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Spiral Waves for A-W Systems, II* 
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1. INTRODUCTION 

In a recent paper [l], the author established that the h-w equations 
introduced by Kopell and Howard [2-41, support rotating-spiral wave 
solutions. The specific equations studied were 

3 
u + iu) = (A + iw)(u + iu) + A& + iu), (14 

where h and w were the following functions of A = dw: 

h=l-A, o = 1 + q(A - l), and w, >o, (1.2) 

and AZ was the two-dimensional Laplacian. The rotating spirals were 
solutions of (1.1) of the fom: 

u+w=A(r)exp(i(Ot~Q-jbk(s)dr)), 0.3) 

where 

P = 1 - W& (14 

and A and k satisfy 

,9+ (4 k)(r) = (%O) and rem (A W) = (1 - e3, km), 
(l-5) 

with k, > 0. These solutions obtain so long as 

Ocw, 10(/t,) and O<k, K 1. 0.6) 
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In this we re-examine the spiral-waue problem when (1.2) is replaced by 

X=1-A, 0 = 1 - &+(A - l), and 0, > 0. (1.2)# 

Over the years there has been some controversy as to the appropriate sign 
of w ,; that is, in systems of actual interest (of which (1.1) and (1.2) or (1.2)* 
is supposed to be a prototype) which possess an isolated, orbitally stable 
limit cycle (in our case the solution A z 1) is the frequency w an increasing 
or decreasing function of the amplitude. It is not our purpose to answer this 
question here; rather it is to show that (1.1) has spiral solutions of the form 
( 1.3) with A and k satisfying (1.4) independently of whether (1.2) or (1.2)* 
holds.’ There are essential differences in these two cases. When (1.2) holds 
there is a two-parameter family of solutions (indexed by k, and w,) 
whereas when (1.2)* holds there is only a one-parameter family. 

2. ASYMPTOTICEQUATIONS 

A. The Equations 

It is a simple matter to check that if (1.1) has a solution of the form (1.3), 
if (1.4) holds, and if X and w are given by (1.2)*, then A and k satisfy 

(DEA)(rA,)r+rA l-A-k’-+) =O, 
( 

r > 0, 

(DEk) (rA2k)r = w,rA2(1 - k: -A), r > 0, 

(BC) liy+(A, k)(r) =(O,O) and Jiz(A, k)(r) =(l -kL, k,), 

wherek, >Oandw, >O. 
Rather than work with A it is convenient to work with the independent 

def 
variable I$ = A + k 2 - 1. Then $J and k satisfy 

(DE+) (r&J,-r(l++)( $++)=( (r(k2)r)r-r(g+f)k2)T r>“y 
(DEk) (r(1 + C#I - k2)2k)r = w,r(l + + - k2)2(k2 - ki) 

- w,r(l + + - k’)‘+, r > 0, 

(BC) ,!F+ (G(r), k(r)) =(-l,O> and )+%(+(r), k(r)) =(O, k,). 

‘When (1.2)* holds, Q is given by 1 + u,k&. 
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The advantage to working with + over A is that for any pair 0 < k, and 
0 < w, solutions of (DE+) and (DEk) which algebraically meet the 
boundary conditions at r = + cc satisfy the asymptotic relationship + - 
- l/r2 independently of k, whereas solutions A of (DEA) and (DEk) 
which algebraically meet the boundary condition at r = + cc do so at a 
slower rate; in particular A - 1 - ki - k,(l - kL)2/qr. 

For solutions of (DE+), (DEk), and (BC) with k uniformly small, the 
last observation allows us to replace + by $+,, where (pa satisfies 

(m#& J$y!o(r) = -1 and lim &o(r) = 0, 
r-m 

and be assured that not only is cp,, uniformly close to + but that it has the 
same asymptotic behavior at r = + 00. The approximating equation for k is 
then obtained by replacing the terms (1 + + - k2)2 in (DEk) with (1 + 
&,)2; the result is 

(DEk), (r(1 + +0)2k)r = w&l + +,,j2(k2 - ki) - @ir(l -t- %o)‘% 

(BCk), lili+ k( r) = 0 and lim k(r) = k, > 0. 
r-co 

B. The Solutions 

We start with a few words about the boundary value problem (DE+), 
and (BC$),. In [l, Section 2-B] it was shown there exists an increasing 
function r + 6Qr) satisfying 

(DEd),(r&,,)r+r&,(l-d, - -$) =O, r>O, 

(BC&), lii@,,( r) = 0 and lim b&(r) = 1, 
r+cc 

and the asymptotic estimate @,, - 1 - 1 /r 2. The solution of (DE+), and 
( BC$)o may be expressed in terms of a0 by 

&o(r) = @Jr) - 1. (2-l) 

In what follows it will be convenient to work with 6$. 
We now turn to the problem (DEk) and (BCk). Instead of working with 

the wave number k(r) we introduce the unknown 

p(r)cfa,k(r), (2.4 
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def 
and work with the parameters w, and p, = ~,k,. p satisfies 

(DEp)), (&$h)r= r6?&? - &) + o+@(r)(l - @Jr)), r>O, 

and 

(BCp), liF+p(r) = 0 and lim p(r) = pm. 
r+Q) 

It is easily checked that p solves (D&CL),, and the boundary condition at 
r = cc if and only if 

and ~1 meets the boundary condition at r = 0 if and only if 

w: _ imev( -&b + ~W)+@,2b)b~(k + 144))~ 
- 

iwexp( -j)~, + ~W+@,2(s)(l - %CW ’ 

The relation (2.4) illustrates that the parameters pm and w, cannot be 
prescribed independently. The system (2.3) and (2.4) may be solved by 
iteration; specifically by the scheme 

and 
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where 

cLO(d = Pm- (2.5), 

There is also a variational formulation to ( DEP)~ and (BQ),. We 
introduce the potential n by 

17 LI = -p(r). 
17 

(2.6) 

Then p satisfies (DEP)~ and (X$L)~ if q(r) # 0 solves 

- (r&;(+?Jr + P%x+l= 44Xr)(i - ao(+b (2.7) 

and 

lim n,(r) = 0 and n- exd-kd 
).I/2 

as r + co. 
r-4+ 

(2.8) 

The positive solution of (2.7) and (2.8) minimizes the Raleigh quotient 

and the parameter w: is given by 

4 = i;fJ($, I&) = J(v, &). (2.10) 

It is easily checked that J($J, &) is bounded from below by ~2, which is 
equivalent to the constraint that k, I 1. Upper bounds for w: are obtained 
by evaluating J( e -pm’ , &,). As p, tends to zero this upper bound reduces 
to 

tdf IJ(epCm’ ,PL) - - 21~:~ aspm -+ 0 (2.12) 
m 

This in turn yields the lower bound k,: 

(2.13) 

It should be noted that the upper bound J( e -pm- , ~2,) is equal to (a’,)’ (see 
(2.41, ). 
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