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a b s t r a c t

Let G be a graph and d(u) denote the degree of a vertex u in G. The zeroth-order general
Randić index 0Rα(G) of the graph G is defined as

∑
u∈V (G) d(u)

α , where the summation goes
over all vertices of G and α is an arbitrary real number. In this paper we correct the proof
of the main Theorem 3.5 of the paper by Hu et al. [Y. Hu, X. Li, Y. Shi, T. Xu, Connected
(n,m)-graphs with minimum and maximum zeroth-order general Randić index, Discrete
Appl. Math. 155 (8) (2007) 1044–1054] and give a more general Theorem. We finally
characterize1 for α < 0 the connected G(n,m)-graphs with maximum value 0Rα(G(n,m)),
where G(n,m) is a simple connected graph with n vertices andm edges.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G(n,m) be a simple connected graph with n vertices and m edges. Denote by u its vertex and by d(u) the degree of
this vertex. In 1975 Randić proposed a topological index, suitable for measuring the extent of branching of the carbon-atom
skeleton of saturated hydrocarbons. The Randić index defined in [13] is: R(G) = R−1/2(G) =

∑
(uv)(d(u)d(v))

−1/2, where
the summation goes over all edges uv of G. This index R−1/2(G) became one of the most popular molecular descriptors to
which two books are devoted [8,9]. The general Randić index Rα(G) of graph G = (V , E) is defined as

Rα(G) =
∑
uv∈E(G)

(d(u)d(v))α

where α is an arbitrary real number. It has been extensively studied by bothmathematicians and theoretical chemists [2–5].
For a survey of results, we refer to the new book written by Li and Gutman [10].
The zeroth-order Randić index 0R(G) defined by Kier and Hall [9] is:

0R(G) =
∑
u∈V (G)

(d(u))−1/2

where the summation goes over all vertices of G. Pavlović [12] gave a graph with the maximum value of 0R(G(n,m)) for
given n andm. Li and Zheng [11] defined the zeroth-order general Randić index

0Rα(G) =
∑
u∈V (G)

d(u)α
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Fig. 1. FPA1(12, 6, 2).

whereα is an arbitrary real number. In [7], Hu et al. investigated the zeroth-order general Randić index formolecular (n,m)-
graphs, i.e. simple connected graphs with n vertices,m edges and maximum degree at most 4. In [6], Hu et al. characterized
the simple connected (n,m)-graphs with extremal zeroth-order general Randić index, but they failed to prove correctly the
main Theorem 3.5. This theorem is a generalization for α ≤ −1 of Theorem from [12] given for α = − 12 . In this paper we
correct the proof of the main Theorem 3.5. of [6] and prove that this Theorem holds for α < 0. We characterize for α < 0
the connected G(n,m)-graphs with maximum value 0Rα(G(n,m)).

2. Main error

At first we want to point out the error in the proof of Theorem 3.5 from [6]. All notations, terminology and presumed
results can be found in [6], but we give some important notions.
The set of vertices and edges of a simple graph G are denoted by V (G) and E(G), respectively. The order of G is defined

by |V (G)| and the size by |E(G)|. Let G(n,m) be a simple connected graph with n vertices and m edges. Denote by d(u) the
degree of a vertex u and by ni the number of vertices of degree i. Then:

0Rα(G) =
∑
u∈V (G)

d(u)α = 1αn1 + 2αn2 + · · · + (n− 1)αnn−1.

We give definitions from [1] of some specific graphs.
A pineapplewith parameters n, k (k ≤ n), denoted by PA(n, k), is a graph on n vertices consisting of a clique on k vertices

and a stable set on the remaining n− k vertices in which each vertex of the stable set is adjacent to a unique and the same
vertex of the clique.
A fanned pineapple of type 1 with parameters n, k, p (n ≥ k ≥ p), denoted by FPA1(n, k, p), is a graph (on n vertices)

obtained from a pineapple PA(n, k) by connecting a vertex from the stable set by edges to p vertices of the clique, with
0 ≤ p ≤ k− 2. FPA1(12, 6, 2) is represented in Fig. 1.
We will prove that the function 0Rα(G(n,m)) attains its maximum for α < 0 on the fanned pineapple of type 1 graphs.
For α = −1/2 holds:

Theorem ([12]). Let G(n,m) be a connected graph without loops and multiple edges with n vertices and m edges. If m =
n+ k(k−3)

2 + p, where 2 ≤ k ≤ n− 1 and 0 ≤ p ≤ k− 2, then:

0R
−
1
2
(G(n,m)) ≤ 0R

−
1
2
(FPA1(n, k, p)) =

n− k− 1
√
1
+

1
√
p+ 1

+
k− 1− p
√
k− 1

+
p
√
k
+

1
√
n− 1

.

In paper [6] the authors failed to prove Theorem 1 (corresponding Theorem 3.5):

Theorem 1. Let G(n,m) be a simple connected graph with n vertices and m edges. If m = n+ k(k−3)
2 + p, where 2 ≤ k ≤ n− 1

and 0 ≤ p ≤ k− 2, then for α ≤ −1,

0Rα(G(n,m)) ≤ 0Rα(FPA1(n, k, p)) = (n− k− 1) · 1α + (p+ 1)α + (k− p− 1)(k− 1)α + p · kα + (n− 1)α. (1)

As we mentioned, this theorem is a generalization of Theorem [12]. They used the same technique to prove Theorem 1 as
in [12], except the proof of inequality (4.5). Actually, the authors failed to prove inequality (4.5) on page 1050, line 14–15:

f (j) = (n− p− j− 3)(p+ 1)α − (n− p+ j− 3)(p+ j+ 1)α

+ j(n− p− j− 1)(n− 2)α − j(n− p− j− 3)(n− 1)α ≥ 0. (4.5)
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They wrote (page 1050, line 16–27):
‘‘Since f (0) = f (n− p− 3) = 0, we only need to prove ∂

2f
∂ j2
≤ 0. We have:

∂2f
∂ j2
= −α(p+ j+ 1)α−2(2(p+ j+ 1)+ (α − 1)(n− p+ j− 3))− 2((n− 2)α − (n− 1)α),

and since−2((n− 2)α − (n− 1)α) ≤ 0, we have to prove

2(p+ j+ 1)+ (α − 1)(n− p+ j− 3) = (n− p+ j− 3)α − n+ 3p+ j+ 5 ≤ 0. (4.6)

Since 0 ≤ p ≤ n− 4 and 0 ≤ j ≤ n− p− 4, we have 0 ≤ p+ j ≤ n− 4 and:

n− 3p− j− 5 = n− 2p− (p+ j)− 5 ≥ n− 2p− (n− 4)− 5
= −2p− 1 ≥ −2(n− 4)− 1 = −2n+ 7,

n− p+ j− 3 ≤ n− p+ (n− p− 4)− 3 = 2n− 7− 2p ≤ 2n− 7.

So we have

n− 3p− j− 5
n− p+ j− 3

≥
−2n+ 7
2n− 7

= −1 ≥ α.

Then inequality (4.6) holds for α ≤ −1.’’
But, this is not true for 0 ≤ p ≤ n− 4 and 0 ≤ j ≤ n− p− 4 and α ≤ −1. For example, when α = −1, we have:

(n− p+ j− 3)α − n+ 3p+ j+ 5 = −n+ p− j+ 3− n+ 3p+ j+ 5 = −2n+ 4p+ 8 ≤ 0

only when p ≤ n
2 − 2. We give a numerical example. Let α = −1, n = 100, p = 60 ≤ n− 4, j = 10 ≤ n− p− 4, we have:

(4.6) = (n− p+ j− 3)α − n+ 3p+ j+ 5 = −200+ 60+ 180+ 8 = 48 ≥ 0.

We leave to the reader to see what kind of error they made in this conclusion. But, they failed to prove (4.6) and also
inequality (4.5). When α = − 12 [12] this inequality is proved using the property of square root.

3. Main improvement

At first we will correct the proof of Theorem 1. Before this, we give one lemma and corollary which hold for α < 0.

Lemma 1. Let r, s, and t be real numbers such that: 0 < r ≤ s ≤ t and α < 0. Then:

(t − r)sα ≤ (t − s)rα + (s− r)tα

and the equality holds only for s = r and s = t.

It is easy to see that the proof of the corresponding Lemma 4.3. from [6] (corresponding Lemma 2 from [12]) holds for
α < 0.

Corollary 1. For real number s > 1 and α < 0, the following holds:

2sα < (s− 1)α + (s+ 1)α.

Here we prove inequality (4.5) for α < 0.

Lemma 2. Inequality (4.5)

f (p, j) = (n− p− j− 3)(p+ 1)α − (n− p+ j− 3)(p+ j+ 1)α

+ j(n− p− j− 1)(n− 2)α − j(n− p− j− 3)(n− 1)α ≥ 0 (4.5)

where n ≥ 5, p and j are integers holds for 0 ≤ p ≤ n− 4, 0 ≤ j ≤ n− p− 4 and α < 0.

Proof. It is easy to see that f (p, 0) = f (p, n − p − 3) = 0. It remains to prove (4.5) for 1 ≤ j ≤ n − p − 4. At first we will
prove that f (0, j) ≥ 0, for 0 ≤ j ≤ n− 3. Note that

f (0, j) = (n− j− 3)(1)α − (n+ j− 3)(j+ 1)α + j(n− j− 1)(n− 2)α − j(n− j− 3)(n− 1)α. (2)
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Let us denote f (0, j) by f0(j). Then

∂ f0
∂ j
= −1− (j+ 1)α − α(n+ j− 3)(j+ 1)α−1 + (n− 2j− 1)(n− 2)α − (n− 2j− 3)(n− 1)α

∂2f0
∂ j2
= −2α(j+ 1)α−1 − α(α − 1)(n+ j− 3)(j+ 1)α−2 − 2(n− 2)α + 2(n− 1)α

∂3f0
∂ j3
= α(α − 1)(j+ 1)α−3(2n− j− 9− α(n+ j− 3))

≥ α(α − 1)(j+ 1)α−3(2n− j− 9) ≥ α(α − 1)(j+ 1)α−3(n− 6) ≥ 0

for n ≥ 6 and because j ≤ n− 3. Then

∂2f0
∂ j2
≤
∂2f0
∂ j2

∣∣∣∣
j=n−3

= 2(−α(n− 2)α−1 − α(α − 1)(n− 3)(n− 2)α−2 − (n− 2)α + (n− 1)α).

Since (n− 1)α − (n− 2)α = α(n− 2)α−1 + α(α−1)
2 (n− 2+ θ)α−2, 0 < θ < 1, we have

∂2f0
∂ j2
≤ 2α(α − 1)

(
−(n− 3)(n− 2)α−2 +

1
2
(n− 2+ θ)α−2

)
≤ 2α(α − 1)

(
−(n− 3)(n− 2)α−2 +

1
2
(n− 2)α−2

)
= 2α(α − 1)(n− 2)α−2

(
−n+

7
2

)
≤ 0

for n ≥ 4 and because (n− 2+ θ)α−2 ≤ (n− 2)α−2. Since f0(0) = f0(n− 3) = 0, we conclude for n ≥ 6 that f0(j) ≥ 0, for
0 ≤ j ≤ n− 3.
Further, we have

∂ f
∂p
= −(p+ 1)α + α(n− p− j− 3)(p+ 1)α−1 + (p+ j+ 1)α

−α(n− p+ j− 3)(p+ j+ 1)α−1 − j(n− 2)α + j(n− 1)α

∂2f
∂p2
= −2α(p+ 1)α−1 + α(α − 1)(n− p− j− 3)(p+ 1)α−2

+ 2α(p+ j+ 1)α−1 − α(α − 1)(n− p+ j− 3)(p+ j+ 1)α−2

= −α
[
2((p+ 1)α−1 − (p+ j+ 1)α−1)− (α − 1)(n− p− j− 3)((p+ 1)α−2

− (p+ j+ 1)α−2)+ 2(α − 1)j(p+ j+ 1)α−2
]

≥ −α
[
−2(α − 1)j(p+ 1+ θ j)α−2 + 2(α − 1)j(p+ j+ 1)α−2

]
= 2α(α − 1)j

[
(p+ 1+ θ j)α−2 − (p+ 1+ j)α−2

]
≥ 0

because (p + j + 1)α−1 − (p + 1)α−1 = (α − 1)j(p + 1 + θ j)α−2, 0 < θ < 1, (p + 1)α−2 − (p + j + 1)α−2 ≥ 0 and
(p+ 1+ θ j)α−2 ≥ (p+ 1+ j)α−2. Then

∂ f
∂p
≤
∂ f
∂p

∣∣∣∣
p=n−j−3

= (n− 2)α − (n− j− 2)α − 2αj(n− 2)α−1 − j(n− 2)α + j(n− 1)α.

Let us denote ∂ f
∂p

∣∣∣
p=n−j−3

= g(j). We have

∂g
∂ j
= α(n− j− 2)α−1 − 2α(n− 2)α−1 − (n− 2)α + (n− 1)α

∂2g
∂ j2
= −α(α − 1)(n− j− 2)α−2 ≤ 0.

Then
∂g
∂ j
≤
∂g
∂ j

∣∣∣∣
j=1
= α(n− 3)α−1 − 2α(n− 2)α−1 − (n− 2)α + (n− 1)α

= α
(
(n− 1)α−1 + (n− 3)α−1 − 2(n− 2)α−1

)
+ (n− 1)α − (n− 2)α

−α(n− 1)α−1 ≤ α(n− 2+ θ)α−1 − α(n− 1)α−1 ≤ 0



2942 L. Pavlović et al. / Discrete Applied Mathematics 157 (2009) 2938–2944

because (n− 1)α−1 + (n− 3)α−1 − 2(n− 2)α−1 ≥ 0 (Corollary 1), (n− 1)α − (n− 2)α = α(n− 2+ θ)α−1, 0 < θ < 1 and
(n− 2+ θ)α−1 − (n− 1)α−1 ≥ 0. Finally, we have g(j) ≤ g(1).

g(1) = (n− 1)α − (n− 2)α + (n− 2)α − (n− 3)α − 2α(n− 2)α−1.

Since (n−1)α−(n−2)α = α(n−2)α−1+ α(α−1)
2 (n−2+θ)α−2, 0 < θ < 1 and (n−2)α−(n−3)α = −[(n−3)α−(n−2)α] =

−[−α(n− 2)α−1 + α(α−1)
2 (−1)2(n− 2− ϑ)α−2], 0 < ϑ < 1, we have:

g(1) = α(n− 2)α−1 +
α(α − 1)
2

(n− 2+ θ)α−2 + α(n− 2)α−1 −
α(α − 1)
2

(n− 2− ϑ)α−2 − 2α(n− 2)α−1

=
α(α − 1)
2

(
(n− 2+ θ)α−2 − (n− 2− ϑ)α−2

)
≤ 0.

This means that ∂ f
∂p ≤ 0 for j ≥ 1 and we conclude that f (p, j) ≥ 0 for 1 ≤ j ≤ n − 3, 0 ≤ p ≤ n − j − 3 because

0 = f (n− j− 3, j) ≤ f (p, j) ≤ f (0, j). We proved this lemma for n ≥ 6, but we checked that it holds for n = 5 too. �

We proved (4.5) for α < 0 and n ≥ 5. Thus, we corrected the proof of Theorem 1. But, α ≤ −1 appears only in the proof
of Lemma 4.8 [6]. We will prove that this Lemma holds for−1 < α < 0, too. At first we give one useful Lemma.

Lemma 3. If a maximum graph G∗ has r (r ≤ n− 3) vertices of degree n− 1, then the minimum degree of G∗ is r .

This lemma is actually Lemma 4.7 from [6] and the proof holds for α < 0.

Lemma 4. If m ≤ (n2 − 3n+ 2)/2, then n1(G∗) 6= 0, for any maximum graph G∗ and for α < 0.

Proof. Since this Lemma is proved for α ≤ −1 (Lemma 4.8 [6]) we will prove it only for −1 < α < 0. All notations are
the same as in the Lemma 4.8 and we will not repeat the whole text. We will focus on 0Rα(G′)− 0Rα(G∗), where α appears.
Before that we sketch some important steps of the proof.
Suppose the contrary, n1(G∗) = 0. We can suppose that the minimum degree of G∗ is r , i.e. n1 = n2 = · · · = nr−1 = 0

and nr 6= 0 for r ≥ 2. ThenG∗ has r vertices of degree n−1. For otherwise, ifG∗ has k 6= r vertices of degree n−1, we have by
Lemma 3 that the minimum degree of G∗ is k. Let u be a vertex of degree r , then u is joined with all verticesw1, w2, . . . , wr
of maximum degree n− 1.
Denote by S(G∗) the subgraph induced by G∗ \ {u, w1, w2, . . . , wr} and K(G∗) the complete graph on V (S(G∗)). Then

|E(K(G∗))| − |E(S(G∗))| =
(
n− r − 1
2

)
−

(
m− r(n− r)−

( r
2

))
≥

(
n− r − 1
2

)
−
n2 − 3n+ 2

2
+ r(n− r)+

( r
2

)
= r.

Then we can add at least r − 1 edges in S(G∗), and after that, these vertices do not still form a complete graph.
For r ≥ 2, denote by G′ a simple connected graph obtained from G∗ when we delete r − 1 edges between vertex u

and vertices w2, . . . , wr and add r − 1 new edges among n − r − 1 vertices between r − 1 pairs of vertices: v1 (degree
j1) and v′1 (degree j

′

1), v2 (degree j2) and v
′

2 (degree j
′

2), . . . , vr−1 (degree jr−1) and v
′

r−1 (degree j
′

r−1). These vertices are not
necessarily distinct. If we add several edges to one vertex, wewill calculate each time the change of the degree of this vertex.
For example (ji + x)α − jiα =

∑x
t=1(ji + t)

α
− (ji + t − 1)α . We have

0Rα(G′)− 0Rα(G∗) = 1− rα + (r − 1)(n− 2)α − (r − 1)(n− 1)α +
r−1∑
i=1

((ji + 1)α − jiα)+
r−1∑
i=1

((j′i + 1)
α
− j′i

α
)

> 1− rα + 2(r − 1)((r + 1)α − rα) = h(α, r)

because (n − 2)α − (n − 1)α > 0 and (ji + 1)α − jαi is an increasing function. Then h(0, r) = 0 and
∂h
∂α
= (2r − 2)(r +

1)α ln(r + 1) − (2r − 1)rα ln r . ∂h
∂α
= 0 for α = α∗ = ln (2r−1) ln r

(2r−2) ln(r+1)/ ln(1 +
1
r ). We will show that α

∗
≥ 0 for r ≥ 4.

Since α∗ is the point of minimum for h(α, r) we conclude that h(α, r) ≥ h(0, r) = 0 ≥ h(α∗, r) for α ∈ (−1, 0). α∗ ≥ 0 if
(2r−1) ln r

(2r−2) ln(r+1) ≥ 1, that is if z(r) = (2r − 1) ln r − (2r − 2) ln(r + 1) ≥ 0.

z(r) = (2r − 2) ln r − (2r − 2) ln(r + 1)+ ln r = ln
r2(r−1)

(r + 1)2(r−1)
+ ln r

= −2 ln
(
1+

1
r

)r
+ 2 ln

(
1+

1
r

)
+ ln r > −2 ln 3+ ln r ≥ 0

for r ≥ 9 and because (1+ 1
r )
r < 3. By hand we checked that z(r) > 0 for r = 4, 5, . . . , 8.

It remains to prove that G∗ cannot have any vertex of minimum degree r = 2 or r = 3. Let us consider the case r = 3.
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Fig. 2. Subcase 1′′ . Graphs G∗ and G′ for n = 7.

Fig. 3. Subcase 2′′ . Graphs G∗ and G′ for n = 8.

1. Case r = 3. Since 0Rα(G′)− 0Rα(G∗) ≥ 1−3α+2(n−2)α−2(n−1)α+4(4α−3α) > 0 for α ∈ (−1, 0) and n = 5, 6,
wewill take that n is greater than or equal to 7.Wewill divide this case into two subcases: 1′. among n−4 vertices (without
w1, w2, w3 and u) there is a vertex of degree equal to 4, 5, . . . , n− 3; 1′′. there is no such vertex.
Subcase 1′. We have

0Rα(G′)− 0Rα(G∗) = 1− 3α + 2(n− 2)α − 2(n− 1)α +
2∑
i=1

((ji + 1)α − jiα)

+

2∑
i=1

((j′i + 1)
α
− j′i

α
) > 1− 3α + 5α − 4α + 3(4α − 3α)

= 1− 4 · 3α + 2 · 4α + 5α > 0

forα ∈ (−1, 0), because 2[(n−2)α−(n−1)α] > 0, (ji+1)α− jiα is an increasing function, t(α) = 1−4·3α+2·4α+5α > 0
because t(0) = 0 and t ′(α) = −4 ln 3 · 3α + 2 ln 4 · 4α + ln 5 · 5α < 2 ln 4(4α − 3α)+ ln 5(5α − 3α) < 0.
Subcase 1′′. In this case all vertices exceptw1, w2 andw3 are of degree 3. Let u, v1, v2 and v3 be vertices of degree 3. We

delete 2 edges between vertex u and vertices w2, w3 and add one edge between vertices v1 and v2 and one edge between
v1 and v3 (see Fig. 2). We get again that 0Rα(G′)− 0Rα(G∗) > 1− 4 · 3α + 2 · 4α + 5α > 0 for α ∈ (−1, 0).
2. Case r = 2.We can check that 0Rα(G′)− 0Rα(G∗) ≥ 1−2α+ (n−2)α− (n−1)α+2(3α−2α) > 0 for α ∈ (−1, 0) and

n = 5, 6, 7. We assume that n is greater than or equal to 8. We divide this case into two subcases: 2′. among n− 3 vertices
(withoutw1, w2 and u) there is a vertex of degree equal to 3, 4, . . . , n− 3; 2′′. there is no such vertex.
Subcase 2′. We have

0Rα(G′)− 0Rα(G∗) = 1− 2α + (n− 2)α − (n− 1)α + (j1 + 1)α − j1α

+ (j′1 + 1)
α
− j′1

α
> 1− 2α + 4α − 3α + 3α − 2α

= 1+ 22α − 2α+1 > 0

for α ∈ (−1, 0) because 1+ 22α − 2α+1 is a decreasing function in (−1, 0).
Subcase 2′′. In this case all vertices except w1 and w2 are of degree 2. Let u, u1, . . . , u5 be 6 vertices of degree 2. Let us

denote by G′ a simple connected graph obtained from G∗ whenwe delete one edge between vertices u, u1, u2 and vertexw2
and add one edge between vertices u3 and u4, one edge between u3 and u5 and one edge between u4 and u5 (see Fig. 3). We
have

0Rα(G′)− 0Rα(G∗) = 3(1− 2α)+ (n− 4)α − (n− 1)α + 3(4α − 2α)
> 3(1+ 22α − 2α+1) > 0

for α ∈ (−1, 0). �

Now we can prove a more general theorem.

Theorem 2. Let G(n,m) be a simple connected graph with n vertices and m edges. If m = n+ k(k−3)
2 + p, where 2 ≤ k ≤ n− 1

and 0 ≤ p ≤ k− 2, then for α < 0,
0Rα(G(n,m)) ≤ 0Rα(FPA1(n, k, p)) = (n− k− 1) · 1α + (p+ 1)α + (k− p− 1)(k− 1)α + p · kα + (n− 1)α.
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The proof of this theorem is omitted because it is similar to the proof of Theorem 3.5 from [6] and is based on
Lemmas 1–4. We also checked that this theorem holds for n = 5 and 4 ≤ m ≤ 10.
At the end we will mention another unclear point in [6]. In the proof of Theorem 3.4 they wrote: ‘‘The graph G − {x1}

consists of a connected graphG1with no isolated vertices, togetherwith a set J1 of isolated vertices’’. In general, graphG−{x1}
consists of some connected components and a set J1 of isolated vertices. It has to be proved that G1 is a connected graph.
Further they wrote: ‘‘In fact, let d1, d2, . . . , dn′ be the degree sequence of G1, then 0Rα(G1) =

∑n′
i=1 d

α
i attains minimum if

and only if 0Rα(G) = (n− 1)α + (n− n′ − 1)1α +
∑n′
i=1(di + 1)

α attains minimum.’’ This also has to be proved because it
is not obvious.
Also Theorem 4.5. [6] is a Corollary of Lemma 3.3 [6].
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