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Abstract 

In order to improve the computing accuracy of Linear Canonical Transform (LCT), a new algorithm is proposed in 
this paper to compute the LCT of a function by using the eigenfunctions of the LCT. The proposed algorithm is easily 
understanding and implementing. In addition, this algorithm has an approximation results of the continuous LCT. 
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1. Introduction 

The linear canonical transform (LCT) is a three-parameter family of integral transform. It was first 
introduced in 1970s [1]. The LCT is a unitary, additive, affine and invertible transform. Many operations, 
such as the Fourier transform (FT), fractional Fourier transform (FRFT), Fresnel transform FST and chirp 
multiplication are all the special cases of the LCT. These integral transforms are of great importance in 
electromagnetic, acoustic, and other wave propagation problems. The LCT is widely applied in wave 
propagation problems and optimal filtering [2]. It is also useful for radar system analysis, filter design, 
phase retrieval, and many other applications [2-4]. Therefore, the accurate and efficient digital 
computation of the LCT is of great interest for many applications. Discrete counterparts of continuous 
transforms are important for approximately computing the samples of continuous transforms.  

Recently some theories about the definition and fast computation of the discrete LCT have been 
derived. In general there are two basic approaches to derive the fast LCT. The first kind of algorithms  to 
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compute the DLCT was proposed [5], [6] by an approach similar to that used in deriving the FFT from 
the DFT. It had the same efficiency as the FFT in computing the FT. But this kind of algorithms of LCT 
does slightly complicate the implementation of the algorithm on a computer. The other method to 
compute the DLCT of a function was proposed [8]. This method is based on decomposition of the LCT 
into basic operations of scaling, FT, chirp multiplication, FRFT. This method gave two decomposition 
algorithms. The first algorithm decomposed the LCT into scaling, FT and chirp multiplication. The 
second decomposed the LCT into FRFT, scaling and chirp multiplication. Both algorithms take logN N  
time, where N is the number of the sample of the original function. However these methods might require 
sampling rates that are higher than the Nyquist rate [7-9], depending on the parameters and particular 
decomposition employed. 

There remains much to be worked out in the theory of the DLCT. However, the accuracy of computing 
the LCT need to be improved. In this paper, we will introduce a definition of DLCT and discuss an 
algorithm for numerically computing the continuous LCT by using the eigenfunctions of LCT. The 
algorithm is easily understanding and implementing. In addition, it has an approximation results of the 
continuous LCT. This paper is organized as follows. In Section 2 we briefly review the LCT and the 
eigenfunctions of the LCT. In Section 3 we derive a new algorithm of LCT by using the eigenfunctions 
introduced in Section 2. Numerical examples to demonstrate the accuracy of the algorithm are given in 
Section 4. Finally we offer a conclusion in Section 5. 

2. The linear canonical transform 
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M
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where , , ,a b c d are real parameters independent of t and u and 1ad bc− = . The unit-determinant matrix 
M belongs to the class of unimodular matrices. Therefore, only three parameters are free. The 

LCT kernel ( , )K t u is defined as ( ) 2 2, 1 2 exp( ( 2 ) / 2 )K t u j b j at tu du bπ= − + . 
A number of important and familiar transforms are special cases of the LCT. These include the Fourier 

Transform (FT), the Fractional Fourier Transform (FRFT) and the Fresnel Transform (FST), as well as 
scaling and chirp multiplication. The LCT can extend their utilities and applications and can solve some 
problems that cannot be solved well by these operations.  

In [10], S. C. Pei and J. J. Ding discussed the eigenfunctions of the LCT for the case where 
2a d+ <  . The LCT has the eigenfunctions 
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And the corresponding eigenvalues are j j ne en
α αλ − −= . The eigenfunctions of the LCT in (2) have the 

orthogonality property ( ) %( ), ,
,dtm m nn

σ τ σ τφ φ δ∞ =∫−∞ . In fact, in most of the case, (2) are the only possible 

eigenfunctions of the LCT when 2a d+ <  except for some difference of constant phase. 

3. The discrete linear canonical transform 

The eigenfunctions of the LCT in (2) have the orthogonality property. If the eigenfunctions are divided 
by their norm, we can easily get a set of normal orthogonal functions. Let us assume that their norm is 
one. In order to find the LCT of the input signal ( )x t ,we rewrite ( )x t  as 
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In comparison with the definition of the LCT in (1),we can get the expression of the kernel of the LCT 
, ,( , ) ( ) ( )
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According to (6), the expression of the LCT in (1) can be rewritten as, 
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Providing the signal ( )x t and it’s LCT ( )X u are respectively sampl at a rate 1/ 2T Ns π=  
and 1 / 2U Ns π= , where N is the number of the sample of ( )x t . The sampling interval 
is [ Nπ , Nπ ] [ Nπ2 2 2 2, Nπ ]− × − . Then we get 
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It is the N-point sampling column vector of the function , ( )n tσ τφ . And ΦN is the discrete matrix of the 
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function , ( )tn
σ τφ  with the sampling length N . X N is the N-point column vector of the 

signal ( )x t , 1 1 1[ ( ), ( 1), , ( )]
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sufficiently large, this summation item tends to zero and this rounding errors can’t affect the calculation 
precision. Thus we only need to calculate the multiply of Φ ,N Dα and X N . Then we can get the LCT of 

the discrete signal NX . It takes 2N  times to calculate ΦN . This algorithm use the discretization method 
to get the discrete matrix of the kernel function of the LCT. It has an approximation results of the 
continuous LCT. The algorithm can be given straightforwardly. 
Input: The N-point column vector X N of the signal ( )x t , and the parameters , , ,a b c d . 
Output: The DLCT of the signal X N with parameters , , ,a b c d , approximating the continuous LCT. 

One: Calculate the values of ,σ τ andα  in (3). 

Tow: Calculate the N-point sampling column vector Φn  of the function , ( )tn
σ τφ  in (9).  Then we can 

get the matrix Φ [Φ ,Φ , ,Φ ]0 0 1
T T T

N N= −L . 

Three: Calculate the diagonal matrix Dα . 
Four: Calculate the DLCT of the signal X N , Φ ΦTX T D Xu s N NN

α= , where Ts 2 Nπ= . 

4. Simulation results 

In order to verify the correctness of the algorithm proposed in this paper, we exhibit two examples in   
this section. We begin by implementing the DFRFT of an input rectangular signal applying the algorithm 
in this paper. The sampling vector of the signal is X [x ,x , ,x ]N 36 35 36= ⋅⋅⋅− − , and the sampling length is 
N=73. The xk is equal to 1 in the range 6 6k− ≤ ≤ and is equal to 0 everywhere else. We apply the 
algorithm to calculate the DFRFT of the signal with angle θ 0.105= . The resulting magnitudes about the 
real part and imaginary part are shown in Fig. 1(a). Then we apply this algorithm to calculate the DLCT 
of the rectangular signal mentioned above. We set a 1 2 , b 6 5 , c 5 6 , d 0= = = − = in the LCT. The 
magnitudes of the resulting discrete function are shown in Fig.1(b). 

    

Fig. 1. (a) Magnitude of discrete FRFT; (b) Magnitude of DLCT  (the solid line represents the real parts, and the dotted line 
represents the imaginary parts)
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5. Conclusions 

In this paper, we discuss an approach for the digital computation of the LCT based on the 
eigenfunctions. With careful consideration of the eigenfunctions of the LCT, we derive an expression of 
the kernel function of the LCT. According to this expression, the LCT can be expressed in terms of a new 
definition which, unlike certain earlier definitions, is closely related with the eigenfunctions and 
eigenvalues of the LCT. Based on the principle of sampling in time and linear canonical transform 
domains, a new definition of DLCT is put forward. Then we only need to calculate the discrete matrix of 
the eigenfunction of the LCT and a diagonal matrix to compute the DLCT. This algorithm is significant 
since it has an approximation result of the continuous LCT. Compared to earlier approaches, this 
algorithm is more accuracy in computing the continuous LCT. It takes 2N times, where N is the number 
of samples of the input signal. Therefore, the future work is to accelerate the calculation. There remains 
much work to be done in improving the efficient and accurate computation of the LCT. 
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