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Abstract

We perform an examination of discontinuities of multiple production amplitudes, which are required for 
further development of the BFKL approach. It turns out that the discontinuities of 2 → 2 + n amplitudes 
obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation 
in N = 4 supersymmetric Yang–Mills theory with large number of colors starting with n = 2. Explicit 
expressions for the discontinuities of the 2 → 3 and 2 → 4 amplitudes in the invariant mass of pairs of 
produced gluons are obtained in the planar N = 4 SYM in the next-to-leading logarithmic approximation. 
These expressions can be used for checking the conjectured duality between the light-like Wilson loops and 
the MHV amplitudes.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The BFKL (Balitsky–Fadin–Kuraev–Lipatov) approach [1–4] is based on the multi-Regge 
form of scattering amplitudes with gluon quantum numbers in all cross-channels. For the ampli-
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tude A2→n+2 of the process A + B → A′ + G1 + · · · + Gn + B ′ of production of n gluons with 
momenta k1, k2, . . . , kn in the multi-Regge kinematics (MRK) this form can be written as

�A2→n+2

= 2s�
R1
A′A

(
n∏

i=1

1

ti

( si

|�ki−1||�ki |
)ω(ti )

γ
Gi

RiRi+1

)
1

tn+1

( sn+1

|kn||�qn+1|
)ω(tn+1)

�
Rn+1
B ′B , (1.1)

where ω(t) is called gluon trajectory (in fact, the trajectory is 1 + ω(t)), �R
A′A and �R

B ′B are 

the particle–particle–Reggeon (PPR) vertices, or the scattering vertices, and γ Gi

RiRi+1
are the 

Reggeon–Reggeon–gluon (RRG) vertices, or the production vertices. Moreover,

s = (pA + pB)2, si = (ki−1 + ki)
2, i = 1, . . . , n + 1, k0 ≡ PA′ , kn+1 ≡ PB ′ ,

q1 = pA − p′
A, qj+1 = qj − kj , j = 1, . . . , n, qn+1 = pB ′ − pB , (1.2)

the vector sign means transverse to the pA, pB plane components. In the MRK

s � si � |ti | 	 �q 2
i , s 	

∏n+1
i=1 si∏n
i=1

�k 2
i

. (1.3)

The Reggeon vertices and the gluon trajectory are known in the next-to-leading order (NLO), 
that means the one-loop approximation for the vertices and the two-loop approximation for the 
trajectory, in SYM as well as in QCD. It is just the accuracy which is required for the derivation 
of the BFKL equation in the next-to-leading logarithmic approximations (NLLA), taking into 
account all radiative corrections of the type αs (αs ln s)n. To be precise, note that in this approxi-
mation one has to consider not only the amplitudes (1.1), but also amplitudes obtained from them 
by replacement of one of final particles by a couple of particles with fixed (of order of transverse 
momenta) invariant mass.

The sign � in the Eq. (1.1) means the real part. It is important that this simple factorized 
form is valid only for the real part of the amplitudes. Fortunately, the imaginary parts are not 
essential for the derivation of the BFKL equation in the NLLA, because they are suppressed 
by one power of ln si in comparison with the real ones, and with the NLLA accuracy do not 
contribute in the unitarity relations. But understanding of properties of the imaginary parts which 
are associated with the discontinuities in the variables sij = (ki + kj )

2 is very important. First, 
it is necessary for the justification of the BFKL approach, that means a proof of the multi-Regge 
form of multiple production amplitudes. Second, account of the imaginary parts is indispensable 
in further development of the BFKL approach. As it was pointed above, they are not essential 
for derivation of the BFKL equation in the NLLA, but they must be taken into account in the 
NNLLA.

The idea of the multi-Regge form appeared in Refs. [1,5] from results of fixed order cal-
culations. Later it was proved in the leading logarithmic approximation (LLA) [6] with use of 
the s-channel unitarity. The proof of the multi-Regge form in the NLLA is based also on the 
s-channel unitarity [7].

Here it is necessary to recall that as compared with ordinary particles, Reggeons in the Regge–
Gribov theory of complex angular momenta possess an additional quantum number, called 
signature. At large si the signature means parity with respect to the substitution si → −si . The 
signature of the Reggeized gluon is negative, and the real part of the amplitude presented in 
Eq. (1.1) coincides with the real part of the amplitude A{−} with the Reggeized gluons (and, 
2→2+n
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consequently, with the negative signatures) in all ti channels. Amplitudes with the positive sig-
nature in the si -channel are suppressed because of the cancellation of leading powers of log si , 
so that with the NLLA accuracy �A2→2+n = �A{−}

2→2+n.
Compatibility of unitarity with the multi-Regge form leads to the bootstrap relations [8] con-

necting discontinuities of the amplitudes with products of their real parts and gluon trajectories:

1

−πi

⎛⎝ n+1∑
l=j+1

discsj,l −
j−1∑
l=0

discsl,j

⎞⎠A{−}
2→n+2 = (

ω(tj+1) − ω(tj )
)�A2→n+2 . (1.4)

Here �A2→n+2 is the multi-Regge form (1.1) and the sij -channel discontinuities must be cal-
culated using this form into the unitarity conditions. Note that for multi-particle amplitudes the 
discontinuities are not pure imaginary, since a discontinuity in one of the channels can have, in 
turn, a discontinuity in another channel. But these double discontinuities are sub-sub-leading, so 
that they are neglected in Eq. (1.4) and in the following.

It turns out [7] that the fulfillment of an infinite set of the relations (1.4) guarantees the 
multi-Regge form of scattering amplitudes and that all bootstrap relations are fulfilled if sev-
eral conditions imposed on the Reggeon vertices and the trajectory (bootstrap conditions) hold 
true. The most complicated condition, which includes the impact factors for Reggeon–gluon 
transition, was proved recently, both in QCD [9–11] and in its supersymmetric generalizations
[12].

The proof that the fulfillment of the bootstrap relations (1.4) is ensured by the bootstrap condi-
tions is based on the form of the discontinuities derived from the unitarity in Ref. [7]. Besides of 
the Reggeon vertices and the trajectory entering in Eq. (1.1), the discontinuities contain as build-
ing blocks the impact factors for particle–particle and Reggeon–particle transitions, the kernel of 
the BFKL equation and the four-Reggeon gluon production vertex. In fact, the bootstrap condi-
tions are conditions on these building blocks. But since the impact factors for particle–particle 
and Reggeon–particle transitions, the kernel of the BFKL equation and the four-Reggeon gluon 
production vertex are expressed in terms of the Reggeon vertices and the trajectory, one can say 
that the bootstrap conditions are imposed on the Reggeon vertices and the trajectory.

The expressions for discontinuities obtained in Ref. [7] are rather formal, since the impact 
factors, the kernel and the four-Reggeon gluon production vertex are not given explicitly. In this 
paper we obtain explicit expressions for the discontinuities of multiple production amplitudes 
in N = 4 SYM with large number of colors (in the planar approximation). Consideration of 
the discontinuities in this theory is also interesting for two reasons. First, it provides a sim-
ple demonstration of imperfection of the BDS (Bern–Dixon–Smirnov) ansatz [13,14] MBDS

for multi-particle amplitudes with maximal helicity violation (MHV amplitudes). Second, the 
discontinuities can be used for the verification of the hypotheses used for the calculation of 
corrections to this ansatz. It is believed (but not yet proved) that the true amplitudes can be 
presented as the product of MBDS and the remainder function R, where MBDS contains all in-
frared divergences and R depends only on the anharmonic ratios of kinematic invariants [15–21]. 
This property is called dual conformal invariance. Another property is the conjecture (also not 
yet proved) of correspondence between the MHV amplitudes and expectation values of Wilson 
loops [19,20,22–25]. All this makes important the direct calculation of the discontinuities.

The paper is organized as follows. In the next Section we introduce the notation, give the 
general expression for the discontinuities and use it for the calculation of the discontinuity of 
the amplitude A{−}

2→2. Discontinuities of the amplitude A{−}
2→3 are found in Section 3. Section 4

is devoted to the calculation of discontinuities of the amplitude A{−} . Discontinuities of ampli-
2→4
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tudes with a larger number of final particles are considered in Section 5. Conclusions are drawn 
in Section 6. Appendices A, B and C contain some details of calculations.

2. Definitions, notation and the A{−}
2→2 discontinuity

Let us first present explicit forms of the gluon trajectory and the Reggeon vertices in N = 4
SYM with the accuracy up to terms vanishing in the limit ε → 0. In the NLO the vertices, as well 
as the impact factors, are scheme-dependent. We will use the scheme introduced in Ref. [26] and 
then developed in Ref. [7], which we call standard one. But since usual dimensional regulariza-
tion is incompatible with supersymmetry, we will use the dimensional reduction instead of the 
dimensional regularization. The NLO trajectory is given by [27–35]

ω(t) = −2ḡ2
(

1

ε
+ ln(−t)

)
+ 2ḡ4

[
ζ(2)

(
1

ε
+ 2 ln(−t)

)
− ζ(3)

]
, (2.1)

where ζ(n) is the Riemann zeta-function,

ḡ2 = g2Nc�(1 − ε)

(4π)2+ε
, ε = D − 4

2
, (2.2)

�(x) being the Euler gamma-function, and D is the space–time dimension.
For the gluon polarization vectors in the Reggeon vertices and impact factors we will use the 

L and R light-cone gauges (eLn2) = 0 and (eRn1) = 0 respectively, with the light-cone vectors 
n2 and n1 such that

(n1n2) = 1, (pApB) 	 (pAn2)(pBn1) . (2.3)

Then,

eL = eL⊥ − (eL⊥k⊥)

kn2
n2 , eR = eR⊥ − (eR⊥k⊥)

kn1
n1 . (2.4)

Note that the transverse parts of the polarization vectors in the left and right gauges are different. 
It is easy to see that the polarization vectors are connected by the gauge transformation:

eL = eR − 2
(eR⊥k⊥)

k2⊥
k , eR = eL − 2

(eL⊥k⊥)

k2⊥
k . (2.5)

For transverse components this means

eL⊥μ = 	μνe
R ν⊥ , eR⊥μ = 	μνe

L ν⊥ , (2.6)

where

	μν = 	νμ = g⊥
μν − 2

k⊥μk⊥ν

k2⊥
, 	μν	

νρ = gρ
μ . (2.7)

Using the results of Refs. [28,36,37] and [38] for the one-loop gluon, quark and scalar corrections 
correspondingly, for the gluon–gluon–Reggeon vertex we have

�R
G′G = gT R

G′G(�e ∗′�e )

[
1 + ḡ 2(�q 2)ε

(
− 2

ε2
+ 5ζ(2)

)]
. (2.8)

Here q is the Reggeon momentum, �e and �e ∗′ are the polarization vectors of the initial and final 
gluons G and G′ respectively (they have to be taken in the same gauge), T R′ is the color group 
G G
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generator in the adjoint representation. For simplicity, here and in the following we use for color 
indices the same letters as for particles and Reggeons.

The Reggeon—Reggeon–gluon vertex was obtained in the Born approximation in Ref. [5]
and looks as

γ
G(B)
R1R2

= gT G
R1R2

e∗
μ(k)Cμ(q2, q1) , (2.9)

where

Cμ(q2, q1) = −q1μ − q2μ + p1μ

(
q2

1

kp1
+ 2

kp2

p1p2

)
− p2μ

(
q2

2

kp2
+ 2

kp1

p1p2

)
= −q1⊥μ − q2⊥μ − p1μ

2(kp1)

(
k2⊥ − 2q2

1⊥
)

+ p2μ

2(kp2)

(
k2⊥ − 2q2

2⊥
)

. (2.10)

The vertex is gauge invariant, being Cμ(q2, q1)kμ = 0. In the light cone gauges (2.4) we get

e∗
μ(k)Cμ(q2, q1) = eL∗⊥ CL⊥(q2, q1) = eR∗⊥ CR⊥(q2, q1) , (2.11)

where

CL⊥(q2, q1) = C⊥(q2, q1) − n2C(q2, q1)

kn2
k⊥ = −2

(
q1⊥ − k⊥

q2
1⊥
k2⊥

)
,

CR⊥(q2, q1) = C⊥(q2, q1) − n1C(q2, q1)

kn1
k⊥ = −2

(
q2⊥ + k⊥

q2
2⊥
k2⊥

)
. (2.12)

It makes sense to note that using the light-cone gauges does not mean loss of generality. One 
can restore any vertex in a gauge invariant form from its form in one of the gauges (2.4). Let us 
demonstrate it here for the vertex (2.9), denoting C(q2, q1) there as C for brevity. Note that C
can be changed by adding terms proportional to k without changing the vertex (2.9), as well as 
CL⊥ and CR⊥ defined in formulas (2.12), and without loss of the gauge invariance. Let us choose 
these terms in such a way that C goes to CL subject to the condition (CLn2) = 0. Then, we have

CL = CL⊥ + n1C
L

n1n2
n2 . (2.13)

On the other hand, from kCL = 0 we have

CL⊥k⊥ + (n1C
L)(n2k)

n1n2
= 0 , (2.14)

so that

CL = CL⊥ − CL⊥k⊥
kn2

n2 . (2.15)

As it has been said, using in Eq. (2.9) CL instead of C does not change the vertex leaving it gauge 
invariant. Thus, we obtain the gauge-invariant form of the vertex from its form in the light-cone 
gauge. Using the relations (2.12) one can see that CL is equal to C − k, where C is the original 
form given by Eq. (2.10).

One-loop gluon corrections to the vertex were calculated in Refs. [36,39–41]. In the last paper 
they were obtained at arbitrary D = 4 + 2ε dimension. With the same accuracy, the quark and 
scalar corrections were obtained in Refs. [42] and [35] respectively. In the N = 4 SYM, with the 
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accuracy resulting when the terms singular at small �k are given at arbitrary D, but the other terms 
in the limit ε → 0, we have in the dimensional reduction

γ G
R1R2

(q1, q2) = γ
G(B)
R1R2

(q1, q2)

(
1 − ḡ2

[
(�k 2)ε

ε2
− π2

2
+ 1

2
ln2

( �q 2
1

�q 2
2

)])
. (2.16)

A general representation for the discontinuities was derived in Ref. [7] (it is presented also in 
Ref. [43]). The discontinuity of A{−}

2→n+2 in the si,j -channel is represented as

−4i(2π)D−2δ(qi⊥ − q(j+1)⊥ −
l=j∑
l=i

kl⊥)discsi,j A2→n+2

= �
R1
A′A
t1

( s1

|�q1| |�k1|
)ω(t1)

(
i∏

l=2

γ
Gl−1
Rl−1Rl

tl

( sl

|�kl−1| |�kl |
)ω(tl )

)

× 〈GiRi |
(

j−1∏
l=i+1

( sl

|�kl−1| |�kl |
)K̂

Ĝl

)( sj

|�kj−1| |�kj |
)K̂|GjRj+1〉

×
(

n∏
l=j+1

( sl

|�kl−1| |�kl |
)ω(tl ) γ

Gl

RlRl+1

tl

)( sn+1

|�kn| |�qn+1|
)ω(tn+1) �

Rn+1
B ′B

t(n+1)

. (2.17)

Here the bra- and ket-states 〈GiRi | and |GjRj+1〉 denote the impact factors for the Reggeon–
gluon transitions, K̂ and Ĝl are the operators of the BFKL kernel and the gluon production, which 
acts in the space of states |G1G2〉 of two t -channel Reggeons with the orthonormality property

〈G′
1G′

2|G1G2〉 = �r 2
1 �r 2

2 δ(�r1 − �r ′
1 )δ(�r2 − �r ′

2 )δc1c
′
1
δc2c

′
2
, (2.18)

where �ri and �r ′
i are the Reggeon transverse momenta and ci and c′

i are their color indices. The 
operators are specified by their matrix elements and the states are defined by their projections on 
the two-Reggeon states.

If i = 0 we must omit all factors to the left of 〈G0R0| and replace 〈G0R0| by the impact 
factors of A → A′ transition 〈A′A| and k0 − q0 by pA′ −pA; in the case j = n + 1 we must omit 
all factors to the right of |Gn+1Rn+2〉 and perform the substitutions |GJn+1Rn+2〉 → |B ′B〉, 
kn+1 + qn+2 → pB ′ − pB .

For the discontinuity discs A2→2 =A2→2(s + i0) −A2→2(s − i0) we have

−4i(2π)D−2δ(�q − �qB)discs A2→2 = 2s〈A′A|eK̂ ln
(

s

�q 2

)
|B ′B〉 , (2.19)

where �q = pA − pA′ , �qB = pB ′ − pB .
We have to pay attention here on the fundamental difference between the sense of the represen-

tation (2.19) used here and that of the formally quite similar representation of the discontinuities 
of amplitudes with the Pomeron exchange. The BFKL Pomeron means the positive signature and 
the color singlet in the t -channel, while the amplitudes considered in this paper are the amplitudes 
with the negative signature and the adjoint representation of the color group in the t -channel. The 
gluon Reggeization makes the discontinuities (2.19) much simpler than the discontinuities of am-
plitudes with the Pomeron exchange. Indeed, the bootstrap conditions of the gluon Reggeization 
[7] tells us that
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〈A′A| = �R
A′Ag〈Rω(�q)| , |B ′B〉 = g|Rω(�qB)〉�R

B ′B , (2.20)

K̂|Rω(�q)〉 = ω(t)|Rω(�q)〉 , (2.21)

g2 �q 2

2(2π)D−1
〈R′

ω(�q ′)|Rω(�q)〉 = δR′Rδ(�q − �q ′)ω(t) , (2.22)

where �R
A′A and �R

B ′B are the scattering Reggeon vertices entering in the form (1.1), |Rω(�q)〉
is the process independent eigenstate of the kernel K̂ with eigenvalue ω(t) and normalization 
(2.22). It is transformed according to the adjoint representation of the color group. In the right 
side of Eq. (2.22) R′ and R are the color indices of the eigenstates; in Eq. (2.20) summation over 
the color indices R is assumed. Note that the bra and ket vectors are related by the left–right 
substitution, where A ↔ B , A′ ↔ B ′, n1 ↔ n2, that means, in particular, replacement of the left 
and right gauges.

Fulfillment of the bootstrap conditions (2.20)–(2.22) was proved in the NLO both in QCD 
[44,45] and SYM [38]. Using these conditions we have from the representation (2.19)

discs A2→2 = −iπ

(
2s

t

)
ω(t)�R

A′A

(
s

�q 2

)ω(t)

�R
B ′B . (2.23)

It is easy to see that the result (2.23) with account of the form (1.1) at n = 0 is in agreement with 
the bootstrap relation (1.4).

Finally, let us present the eigenstate |Rω(�q)〉. From Refs. [44] (see also Ref. [9]) and [12] we 
obtain with the accuracy up to terms vanishing in the limit ε → 0

〈G1G2|Rω(�q)〉

= δ(�q − �r1 − �r2)T
R
G1G2

(
1 + ḡ2

[
−ζ(2) − 1

2
ln

(
�r 2
1

�q 2

)
ln

(
�r 2
2

�q 2

)])
, (2.24)

where �r1 and �r2 are the momenta of the Reggeons G1 and G2 respectively.
It is necessary to note here that the accuracy of Eq. (2.24) does not provide preservation of 

nonvanishing in the limit ε → 0 terms of the ḡ2 order in the product

〈R′
ω(�q ′)|Rω(�q)〉 =

∑
G1G2

∫
〈R′

ω(�q ′)|G1G2〉d�r1d�r2

�r 2
1 �r 2

2

δ(�q − �r1 − �r2)〈G1G2|Rω(�q)〉

(the summation here is performed over color states of the Reggeons G1 and G2) because of the 
infrared divergency of the integration measure. To provide the preservation one has to keep in 
〈G1G2|Rω(�q)〉 terms of the order O(ḡ2ε).

3. Discontinuities of the 2 → 3 amplitude

3.1. Discontinuities in the s1 and s2 channels

For the s1-channel discontinuity we obtain from the general form (2.17)

−4i(2π)D−2δ(�q1 − �k − �q2)discs1 A2→3

= 2s〈A′A|eK̂ ln
(

s1|�q1||k1|
)
|GR2〉 1 ( s2

)ω(t2)

�
R2
B ′B , (3.1)
t2 |k1||�q2|
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where q1 = pA − pA′ , k and q2 are the momenta of the gluon G and the Reggeon R2, |GR2〉 is 
the impact factor for the Reggeon–gluon transition. The bootstrap conditions (2.20) and (2.21)
give us

−4i(2π)D−2δ(�q1 − �k − �q2)discs1 A2→3

= 2s�R
A′A

( s1

|k1||�q1|
)ω(t1) 1

t2

( s2

|k1||�q2|
)ω(t2)

�
R2
B ′Bg〈Rω(�q1)|GR2〉 . (3.2)

The impact factors for Reggeon–gluon transitions were calculated in Refs. [10,12] in the special 
scheme (the so-called bootstrap scheme) which simplifies the proof of the most complicated 
bootstrap condition

〈GR1| − g�q 2
1 〈Rω(�q1)|Ĝ = gγ G

R1R
〈Rω(�q1 − �k)| , (3.3)

where Ĝ is the gluon production operator, k is the gluon momentum. The Reggeon R in the con-
dition (3.3) has the momentum q1 − k and the same color indices as the eigenstate 〈Rω(�q1 − �k)|; 
summation over them is assumed. The eigenfunction 〈Rω(�q1)|G1G2〉 in the bootstrap scheme 
also was obtained in Ref. [12]. We could calculate the matrix element 〈Rω(�q1)|GR1〉 in Eq. (3.2)
just in this scheme. It turns, however, that it is much more convenient, especially in the further 
calculations, to use the scheme which we call conformal. It is associated with the modified kernel 
K̂m, introduced in Ref. [46], which is obtained from the usual BFKL kernel in the adjoint rep-
resentation, by subtraction of the gluon trajectory depending on the total t -channel momentum. 
One of advantages of this kernel is its infrared safety, which permits to consider this kernel at 
physical transverse dimension D −2 = 2. But the most important advantage is its behavior under 
Möbius transformations in the two-dimensional transverse momentum space. It is not difficult to 
see that in the leading order Km is Möbius invariant. But in the NLO in the standard scheme, 
in which the kernel was initially calculated [47,48], it is not Möbius invariant. The existence of 
the scheme where the modified kernel is Möbius invariant (Möbius scheme) was conjectured in 
Ref. [49] and then proved in Ref. [50], where the transformation from the standard Km to the 
conformal (Möbius invariant) kernel Kc was found. It reads

K̂c = K̂m − 1

4

[
K̂B

[
ln

(
�̂q 2

1 �̂q 2
2

)
, K̂B

]]
, (3.4)

where K̂B is the LO kernel. Note that since K̂ and K̂m differ only for the trajectory depending 
on the total t -channel momentum, which is a C-number, in all commutators K̂ can be replaced 
by K̂m and vice versa. We will use the following representations for the kernel:

〈G′
1G′

2|K̂|G1G2〉 = δ(�r1 + �r2 − �r ′
1 − �r ′

2 ) �q 2
∑
R

(PR)
G′

1G′
2

G1G2
KR(�r1, �r2; �l) . (3.5)

Here �ri and �r ′
i are the Reggeon momenta, �q = �r1 + �r2, �l = �r1 − �r ′

1 , PR is the projection operator 
on the representation R of the color group, and

KR(�r1, �r2; �l) = KR
r (�r1, �r2; �l) + �r 2

1 �r 2
2

�q 2

(
ω(−�r 2

1 )δ(�r1 − �r ′
1 ) + ω(−�r 2

2 )δ(�r2 − �r ′
2 )

)
, (3.6)

where KR
r is called the real part of the kernel.

In general, the kernel KR
r (�r1, �r2; �l) depends on R. But at large Nc only the antisymmetric and 

symmetric adjoint representations do survive in the decomposition (3.5), with
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(PAa)
G′

1G′
2

G1G2
= 1

Nc

fiG1G2fiG′
1G′

2
, (PAs)

G′
1G′

2
G1G2

= 1

Nc

diG1G2diG′
1G′

2
, (3.7)

and the same kernel KR
r (�r1, �r2; �l). Therefore in the following we will omit the index of repre-

sentation R.
In the LO the real part of the kernel is given by

KB
r (�r1, �r2; �l) = g2 Nc

2(2π)D−1

(
�r 2
1 �r ′ 2

2 + �r 2
2 �r ′ 2

1

�q 2�l 2
− 1

)
, (3.8)

whereas the gluon trajectory has the representation

ωB(t) = g2 Nc t

2(2π)D−1

∫
dł

�l 2(�q − �l)2
, t = −�q 2 . (3.9)

The difference with usual denotation is in the factor �q 2 in the representation (3.5). Its extrac-
tion is necessary to make the modified kernel

Km(�r1, �r2; �l) = K(�r1, �r2; �l) − �r 2
1 �r 2

2

�q 2
δ(�r1 − �r ′

1 )δ(�r2 − �r ′
2 ) ω(t) (3.10)

explicitly invariant at D = 4 with respect to the Möbius transformations

zi → azi + b

czi + di

, (3.11)

where a, b, c and d are complex numbers, zi = xi + iyi , xi and yi are the Cartesian components 
of the “dual” transverse momenta �pi such that

�r1 = �p1 − �p2, �r2 = �p4 − �p1, �r ′
1 = �p3 − �p2, �r ′

2 = �p4 − �p3 . (3.12)

The need for the factor �q 2 is clear from another point of view: the kernel could be explicitly 
Möbius invariant only when the corresponding normalization condition is Möbius invariant. The 
condition (2.18) is not invariant; to make it invariant one needs to multiply both sides on 1/�q 2

and include 1/�q 2 in the left-hand side in definition of the two-Reggeon states. This can be seen 
from the invariance of the corresponding measure,

d�r ′
1 d�r ′

2
�q 2

�r ′ 2
1 �r ′ 2

2

δ(�r1 + �r2 − �r ′
1 − �r ′

2 ) = d2z

|z|2 , (3.13)

where �q = �r1 + �r2 and z = r ′ +
2 r+

1 /(r ′ +
1 r+

2 ) is invariant. Here and in the following we use the 
chiral components r+ = x + iy and r− = x − iy for the two-dimensional vectors �r = (x, y). Vice 
versa, the two conjugate complex numbers z and z∗ are confronted with the vector �z through the 
components (z + z∗)/2 and (z − z∗)/(2i). At the same time, d�r = dxdy = dr+dr−/2 , δ(�r) =
2δ(r+)δ(r−) and we define δ2(z) in such a way that δ2(z) = δ(z+)δ(z−)/2 = δ(�z).

The transformation (3.4) gives [50] Kc(�r1, �r2; �l) = Kc(z), where z = r+
1 r ′ +

2 /(r+
2 r ′ +

1 ) and

Kc(z) = KB
c (z)

(
1 − g2Nc

8π2
ζ(2)

)
+ δ(2)(1 − z)

(
g2 Nc

8π2

)2

3ζ(3) + 1

8π

(
g2 Nc

8π2

)2

×
[(

1

2
− 1 + |z|2

|1 − z|2
)

ln2 |z|2 − 1 − |z|2
2|1 − z|2 ln |z|2 ln

|1 − z|4
|z|2
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+
(

1

1 − z
− 1

1 − z∗

)
(z − z∗)

1∫
0

dx

|x − z|2 ln
|z|2
x2

]
. (3.14)

Here

KB
c (z) = g2Nc

32π3

(
z + z∗

|1 − z|2 − δ(2)(1 − z)

∫
d�l
|l|2

l + l∗

|1 − l|2
)

, (3.15)

with the properties

Kc(z) = Kc(z
∗) = Kc(1/z), Kc(0) = 0 . (3.16)

The transformation (3.4) has to be accompanied by the corresponding transformation of the im-
pact factors and the eigenstate 〈Rω|. The eigenstate 〈Rω|c which corresponds to the kernel K̂c

(3.4) is

〈Rω(�q)|c = 〈Rω(�q)| − 1

4
〈Rω(�q)|B

[
ln

(
�̂r 2

1 �̂r 2
2

)
, K̂B

r

]
, (3.17)

where K̂B
r is the real part of the LO kernel (3.8), �̂r1 and �̂r2 are the Reggeon momentum operators. 

Using (see Appendix A for details)

〈Rω(�q)|B
[
ln

(
�̂r 2

1 �̂r 2
2

)
, K̂B

r

]
|G1G2〉

= −2ḡ2δ(�q − �r1 − �r2)T
R
G1G2

ln

(
�r 2
1

�q 2

)
ln

(
�r 2
2

�q 2

)
, (3.18)

we obtain from Eq. (2.24)

〈Rω(�q)|G1G2〉c = δ(�q − �r1 − �r2)T
R
G1G2

(
1 − ḡ2ζ(2)

)
. (3.19)

Now turn to the impact factor |GR2〉. The impact factor corresponding to the kernel K̂c (3.4) is 
obtained from |GR2〉 in the standard scheme by the transformation

|GR2〉 → |GR2〉 + 1

4

[
ln

(
�̂r 2

1 �̂r 2
2

)
, K̂B

]
|GR2〉B . (3.20)

It was found, however, in Ref. [51] that impact factors for Reggeon–gluon transitions acquire 
the most simple form in the scheme in which not only the kernel, but also the energy evolution 
parameter is conformal invariant. Transition to this scheme, which is called conformal scheme, 
means the additional transformation for the impact factor |GR2〉,

|GR2〉 → |GR2〉 − 1

2
ln

(
�q 2

1

�q 2
2

)
K̂B

m|GR2〉B . (3.21)

Together with the transformation (3.20) it gives

|GR2〉 → |GR2〉c = |GR2〉 − 1

4

[
ln

(
�̂r 2

1 �̂r 2
2

)
, K̂B

r

]
|GR2〉B

− 1

2
ln

(
�q 2

1

�q 2

)
K̂B

m|GR2〉B . (3.22)

2
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Note that the transformation (3.21) does not affect the matrix element 〈Rω(�q1)|GR2〉 because 
〈Rω| is the eigenstate of Km with the eigenvalue equal to 0.

For amplitudes with the negative signature, the impact factors are antisymmetric with respect 
to the G1 ↔ G2 exchange. In fact, putting

〈GR1| = 〈GR1|s − 〈GR1|u , (3.23)

we have

〈GR1|G1G2〉u = 〈GR1|G2G1〉s . (3.24)

As it follows from Ref. [51], in the conformal scheme, the impact factors 〈GR1|G1G2〉s of gluons 
with the polarization vectors

�e L
λ = 1√

2

(�ex + iλ�ey

)
, �e L ∗

λ = 1√
2

(�ex − iλ�ey

)
(3.25)

for helicities λ = ±1 have the form

〈GR1|G1G2〉s
= 〈GR1|G1G2〉Bs

[
1 + ḡ2

(
Iλ(z) − 1

2
ln2

(
�q 2

1

�q 2
2

)
− (�k 2)ε

ε2
+ 2ζ(2)

)]
. (3.26)

Here z = −q+
1 r+

2 /(k+r+
1 ),

〈GR1|G1G2〉Bs = −g2δ(�q1 − �r1 − �r2 − �k)
(
T R1T G

)
G1G2

�e L ∗
λ

�C L(�r1, �q1) , (3.27)

�C L(�r1, �q1) = −2

(
�q1 − (�q1 − �r1)

�q 2
1

(�q1 − �r1)2

)
, (3.28)

and I+1(z) = I (z), I−1(z) = I ∗(z) = I (z∗), where

I (z) = 1 − z

8

(
ln

( |1 − z|2
|z|2

)
ln

( |1 − z|4
|z|6

)

− 6 Li2(z) + 6 Li2(z
∗) − 3 ln |z|2 ln

1 − z

1 − z∗

)

− 1

2
ln |1 − z|2 ln

|1 − z|2
|z|2 − 3

8
ln2 |z|2 , (3.29)

Li2(z) = −
1∫

0

dx

x
ln(1 − xz) . (3.30)

Note that I (0) = 0, I (1/z) = I (z)/z. In the two-dimensional transverse momentum space, with 
the polarization vectors (3.25) we have

�e L ∗+ �C L(�r1, �q1) = √
2

q−
1 r+

1

(q1 − r1)+
, �e L ∗− �C L(�r1, �q1) = q+

1 r−
1

(q1 − r1)−
. (3.31)

The set of diagrams for the process A + B → A′ + G + B ′ is evidently invariant with respect 
to rotating around the gluon line and the exchange A ↔ B . It means that the impact factor 
〈G1G2|GR2〉 can be obtained from 〈GR1|G1G2〉 by the replacement
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n1 ↔ n2, �q1 → −�q2,

�r1,2 → −�r1,2 ,
(
T R1T G

)
G1G2

→
(
T R2T G

)
G1G2

. (3.32)

The replacement n1 ↔ n2 means also �e L
λ ↔ �e R

λ . With account of Eqs. (2.6) and (2.7) we have

�e R
λ = −

(
k+

k−

)λ

�e L−λ = −
(

k+

k−

)λ (�ex − iλ�ey

)
. (3.33)

Using the substitutions (3.32) and formulas (3.33) we obtain

〈G1G2|GR2〉s
= 〈G1G2|GR2〉Bs

[
1 + ḡ2

(
I ∗
λ (z) − 1

2
ln2

( �q 2
2

�q 2
1

)
− (�k 2)ε

ε2
+ 2ζ(2)

)]
, (3.34)

where z = q+
2 r+

2 /(k+r+
1 ) ,

〈G1G2|GR2〉Bs = g2δ(�r1 + �r2 − �k − �q2)
(
T R2T G

)
G1G2

�e R ∗
λ

�C R(�q2, �r1) (3.35)

and

�C R(�q2, �r1) = −2

(
�q2 + (�r1 − �q2)

�q 2
2

(�r1 − �q2)2

)
. (3.36)

Using now Eqs. (3.19) and (3.34)–(3.36) we arrive to

〈Rω(�q1)|GR2〉s
= g2Nc

2�q 2
1

δ(�q1 − �k − �q2)T
G
R1R2

�e R ∗
λ

∫
d�r1d�r2

�q 2
1

�r 2
1 �r 2

2

δ(�r1 + �r2 − �k − �q2)

× �C R(�q2, �r1)

[
1 + ḡ2

(
I−λ(z) − 1

2
ln2

( �q 2
2

�q 2
1

)
− (�k 2)ε

ε2
+ ζ(2)

)]
, (3.37)

where λ = ±1 is the gluon helicity, I+1(z) = I (z), I−1(z) = I (z∗), I (z) is defined in Eq. (3.29), 
and z = q+

2 r+
2 /(k+r+

1 ). The integral with I−λ(z) in Eq. (3.37) is not singular and can be calcu-
lated in two-dimensional transverse momentum space. Using the measure (3.13) and formulas

�e R ∗+ �C R(�q2, �r1) = √
2
k−

k+
q+

2 r−
1

(r1 − q2)−
= √

2
q+

2 q−
1

k+(1 − z∗)
,

�e R ∗− �C R(�q2, �r1) = √
2
k+

k−
q−

2 r+
1

(r1 − q2)+
= √

2
q−

2 q+
1

k−(1 − z)
, (3.38)

we obtain that the contribution of the term with I−λ(z) in Eq. (3.37) is equal zero. Indeed, for the 
positive helicity it is proportional to∫

d2z

|z|2(1 − z∗)
I (z∗) = 0 . (3.39)

The result (3.39) follows from the fact that in the expansion of the integrand in powers of (z∗)n
at |z| < 1 and in powers of (1/z∗)n at |z| > 1 there are only terms with n > 0 (remind that, as 
pointed out previously, I (z) = 0, I (z) = zI (1/z)). For the negative helicity the result is obtained 
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by complex conjugation. It means that the term with I−λ(z) in Eq. (3.37) can be omitted. The 
remaining integral (details of the calculation are given in Appendix B) is∫

d�r1d�r2
�q 2

1

�r 2
1 �r 2

2

δ(�r1 + �r2 − �k − �q2)

(
�q2 + (�r1 − �q2)

�q 2
2

(�r1 − �q2)2

)

= π1+ε�(1 − ε)

(
�q2 + �k �q 2

2
�k 2

)(
1

ε
+ ln

(
�q 2

1
�k 2

�q 2
2

))
. (3.40)

For discs1 A
{−}
2→3/�A2→3 from Eqs. (3.2) and (1.1) we get

−4i(2π)D−2δ(�q1 − �k − �q2)
discs1 A

{−}
2→3

�A2→3

= g t1〈Rω(�q1)|GR2〉
γ G
R1R2

= 2
g t1〈Rω(�q1)|GR2〉s

γ G
R1R2

. (3.41)

Here the last equality comes from antisymmetry of 〈Rω|G1G2〉 with respect to G1 ↔ G2 exchange. 
Then, using Eqs. (2.16), (2.9), (3.37) and the equalities

�e R ∗+ �C R(�q2, �q1) = �e L ∗+ �C L(�q2, �q1) = √
2
q+

2 q−
1

k+ ,

�e R ∗− �C R(�q2, �q1) = �e L ∗− �C L(�q2, �q1) = √
2
q−

2 q+
1

k− , (3.42)

which means

γ
G(B)
R1R2

∣∣∣
λ=+1

= −gT G
R1R2

√
2
q+

2 q−
1

k+ , γ
G(B)
R1R2

∣∣∣
λ=−1

= −gT G
R1R2

√
2
q−

2 q+
1

k− , (3.43)

we obtain

discs1 A
{−}
2→3

�A2→3
= πiḡ2

(
1

ε
+ ln

(
�q 2

1
�k 2

�q 2
2

))(
1 − 2ḡ2ζ(2)

)
. (3.44)

Here, it is necessary to make the note analogous to that given at the end of Section 2. The accuracy 
of Eq. (3.19) for 〈Rω(�q)|G1G2〉c and Eq. (3.34) for 〈G1G2|GR2〉s does not provide preservation 
of nonvanishing in the limit ε → 0 corrections of the ḡ2 order in the integral (3.37) (and therefore 
in the discontinuity discs1 A

{−}
2→3) because of the infrared divergency of the integration measure 

in Eq. (3.37). To provide the preservation one has to find 〈Rω(�q)|G1G2〉c and 〈G1G2|GR2〉s with 
higher accuracy. This issue requires special consideration. It applies also to other discontinuities 
discussed below.

Evidently, the s2-channel discontinuity can be obtained by the replacement (3.32) and is given 
by the relations

−4i(2π)D−2δ(�q1 − �k − �q2)
discs2 A

{−}
2→3

�A2→3
= g t2〈GR1|Rω(�q2)〉

γ G
R1R2

, (3.45)
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g t2〈GR1|Rω(�q2)〉
γ G
R1R2

= δ(�q1 − �k − �q2)g
2π1+ε�(1 − ε)

(
1 − 2ḡ2ζ(2)

)(
1

ε
+ ln

(
�q 2

1
�k 2

�q 2
2

))
, (3.46)

discs2 A
{−}
2→3

�A2→3
= πiḡ2

(
1

ε
+ ln

(
�q 2

2
�k 2

�q 2
1

))(
1 − 2ḡ2ζ(2)

)
. (3.47)

3.2. Discontinuity in the s channel

According to the representation (2.17), for the s-channel discontinuity we have

−4i(2π)D−2δ(�q1 − �k − �q2)discs A{−}
2→3

= 2s〈A′A|eK̂ ln
(

s1|�q1||k|
)
Ĝe

K̂ ln
(

s1|k||�q2|
)
|B ′B〉 , (3.48)

where Ĝ is the gluon production operator. Using the bootstrap conditions (2.20) and (2.21), we 
obtain

−4i(2π)D−2δ(�q1 − �k − �q2)
discs A{−}

2→3

�A2→3
= g2 �q 2

1 �q 2
2 〈Rω(�q1)|Ĝ|Rω(�q2)〉

γ G
R1R2

. (3.49)

Then, due to the bootstrap condition (3.3), we have

g�q 2
1 〈Rω(�q1)|Ĝ|Rω(�q2)〉 = 〈GR1|Rω(�q2)〉 − gγ G

R1R
〈Rω(�q1 − �k)|Rω(�q2)〉 . (3.50)

Both matrix elements here are known: the first comes from the calculation of the s2-channel 
discontinuity, see Eq. (3.46), and the second from the bootstrap condition (2.22). Thus, we obtain

discs A{−}
2→3

�A2→3
= −πiḡ2

(
1

ε
+ ln

(
�q 2

2
�k 2

�q 2
1

))(
1 − 2ḡ2ζ(2)

)
− πiω(t2)

= πiḡ2

[
1

ε
+ ln

(
�q 2

1 �q 2
2

�k 2

)
+ 2ḡ2

(
ζ(3) − ζ(2) ln

(
�q 2

1 �q 2
2

�k 2

))]
. (3.51)

In fact, it was not needed at all to calculate neither the s2-channel, nor the s-channel disconti-
nuities, because they can be expressed in terms of s-channel discontinuities from the bootstrap 
relations (1.4). Indeed, for the amplitude A{−}

2→3 there are three relations:

discs1 A
{−}
2→3

�A2→3
+ discs A{−}

2→3

�A2→3
= −iπω(t1) ,

discs2 A
{−}
2→3

�A2→3
+ discs A{−}

2→3

�A2→3
= −iπω(t2) ,

discs1 A
{−}
2→3

�A2→3
− discs2 A

{−}
2→3

�A2→3
= −iπ (ω(t1) − ω(t2)) . (3.52)

However, they are not independent: the third of them is the difference of the first two. Therefore, 
there are two relationships between the discontinuities, so that only one of them is independent. It 
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is easy to see that the discontinuities calculated above satisfy the relations (3.52). The fulfillment
of the third of them, with account of

ω(t1) − ω(t2) = 2ḡ2 ln

(
�q 2

2

�q 2
1

)(
1 − 2ḡ2ζ(2)

)
, (3.53)

follows from Eqs. (3.44) and (3.47) and fulfillment of the second follows from Eqs. (3.47) and 
(3.51).

4. Discontinuities of the 2 → 4 amplitude

4.1. Discontinuities in the s1 and s3 channels

From the representation (2.17), for the s1-channel discontinuity we have

−4i(2π)D−2δ(�q1 − �k1 − �q2)discs1 A
{−}
2→4

= 2s〈A′A|eK̂ ln
(

s1|�q1| |k|
)
|G1R2〉 1

t2

( s2

|�k1| |�k2|
)ω(t2)

γ
G2
R2R3

1

t3

( s3

|k2| |�q3|
)ω(t3)

�
R3
B ′B , (4.1)

therefore, using the bootstrap relations (2.20) and (2.21) and the representation (1.1) of the MRK 
amplitude, we obtain

−4i(2π)D−2δ(�q1 − �k1 − �q2)
discs1 A

{−}
2→4

�A2→4
= g2 t1 〈Rω(�q1)|G1R2〉

γ
G1
R1R2

. (4.2)

The ratio in the right-hand side of Eq. (4.2) is the same as in Eq. (3.41) with the replacement 
G → G1, so that using Eq. (3.44) we arrive to

discs1 A
{−}
2→4

�A2→4
= πiḡ2

(
1

ε
+ ln

(
�q 2

1
�k 2

1

�q 2
2

))(
1 − 2ḡ2ζ(2)

)
. (4.3)

Obviously, such ratio for the s3-channel discontinuity can be obtained by the replacement
�k1 → �k2, �q1 → −�q3, �q2 → −�q2; it reads

discs3 A
{−}
2→4

�A2→4
= πiḡ2

(
1

ε
+ ln

(
�q 2

3
�k 2

2

�q 2
2

))(
1 − 2ḡ2ζ(2)

)
. (4.4)

4.2. Discontinuity in the s2 channel

For the s2-channel discontinuity, using the modified kernel K̂m, K̂ = K̂m + ω(t2), we have 
from the representation (2.17)

−4i(2π)D−2δ(�q − �qB)discs2 A
{−}
2→4

= 2s�
R1
A′A

1

t1

( s1

|�q1| |�k1|
)ω(t1) 1

t3

( s3

|k2| |�q3|
)ω(t3)

�
R3
B ′B

×
( s2

� �
)ω(t2)〈G1R1|e

K̂m ln

(
s2

|�k1| |�k2|

)
|G2R3)〉 . (4.5)
|k1| |k2|
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Here we meet two new important aspects. First, the energy dependence of the s2 channel discon-
tinuity (4.5) evidently differs from that predicted by the BDS ansatz [14], where this dependence 
is the same as for the real part of A2→4. Instead, according to Eq. (4.5), there is an additional 
dependence coming from the matrix element with K̂m. For agreement with the BDS ansatz the 
impact factors for Reggeon–gluon transitions have to be proportional to the eigenvector of K̂m

with zero eigenvalue, what is obviously not so. Note that the discrepancy is manifested already 
in the leading logarithmic approximation.

Actually, it is well known that the BDS ansatz for n-gluon amplitudes is incomplete at n ≥ 6. 
The first indications of the incompleteness were obtained in Ref. [52] in the strong coupling 
regime using the Maldacena hypothesis [53] about the ADS/CFT duality, and in Ref. [24] using 
the hypothesis of the scattering amplitude/Wilson loop correspondence. Then the incomplete-
ness was shown by direct two-loop calculations in Ref. [54]. Moreover, disagreement of the 
BDS ansatz with the BFKL approach is also known [55]. Dignity of the demonstration of the 
discrepancy presented here is its simplicity.

The second new aspect is seen from the expressions for the impact factors in Eq. (4.5)

〈G1R1|G1G2〉 = 〈G1R1|G1G2〉s − 〈G2R1|G2G1〉s ,

〈G1G2|G2R3〉 = 〈G1G2|G2R3〉s − 〈G2G1|G2R3〉s , (4.6)

where 〈G1R1|G1G2〉s is given by Eqs. (3.26)–(3.29) and 〈G1G2|G2R3〉 by Eqs.(3.34)–(3.36) with 
the replacement �k → �k2, �q2 → �q3. The new aspect is the appearance in the discontinuity of the 
color structure DG1

R1R2
D

G2
R2R3

, where Da
bc = dabc , in addition to the structure T G1

R1R2
T

G2
R2R3

in the 
real part of the amplitude A2→n+2 presented in Eq. (1.1). Indeed, using

(T aT b)ij fcij = i
Nc

2
T c

ab, (T aT b)ij dcij = Nc

2
Dc

ab , (4.7)

we have at large Nc

(T R1T G1)ij (T
R3T G2)ij = Nc

4

(
T G1T G2 + DG1DG2

)
R1R3

,

(T R1T G1)ij (T
R3T G2)ji = Nc

4

(
−T G1T G2 + DG1DG2

)
R1R3

. (4.8)

Writing explicitly all color factors, we obtain using Eqs. (3.23) and (3.24)

〈G1R1|e
K̂m ln

(
s2

|�k1| |�k2|

)
|G2R3〉

= Nc

2

(
T G1T G2 + DG1DG2

)
R1R3

〈˜G1R1|s e
K̂m ln

(
s2

|�k1| |�k2|

)
|˜G2R3〉s

+ Nc

2

(
−T G1T G2 + DG1DG2

)
R1R3

〈˜G1R1|s e
K̂m ln

(
s2

|�k1| |�k2|

)
|˜G2R3〉u , (4.9)

where the tilde sign in the impact factors means rejection of color factors.
It is very convenient to use the conformal representation for calculation of the matrix ele-

ments in the right side of Eq. (4.9), but transition to the two-dimensional transverse momentum 
space in this representation must be done with caution because of the infrared divergency in the 
first term in the right side of Eq. (4.9). In the leading logarithmic approximation, this problem 
was considered in details in Ref. [46]. In principle, nothing has changed at the transition to the 
next-to-leading approximation.
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The divergency emerges because of the singularity of the integration measure (3.13) at zero 
momenta of intermediate Reggeized gluons. As it follows from Eqs. (3.26), (3.27), (3.34) and 
(3.35), the s-pieces of the impact factors 〈G1R1|G1G2〉s and 〈G1G2|G2R3〉s vanish at �r1 = 0, but 
not at �r2 = 0. It means that the first matrix element in the right side of Eq. (4.9) is divergent. 
Fortunately, the divergence exists only in the zero term of the expansion in powers of the BFKL 
kernel due to its property (3.16). Therefore, writing

〈˜G1R1|s e
K̂m ln

(
s2

|�k1| |�k2|

)
|˜G2R3〉s = 〈˜G1R1|s

⎛⎝e
K̂m ln

(
s2

|�k1| |�k2|

)
− 1

⎞⎠ |˜G2R3〉s

+ 〈˜G1R1|s |˜G2R3〉s , (4.10)

we can use for the first term in the right side the conformal representation directly in the two-
dimensional space. Using Eqs. (3.26), (3.27), (3.31) and (2.16), (3.43) we have for the positive 
helicity of the gluon G1 (λ1 = 1)

〈˜G1R1|˜G1G2〉s
γ̃R1R2

= gδ(�q1 − �k1 − �r1 − �r2)
1

1 − z1
[1 + ḡ2(I (z1) − ζ(2))] , (4.11)

where z1 = −q+
1 r+

2 /(k+
1 r+

1 ) and the tilde signs means omission of the color factors. Analo-
gously, for the positive helicity of the gluon G2 (λ2 = 1), we obtain using Eqs. (3.34), (3.35), 
(3.38) and (2.16), (3.43)

〈˜G1G2|˜G2R3〉s
γ̃R2R3

= −gδ(�q2 − �k2 − �r1 − �r2)
1

1 − z∗
2
[1 + ḡ2(I (z∗

2) − ζ(2))] , (4.12)

where z2 = q+
3 r+

2 /(k+
2 r+

1 ). The corresponding results for negative helicities are obtained by 
complex conjugation of Eqs. (4.11) and (4.12).

In the conformal representation, the energy evolution parameter in Eq. (4.10) is
s2 �q 2

2 /(|�q1| |�q3| |�k1| |�k2|) (instead of s2/(|�k1| |�k2|), and in the two-dimensional transverse mo-
mentum space the kernel takes the form (3.14). It has the representation

〈˜G1G2|K̂c|˜G′
1G′

2〉 =
+∞∑

n=−∞

+∞∫
−∞

dν ω(ν,n) 〈˜G1G2|ν,n〉〈ν,n|˜G′
1G′

2〉 , (4.13)

with the eigenfunctions [50]

〈˜G1G2|ν,n〉 = δ(�r1 + �r2 − �q2)
1√
2π2

(
r+

1

r+
2

) n
2 +iν (

r−
1

r−
2

)− n
2 +iν

, (4.14)

which form an orthonormal set with the integration measure (3.13), the eigenvalues being [49]

ω(ν,n) = g2Nc

8π2

(
1

2

|n|
ν2 + n2

4

− ψ(1 + iν − |n|
2

) + ψ(1 − iν + |n|
2

+ 2ψ(1)

)

×
(

1 − g2Nc

8π2
ζ(2)

)
+

(
g2Nc

8π2

)2

×
(

1

4

(
ψ ′′(1 + iν + |n|

2
) + ψ ′′(1 − iν + |n|

2
)
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+
2iν

(
ψ ′(1 − iν + |n|

2 ) − ψ ′(1 + iν + |n|
2 )

)
ν2 + n2

4

)
+ 3ζ(3) + 1

4

|n|
(
ν2 − n2

4

)
(
ν2 + n2

4

)3

)
.

(4.15)

Here ψ(x) = (ln�(x))′. Note that ω(ν, n) has the important property

ω(0,0) = 0 , (4.16)

in accordance with the bootstrap conditions. Using the representation (4.13) and Eqs. (4.11), 
(4.12), we obtain for positive helicities of both gluons

t2〈˜G1R1|s
⎛⎝e

K̂m ln

(
s2

|�k1| |�k2|

)
− 1

⎞⎠ |˜G2R3〉s

γ̃R1R2 γ̃R2R3

= δ(�q1 − �k1 − �k2 − �q3)g
2(1 − 2ḡ2ζ(2))

× 1

2

+∞∑
n=−∞

+∞∫
−∞

dν

⎛⎝e
ω(ν,n) ln

(
s2 �q 2

2
|�q1| |�q3| |�k1| |�k2|

)
− 1

⎞⎠w
n
2 +iν(w∗)−

n
2 +iν

×
∫

d2z1

π |z1|2
1

1 − z1

(
1 + ḡ2I (z1)

)
z

n
2 +iν

1 (z∗
1)

− n
2 +iν

×
∫

d2z2

π |z2|2
1

1 − z∗
2

(
1 + ḡ2I ∗(z2)

)
(z∗

2)
n
2 −iνz

− n
2 −iν

2 (4.17)

where w = k+
2 q+

1 /(k+
1 q+

3 ).
The second term in Eq. (4.10) must be calculated at D = 4 + 2ε. Using Eqs. (3.26)–(3.28)

and (3.25) for 〈˜G1R1|s , Eqs. (3.34)–(3.36) and (3.33) for |˜G2R3〉s , and the results obtained in 
Appendix C, we have for positive gluon helicities

t2〈˜G1R1|s |˜G2R3〉s
γ̃R1R2 γ̃R2R3

= δ(�q1 − �k1 − �k2 − �q3)g
2

×
(

1

ε
+ ln

( �k 2
1

�k 2
2

�k 2

))
(1 − 2ḡ2ζ(2)) . (4.18)

Calculation of the second term in the right side of Eq. (4.9) is simplified because the infrared 
divergency is absent in this term, since 〈G1G2|G2R3〉u = 0 at �r2 = 0 according to Eq. (3.24). 
Therefore, we have for positive helicities of both gluons

t2〈˜G1R1|s
⎛⎝e

K̂m ln

(
s2

|�k1| |�k2|

)
− 1

⎞⎠ |˜G2R3〉s

γ̃R1R2 γ̃R2R3

= δ(�q1 − �k1 − �k2 − �q3)g
2(1 − 2ḡ2ζ(2))

× 1

2

+∞∑
n=−∞

+∞∫
dν

⎛⎝e
ω(ν,n) ln

(
s2 �q 2

2
|�q1| |�q3| |�k1| |�k2|

)
− 1

⎞⎠w
n
2 +iν(w∗)−

n
2 +iν
−∞
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×
∫

d2z1

π |z1|2
1

1 − z1

(
1 + ḡ2I (z1)

)
z

n
2 +iν

1 (z∗
1)

− n
2 +iν

×
∫

d2z2

π |z2|2
1

1 − z∗
2

(
1 + ḡ2I ∗(z2)

)
(z∗

2)
n
2 −iνz

− n
2 −iν

2 (4.19)

where w = k+
2 q+

1 /(k+
1 q+

3 ).

4.3. Discontinuities in the s02, s13 and s channels

The discontinuities in the s02, s13 and s channels can be expressed through the ones calculated 
above with the help of the bootstrap relations (1.4). There are four such relations, but only three 
of them are independent. In general, for A2→2+n, there are n + 2 bootstrap relations (1.4), for 
j = 0, 1, . . . , n +1, but their sum is identically zero. Denoting discsij A

{−}
2→4/�A2→4 = R

{−}
ij , we 

have for j = 0, 1, 2 in the relations (1.4)

R
{−}
01 + R

{−}
02 + R

{−}
03 = −iπω(t1) , R

{−}
12 + R

{−}
13 − R

{−}
01 = −iπ (ω(t2) − ω(t1)) ,

R
{−}
23 − R

{−}
12 − R

{−}
02 = −iπ (ω(t3) − ω(t2)) . (4.20)

This result gives

discs02 A
{−}
2→4 = discs3 A

{−}
2→4 − discs2 A

{−}
2→4 − iπ (ω(t2) − ω(t3))�A2→4 ,

discs13 A
{−}
2→4 = discs1 A

{−}
2→4 − discs2 A

{−}
2→4 − iπ (ω(t2) − ω(t1))�A2→4 ,

discs A{−}
2→4 = discs2 A

{−}
2→4 − discs1 A

{−}
2→4 − discs3 A

{−}
2→4

− iπ (ω(t3) + ω(t1) − ω(t2))�A2→4 .
(4.21)

The same relations can be obtained from the representation of the discontinuities in terms of ma-
trix elements of the evolution operators and the gluon production operators between the impact 
factor states and use of the bootstrap conditions (2.20)–(2.22) and (3.3).

Thus, all the discontinuities are expressed through the discontinuities in s1, s3 and s2 channels, 
and the last one evidently disagree with the BDS ansatz. It is necessary to note that in the total 
imaginary part of A{−}

2→4 in the channel where all sij are positive, which is defined by the sum of 
all the discontinuities, the contribution of the s2-channel discontinuity cancel, so we get

n∑
i=0

n+1∑
j=i+1

discsij A
{−}
2→4 = discs1 A

{−}
2→4 + discs3 A

{−}
2→4 − iπω(t2)�A2→4 . (4.22)

5. Discontinuities of amplitudes with larger number of particles

In general, there are (n + 1)(n + 2)/2 sij -channel discontinuities for the amplitude A2→2+n, 
that means ten discontinuities for A2→5. The bootstrap relations (1.4) give n + 1 connections 
between them. For A2→5 one can choose as independent discontinuities in the channels s1, s2, 
s3, s4, s13 and, for example, s04. The ratios discsij A

{−}
2→5/�A2→5 for the first four channels can 

be obtained from the results for A{−}
2→4 by evident substitutions. But the discs13 A

{−}
2→5 contains 

the new matrix element
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〈G1R1|e
K̂m ln

(
s2

|�k1| |�k2|

)
Ĝ(k2)e

K̂m ln

(
s3

|�k2| |�k3|

)
|G3R4〉

where Ĝ(�k2) is the gluon production operator and k2 is the gluon momentum. To calculate it one 
needs to know its matrix elements 〈G′

1G′
2|Ĝ(k2)|G1G2〉. They are known in the LO, but in the 

NLO only matrix elements 〈Rω(�q2)|Ĝ(k2)|G1G2〉 are known in the “bootstrap scheme” (see, for 
instance, Refs. [9,11,38]), which was introduced to simplify the proof of validity of the bootstrap 
conditions. Of course, the matrix elements 〈G ′

1G′
2|Ĝ(k2)|G1G2〉 are necessary for calculation of 

discontinuities of amplitudes with larger number of particles. We intend to discuss this matrix 
element in subsequent paper.

A few words about the total imaginary part of A{−}
2→5 in the channel where all sij are positive. 

With account of the bootstrap conditions it can be greatly simplified, so that its ratio to the real 
part is expressed through gluon trajectories and the ratios of the type shown in Eqs. (4.3), (4.4).

6. Conclusion

In this paper, using the BFKL approach, we have performed an analysis of the discontinuities 
of multiple production amplitudes in invariant masses of pairs of produced gluons in the multi-
Regge kinematics. We have discovered, in particularly, that the discontinuities of the four gluon 
production amplitudes contradict the BDS ansatz for MHV amplitudes in planar N = 4 super-
symmetric Yang–Mills theory. This contradiction is almost obvious and is already apparent in the 
leading logarithmic approximation. It appears also in amplitudes with more than four produced 
gluons.

We have obtained explicit expressions of all discontinuities for production of three and four 
gluons, as well as of some of discontinuities for production of a greater number of gluons in the 
next-to-leading logarithmic approximation. It turns out that certain discontinuities have a rather 
complicated form. In particular, their color structure differs from the color structure of the real 
part of the corresponding amplitude. In the sum of all discontinuities the complicated pieces 
cancel due to the bootstrap conditions, so that the sum acquires a relatively simple form and the 
same color structure as the real part. This result can be important for further development of the 
BFKL approach.

Appendix A

First, consider Eq. (3.18). Using Eq. (2.24) and Eqs. (3.5), (3.6) and (3.8) we have

〈Rω|B
[
ln

(
�̂r 2

1 �̂r 2
2

)
, K̂B

r

]
|G1G2〉 = ḡ2δ(�r1 + �r2 − �q)

�(1 − ε)π1+ε
T R
G1G2

∫
d�r ′

1 d�r ′
2 δ(�r ′

1 + �r ′
2 − �q)

�r ′ 2
1 �r ′ 2

2

×
(

�r 2
1 �r ′ 2

2 + �r 2
2 �r ′ 2

1

(�r1 − �r ′
1 )2

− �q 2

)
ln

(
�r ′ 2
1 �r ′ 2

2

�r 2
1 �r 2

2

)
. (A.1)

Due to the symmetry under the �r1 ↔ �r2, �r ′
1 ↔ �r ′

2 exchange, it is sufficient to calculate in 

Eq. (A.1) the integral with ln(
�r ′ 2
1
�r 2
1

) and to add in the answer the term with �r1 ↔ �r2. The integral 

is not infrared divergent and can be evaluated at ε = 0. It can be done using the decomposition
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1

�r ′ 2
1 �r ′ 2

2

(
�r 2
1 �r ′ 2

2 + �r 2
2 �r ′ 2

1

(�r1 − �r ′
1 )2

− �q 2

)
=

(
1

r ′ +
1

+ 1

r+
1 − r ′ +

1

)(
1

r−
1 − r ′ −

1

− 1

q− − r ′ −
1

)

+
(

1

r ′ −
1

+ 1

r−
1 − r ′ −

1

)(
1

r+
1 − r ′ +

1

− 1

q+ − r ′ +
1

)
,

(A.2)

and the integral∫
d�l
π

(
1

(a+ − 1+)

1

(b− − 1−)
+ 1

(a− − 1−)

1

(b+ − 1+)

)
ln

( �l 2

μ2

)
θ(�2 − �l 2)

= ln

(
�2

(�a − �b)2

)
ln

(
�2(�a − �b)2

μ4

)
+ ln

(
(�a − �b)2

�b 2

)
ln

(
(�a − �b)2

�a 2

)
. (A.3)

The upper integration limit � is introduced because the separate terms of the decomposition 
(A.2) give divergent integrals. In the sum the divergencies cancel and that leads to the result∫

d�r ′
1 d�r ′

2 δ(�r ′
1 + �r ′

2 − �q)

�r ′ 2
1 �r ′ 2

2

(
�r 2
1 �r ′ 2

2 + �r 2
2 �r ′ 2

1

(�r1 − �r ′
1 )2

− �q 2

)
ln

(
�r ′ 2
1 �r ′ 2

2

�r 2
1 �r 2

2

)

= −2π ln

(
�r 2
1

�q 2

)
ln

(
�r 2
2

�q 2

)
. (A.4)

Using this result in Eq. (A.1) we come to Eq. (3.18).

Appendix B

Let us consider the integral in Eq. (3.40). The piece of this integral with the term �q2 is known 
from the calculation of ωB(t1) and gives (with �k = �q1 − �q2)

�q2

∫
d�r1d�r2

�q 2
1

�r 2
1 �r 2

2

δ(�r1 + �r2 − �q1) = 2π1+ε�(1 − ε)�q2

(
1

ε
+ ln �q 2

1

)
. (B.1)

The integral with the second term can be represented as∫
d�r1d�r2

�q 2
1

�r 2
1 �r 2

2

δ(�r1 + �r2 − �q1)(�r1 − �q2)
�q 2

2

(�r1 − �q2)2

= �q 2
1 �q 2

2

2

∂

∂ �q2

∫
d�r1

�r 2
1 (�r1 − �q1)2

ln(�r1 − �q2)
2 . (B.2)

The last integral can be written as sum of two integrals:∫
d�r1

�r 2
1 (�r1 − �q1)2

ln(�r1 − �q2)
2

= 1

2

∫
d�l

(�q − �l)2(�k + �l)2

(
ln

( �l 2

�q 2

�l 2

�k 2

)
+ ln

(
�q 2

2
�k 2

))
. (B.3)
2 2
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Here the second integral is known, whereas in the first one the contributions of the singularities 
at (�q2 − �l) = 0 and (�k + �l) = 0 cancel and the integral can be calculated at ε = 0 using the 
decomposition

1

(�q2 − �l)2(�k + �l)2
= 1

�q 2
1

(
1

q+
2 − l+

+ 1

k+ + l+

)(
1

q−
2 − l−

+ 1

k− + l−

)
(B.4)

and the integral (A.3). As a result, we have∫
d�r1

�r 2
1 (�r1 − �q1)2

ln(�r1 − �q2)
2

= π1+ε�(1 − ε)
1

�q 2
1

(
ln

(
�q 2

2
�k 2

)(
1

ε
+ ln �q 2

1

)
+ 1

2
ln2

( �k 2

�q 2
2

))
.

Substituting this result in Eq. (B.2) and using Eq. (B.1), we obtain∫
d�r1d�r2
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1

�r 2
1 �r 2

2
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. (B.5)

Appendix C

Let us calculate now the chiral components of the tensor

J ij = 1

π1+ε�(1 − ε)

∫
d�r

�r 2(�q2 − �r)2

( q1

�q 2
1

− (�q1 − r)

(q1 − �r)2

)i( q3

�q 2
3

− (�q3 − r)

(q3 − �r)2

)j

. (C.1)

Writing( q1

�q 2
1

− (�q1 − r)

(q1 − �r)2

)i =
( q1

�q 2
1

− k1

�k 2
1

)i +
( k1

�k 2
1

− (�q1 − r)

(q1 − �r)2

)i

(C.2)

we can split the tensor in the sum of two pieces:

J ij = J
ij

1 + J
ij

2 , (C.3)

where

J
ij

1 =
( q1

�q 2
1

− k1

�k 2
1

)i 1

π1+ε�(1 − ε)

∫
d�r
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( q3

�q 2
3

− (�q3 − r)

(q3 − �r)2

)j

,

J
ij

2 = 1

π1+ε�(1 − ε)

∫
d�r

�r 2(�q2 − �r)2

( k1

�k 2
1

− (�q1 − r)

(q1 − �r)2

)i( q3

�q 2
3

− (�q3 − r)

(q3 − �r)2

)j

. (C.4)

The first tensor can be obtained from Eq. (B.5) by the replacement �q1 → �q2, �q2 → �q3; we get

J
ij

1 	
( q1

�q 2
− k1

�k 2

)i( q3

�q 2
+ k2

�k 2
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�q 2

(
1

ε
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(
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2
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2
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. (C.5)
1 1 3 2 2 3
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The tensor J ij

2 is infrared finite and can be calculated at ε = 0. The calculation of its chiral 
components can be performed easily using the decomposition of the integrand into a sum of 
terms of the type (a+ − r+)−1(b− − r−)−1 and the integral∫

d2r

π(a+ − r+)(b− − r−)
θ(�2 − �r 2) = ln

(
�2

(�a − �b)2

)
. (C.6)

It gives
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where �k = �k1 + �k2 and J−−
2 = (

J++
2

)∗
, J−+

2 = (
J+−

2

)∗
. Therefore, for the +− component we 

have
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