0 011 (tl , tn). 
I f  $(t) is the associated time optimal solution of the (1, n - 1) zero boundary 
due problem for the adjoint system, thezz &(t) < 0 on (tl , t2) and x(t) is n solution 

of (17) on [tr , ta]. 

Proof. Since s(t) can be replaced by -r(t), there is no loss in generality 
in assuming x(t) > 0 on (tl , tJ. From the fact that the solution t,b(t) of the 
(1, n - 1) zero boundary value problem for the adjoint system associated with 
x(t) by the Maximum Principle is time optimal, we conclude that &(t) f  0 
on (tr , ta). Thus x(t) is a solution of (17) on [tl , t.J or is a solution of (18) on 
[tl , t2]. I f  x(t) is a solution of (18) on [tl , tJ, then it follows from Theorem 2 
that there is a nontrivial solution of (17) with an (n - 1, 1) pair of zeros on 
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a proper subinterval of [tr , z t ]. This contradicts the time optimality of x(t). 

Hence, &(i) < 0 on (tr i ta) and x(t) is a solution of (17) on [tr , tJ. 

4. (x-k, k) ZERO BOUNDARY VALUE PROBLEMS WITH 2 ( k I n-I 

Assume that the compact interval [c, d] C (a, k) . IS such that for each control 

vector u E G the corresponding differential equation ~(~1 = ~~=I uj(t)s(j-l) has 
no nontrivial solution with an (a - j, j) p air of zeros on [c, d] for any j with 
1 < j < k - 1 where k is a fixed integer satisfying 2 <. k < rz - 1. 

Assume that there is a control u E U such that x(~*) = Cj”=r uj(t) .+I) does has-e 
a nontrivial solution with an (n - k, k) p air of zeros on [cI a’]. Then there is a 

control which produces a time optimal such solution s(t) with corresponding 
time optimal zeros at tr , t, with c < t, < t, < d. In this section we prove that 
in this case x(t) is either a solution of (17) on [tl , t,] or a solution nf (IS) on 

IfI > 4. 

THEOREM 4. Assume that the comfitions stated in the above pa?-agraph are 
satisfied ox tt& compact irhwal [c, d] C (a, b) and amme IL E G is a control such 
that xyOz) = XT=1 q(t) II j- ( l) has a time optimal solution r(t) with an (n - k, k) 
pair of .zePos at the respective points tl and t, mith c < t, < t, < d. Then 

x(t) 2 0 on (tl I tz). 

PTGG~. The conclusion of this Theorem is an immediate consequence of 
Lemma 4 in [6]. 

I f  in the adjoint system #’ = -X[u(t)] $J corresponding to a fixed u E Ii 
we reverse the order of the components of #, that is, define the vector 

P=(J r 1 . . . . y,)r by setting V; = &+r-; for I <i < n, we obtahn a system 

3” = B[u(t)] y  cm 

which is of the type studied by Hinton in [7]. IV e will say that a solution y(t) = 

(vdt),..., xz(t))’ h as an (n - k, k) pair of zeros at the respective points t = t, 
andt=t,incase~~~(t,)=Oforl <j<n-kandjfj(te)=Oforl <jjkR. 

Thus, if a solution G(t) of J,/J’ = -A’[u(t)] $J has an (rz - k, k) pair of zeros 
at t = t, and t = t, respectively as defined earlier, then the corresponding 
solution y(t) of (20) also has an (Al - k, k) pair of zeros at t = t, and t = f, 
as defined above. 

For solution vectors y’(t),...,yP(t) of (20) let W(J~,...,J+) be the pth order 
determinant in which the ith row, 1 < i < p, consists of the respective ith 
components of the solutions y’(t),..., y”(t). Then Theorem 2.1 of [7] can be 
formulated in the following way. 
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THEOREM 5. dssume that y1(t),...,y7ft) are linearly independent soluti~?u 
of (20) and that y”(t) is also a solution of (20). Let YYo = ylo(t) andfor 1 < i < n 
let Yi = W(yl,..., yi, y”) and Wi = W( yl,..., yi). Then, for eacla i such tlaat IVi 
does not kave a zero on tJze interval J C (a, b), we have 

on J where W0 = 1, a, = -1 fop 1 < i < n - 1 and a, = +I. 

THEOREM 6. Assume tlzatfor a fixed 21 E U and ajixed integer k with 2 < k < 
n - 1 and k < n - k the system (20) and the intmval JC (a, b) ape such tlzat 
there is no nontrivial solution of (20) with a ( j, n - j) pair of zeros ofz J for any 

j witk 1 < j < k - 1. Assume tJzat there is a nontrivial solution y”(t) of (20) 

witlz a zero of order k at t, and a zero of order n - k at tz witA tI < t, and tl , t, E J 
and assume that there is no nontrivial sol&m of (20) with a zero of order n - k 
at t = t, and a XYO of order k at apoint in (tI , tz). Theny,O(t) + 0 on (tl , tz). 

proof. For each i with 1 < i < IZ letyi(t) be the solution of (20) with yi(tg) = 

(hi ,-.-> hdT where 6, is the Kronecker delta. Then the solutions yl(t),..., y”(t) 
are linearly independent and, since y”(t) has a zero of order n - k at t = t, , 
there are constants cj , n - k + 1 < j < IZ, such that 

y”(t) = cn-~+ly+a+l(t) + ... + Cny”(t)* (22) 

Since no nontrivial solution of (20) h as a (j, n - j) pair of zeros on J for any j 

with 1 < j < k - 1, it follows that for each j with 1 < j < k - 1, 
q y-N,..., y’“) # 0 for all t E J with t < t, . Furthermore, since y”(t) does 

not have a zero of order K between t, and t, , it follows that W( ~+~;+l,..., y”) f  0 

on (tl , td 
Now in Theorem 5 let us change notation to fit the present situation, that is, 

set Y. = yr”(t) and for 1 < i < k set Yi = W( yn,..., ~~-~+l,yO) and kl$ = 
Ivy y”,..., y”l-i+l). Then as observed above lXi + 0 on (ti , ta) for each i with 
1 < i < k. Now assume that ylO(t,) = 0 for some ts with tl < t3 < t, . Then 
applying Theorem 5 we conclude that Yi has a zero at some t, with t, < t, < t, . 
A second application of Theorem 5 yields the existence of a zero of YZ at some 
point in (t4 , tn). After repeated applications of Theorem 5 we reach the con- 
clusion that there is a to with t, < to < t, such that YL-i has a zero at t = t, . 
In view of (22) this implies that 

c,-k+lw( ye-n+1 )...) y”) = 0 

at t = to. Since it was assumed that (20) h as no nontrivial solution with a 

(k - 1, n - k + 1) pair of zeros on J, it follows that c,~-~+~ + 0. Therefore 
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W( y-+1,..., JP) = 0 at t = t, which implies that (20) has a nontrivial solution 
with a zero of order n - K at t = t, and a zero of order k at t, E (tl , ta) which 
contradicts our hypotheses. We conclude that yIo(t) f  0 on (tl , tB). 

COROLLARY. Assume that the compact interval [c, d] C (a, b) and the integer 
k with 2 < k < n - 1 are such that for each control u E U and each integer j 
zvith 1 < j < k - 1 the equation x(~) = cj”=I z+(t) S-l) has no nontrivial 
solution with an (n - j, j) pair of zeros on [c, d]. Assume that there is a u E U 

such that the corresponding differential equation does have a rwntrivial solution zoit?s 
an (n - k, k) pair of Zeros on [c, d]. Then, if x(t) is a time optimal such solution with 
zero of order n - k at t = tI and xero of order k at t = t, with c < tI < t, < d, 
it follows that for the associated solution G(t) = (&(t),..., Ifin(t of the corre- 
sponding adjoint system we have +Jt) + 0 on (tl , tz). Then, since by Theorem 4 
x(t) f  0 on (tl , t2), we can assume x(t) > 0 on (t 1 , te) and it follows that x(t) 
is either a solution of (17) or a solution of (18) on [tl , t.J depending on whethn 

h.(t) < 0 63 h(t) > 0 on (tl , te). 

THEOREM 7. Assume that in the collection of boundary value problems 

x(tl) = 0 

x’“‘(t*) = 0 f  O<i<n-2, 

where u E U and c < t, < t, < d, x(t) is a time optimal solution. Then N is 
a solution of (17) on [tl , tz] if n is even and is a sulution of (18) on [tI , t2] if n 
is odd. 

Proof. I f  x(t) is a solution of xcqE) = Cj”=, uI(t) x(j-lJ with x(t,j = 0, ,G(t,j = 0 
for 0 < i < n - 2, and x(t) > 0 on (tl , te), then y(t) = x(-t) is a solution of 

y(n)(t) = f  (-1) I- ?I, j-l~.+t)~~(~-l~(t) (23) 
j=l 

on -b < t < -a with yfi)(-t,) = 0 for 0 < i < n - 2, y(-tl) = 0, and 

y(t) > 0 on (-tz , - tr). Hence, if x(t) is time optimal for a (1, n - 1) pair 
of zeros on [c, d] C (a, b), then y(tj = x(-t) is time optimal for an (n - 1, 1) 
pair of zeros on L---d, -cl C (-b, -a), and conversely. 

For the equation (23) the inequalities satisfied by the controls depend on 
whether n is even or odd. When n is even, we have 

and 

kj(-t) < (--l)n+j-luj(-t) < 1,(-t) for odd j 

-&(-t) < (-l)t,+-l uj(-t) 4 -k,(-t) for even j, 



86 LLOYD K. JACKSON 

and when n is odd, we have 

- Z , ( - t )  < (-l)n+j-l uj(-t) < -+ ( - t )  for odd j 

and hj(-t) < (-l)“++l Uj(-t) < Zj(-t) for even j. 

Applying Theorem 3 on the interval (-6, -a) we conclude that, if y(t) is a time 
optimal solution of (23) with an (z - 1, 1) p air of zeros respectively at t = -t, 
and t = -t, , then when n is even y(t) is a solution of 

y(Fl) = h,(-t)y + g f  (-l)i+l[zj(-t) + k,(-t)]y(+1’ 
j=2 

- 4 f  [Z&-t) - hj(-t)] l y(j-1’ 1 
j=2 

on [-tp, -tJ and, when n is odd, y(t) is a solution of 

y(s) = A,(-t)y + 4 f  (-l>j [Zj(-t) + hj(-t)]y+l) 
j-2 

- 4 f  [zj(-t) - Q-t)] l y'j-1' 1 
j=2 

on [-La, -tJ. When these equations are translated back in terms of x(t) = 
y(--t) we obtain the desired conclusion. 

5. THIRD AND FOURTH ORDER DIFFERENTIAL EQUATIONS 

In this section we use the results of the previous sections to obtain subintervals 
of (n, 6) on which all K-point boundary value problems, 2 < K < n, for 
Eq. (1) have unique solutions in the cases where (1) is of order three or of 

order four. 

THEOREM 8. Assume that the equation 

Y"' = f(t, y, Y', Y") (24) 

satti$es conditions [A] and [I!?] on (a, b) x R3. Assume that [c, d] C (a, b) is such 
that for any c < t, < d the solution x(t) of the third order equation (17) with 
x(t,) = x’(t,,) = 0 and s”(t,) = 1 satisfies x(t) > 0 on (t, , d] and for alzy 
c < t, < d the solution x(t) of the third order equation (18) with x(tO) = r’(t,) = 0 
and x”(t,) = 1 satisjies x(t) > 0 on [c, t,). Then all 2-paint and al2 3-point 
boundary vahe problems foF (24) on (c, d) leave solutions and these solutions are 
unique. 
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Proof. As observed in the Introduction it suffices to show that condition [D] 
with ?z = 3 is satisfied on (c, d). I f  condition [D] is not satisfied on (c, n), then 

as noted in Section 2 there is a u E U such that x”’ = &, uj(t) d-l) has a 

nontrivial solution with three zeros on [c, d]. This implies that the same diffe- 
rential equation has a nontrivial solution with a (2, 1) pair of zeros on [c, d] or a 
nontrivial solution with a (1,2) p air of zeros on [c, 61. Thus there is either a 
time optimal solution with a (2, 1) p air of zeros on [c, d] or a time optimal solution 

with a (I, 2) pair of zeros on [c, d]. In the first case the time optimal solution 
is a solution of (17) and in the second case is a solution of (18). Both of these 
cases are ruled out by the hypotheses of the Theorem. 

COROLLARY. Asswne that f(t, y, y’, y”) is continuous and satis$es the Lips&x 

condition 

! f(t, y, y’, y”) - f(t, 2, z’, z”)I < R 1 y  - x / + L I y’ - z’ / t M I y” - .z’? I 

on (a, b) x R3 where K, L, and M are positive constants. Let x(t) be the solutio?a 
of the initial value problem 

x” = -Kx - L / x’ j - M j xn 1 

x(0) = x’(0) = 0, x”(0) = +1. 
(25) 

Let t = h be thejkt ZHO of x(t) to the right oft = 0. Then OIZ any open subinter- 
val of (a, b) of length less than h all 2-point and all 3-point boundmy value problems 

for (24) haoe unique solutions. This copollayy is essential& contained in Theorem 4 
of reference [4]. 

Proof. In the case of the specified Lipschitz condition the corresponding 
third order forms of equations (17) and (18) are respectively 

Furthermore, since these equations are autonomous, in applying Theorem 8 
we need only consider the solutions of the initial value problems (25) and 

g’ = Kx + L j x’ / + M I X” 1 

x(0) = x’(0) = 0, x”(0) = 1. 
w3 

For the solution of (25) we are concerned with the first zero to the right of t = 0 
and for the solution of (26) we are concerned with the first zero to the left of 
t = 0. However, if x(t) is a solution of the initial value problem (26), y(t) = 
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x(--t) is a solution of the initial value problem (25). Hence the interval length 
for solvability of boundary value problems in this case is determined by the 
first zero to the right of t = 0 of the solution of (25). 

Since equations (17) and (18) themselves satisfy the Lipschitz condition 
[El, the results stated in Theorem 8 and its Corollary are best possible for 
differential equations (24) in which the function f(t, y, y’, y”) satisfies the stated 
Lipschitz condition. If  f(t, y, y’, y”) satisfies the Lipschitz condition of the 
Corollary of Theorem 8 on (a, b) x R3, it is known that 2-point boundary value 

problems for (24) h ave unique solutions on subintervals of (a, b) of length less 
than h where h is the positive root of the equation 

$ Kh3 + ;Lh” + ; Mh = 1, 

see [8] for example. In the case K = L = M = 1 this yields h = 1.1284 as 

compared to the best possible result iz = 2.7353 obtained from the Corollary. 

THEOREM 9. Assume that the equation 

y(4) = f(t, y, y’, y#, y”‘) (27) 

satisfies conditions [A] and [E] on (a, b) x R4. Assume that the interval [c, d] C 
(a, b) is szrch that 

(1) For any c < to < d the solution x(t) of the fourth order equation (17) 

with x(t,) = x’(t,) = x”(t,) = 0 and x”‘(t,) = +I sutisJes x(t) > 0 on (to , d], 

(2) Fo+ any c < t, < d the solution x(t) of (17) with x(&J = x’(t,) = 
x”(t,,) = 0 and x”‘(t,) = - 1 sutisjies x(t) > 0 on [c, t,), and 

(3) There is no nontrivial so&ion of (18) with a (2, 2) p&r of xe~os on [c, d]. 
Then all k-point boundary value problems, 2 < k < 4, for equation (27) have 

solutions on (c, d) and these solutions are uniqzle. 

Proof. As was remarked in the proof of Theorem 8 it suffices to show that 
condition [D] is satisfied on (c, d). Then again as noted in Section 2, if this were 

not so, there would exist a u E U such that the associated equation x(*) = 
& z+(t) x(i-l) h as a nontrivial solution with either a (3, l), a (2,2), or a (1, 3) 
pair of zeros on [c, d]. In any one of these cases there would exist a time optimal 

solution with the same type of pair of zeros on [c, d]. This being the case con- 
ditions (1) and (2) of Theorem 9 and Theorems 3 and 7 rule out the possibility 
of a nontrivial solution having a (3, 1) or a (1,3) pair of zeros on [c, d] for solutions 
of any equation x(*) = J$, z+(t) x(i-l) with u E U. 

On the other hand, if there is a u E U such that the equation XC*) = 
-& uj( t) x(j-l) h as a nontrivial solution with a (2,2) pair of zeros on [c, d], then 
there is a time optimal such solution x(t) with associated zeros of order two at 
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t, and t, , c -<, t, < t, < d. Then by Theorem 4 s(t) f  0 on (tl , t.J and we 
may assume that x(t) > 0 on (tr , s t ). Furthermore, if 4(t) = (y&(t),..., &(t))r 
is the associated solution of the adjoint system paired with s(t) by the Maximum 
Principle, then by the Corollary of Theorem 6 &(t) f  0 on (tl , ts). The Masi- 
mum Principle also asserts that XT=1 x(j)(t) #j(t) is a non-positive constant on 
[tl , t,]. By the condition (1) of Theorem 9 the order of the zero of s(f) at 

t = t, is exactly 2 and by the condition (2) of Theorem 9 the order of the zero 
of $r(t) at t = t, is also exactly 2. Hence 

and, therefore, since C;=, ,dj)(ti) +j(tl) is non-positive it follows that 

X”(Q) &Jti) < 0. Then, since x(t) > 0 on (tl , tz), d’(tl) > 0 and &(tl) < 0. 
Finally, referring to the adjoint system one sees easily that $a(tl) < 0, &(tl) = 0, 
and #AtI) = 0 implies that qb4(t) > 0 on (tr , s t ). Thus the time optimal solution 
x(t) is a slution of (IX) on [tl , t2] but condition (3) of Theorem 9 rules this out. 
It follows that equation (27) satisfies condition [D] on (c, d) and the proof 

of Theorem 9 is complete. 

COROLLARY. Assume that Eq. (27) safisfies condition [A] and the Lipschitz 
condition 

j f(t, _v, y’, y”, y’“) - f(t, z, z’, ;ZN, x”)! 

~K!y-~~+L~y’-~‘/+IVIj~~“-~2n/+Niy~-~~I 

on (a, b) x R”. Let x(t) be the solution oj the initial value problem 

da) = -c - L 1 XI 1 - n4 j 2 1 - N j .v*’ I 

“Y(0) = x’(0) = x”(0) = 0, x”‘(0) = 1. 

If r(t) has a positizie xero, let t = dI be its smallest positive zero; othmwise, let 
d, = +,x8. [f  the boundary value problem 

$4) = KY + L 1 X’ / + M / xK j + iV i x”’ j 

x(0) = x’(0) = 0, x(d) = x’(dj = 0 

has a nont&Gai solution for some d > 0, let dZ be the smallest d > 0 for which 
it has a nontriz&l solution. If  the boutidary value problem has no uontGzCa1 solution, 
let dZ = +cc. Then on any open subinterval of (a, b) of length less than 
$ = lJfin(d, , dZ) all k-point boundary value problems, 2 < k < 4, for Eq. (27) 
have solutions Qh.ich are unique. 

Again the results contained in Theorem 9 and its Corollary are the best that 
can be obtained in terms of the Lipschitz coefficients. 
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To extend the results of Theorems 8 and 9 to equations of arbitrarjm order n 
we must determine for each integer K with 2 < K < n - 2 the sign of &(t) 
where &(t) is the last component of the solution 4(t) of the adjoint system asso- 

ciated with a solution x(t) of XC%) = ‘& uj(t) ,+-l) having a time optimal 
(n - k, R) pair of zeros. The method for doing this used for the (2,2) pair of 

zeros in the proof of Theorem 9 breaks down for equations of order greater 
than four. For example, if the equation is of order five and if x(f) is a solution with 
a time optimal (3,2) pair of zeros, the first zero in the (2,3) pair of zeros of the 
associated solution #(t) of the adjoint system might actually be of order 3 

instead of 2. 
However, it seems reasonable to conjecture that, if for a fixed integer K with 

2 < K < 12 - 2 the interval [c, d] C (a, b) h as b een determined so that for each 
u E U and each integerj with 1 < j < K - 1 the equation 

has no nontrivial solution with an (n - j, j) or a (j, n - j) pair of zeros on [c, d] 
and if there is a u E U such that the corresponding equation has a nontrivial 
solution with an (n - K, K) pair of zeros on [c, d], then a time optimal such 
solution will be a solution of [17] if R is odd and will be a solution of (18) if R is 

even. This is equivalent to saying that between the (K, n - K) pair of zeros of the 
solution 4(t) of the associated adjoint system sign &(t) = (- l)P where #Jt) is 
the last component of #(t) and the time optimal solution x(t) is assumed to be 
positive between its (n - k, k) pair of zeros. 
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