
http://www.elsevier.com/locate/jco
Journal of Complexity 19 (2003) 43–60

On the complexity of the multiplication of
matrices of small formats

Markus Bläser
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Abstract

We prove a lower bound of 2mn þ 2n � m � 2 for the bilinear complexity of the

multiplication of n � m-matrices with m � n-matrices using the substitution method

ðmXnX3Þ: In particular, we obtain the improved lower bound of 19 for the bilinear

complexity of 3� 3-matrix multiplication.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In the late 1960s, Strassen [17] discovered a bilinear algorithm for multiplying
2� 2-matrices using only 7 essential multiplications instead of 8: Using this
astonishing algorithm recursively, Strassen derived an algorithm for multiplying

n � n-matrices with Oðnlog27Þ ¼ Oðn2:808Þ arithmetic operations. A lot of effort has
been spent on improving Strassen’s upper bound, see for example [2,8,16,18]. The
current ‘‘world record’’ is held by Coppersmith and Winograd [8]. They exhibit an

algorithm with Oðn2:376Þ arithmetic operations. But the only algorithm which is of
practical relevance (at least until today) is Strassen’s algorithm [17]. In all other of
the mentioned algorithms, the constants hidden in the O-notation are far too huge.
One way to obtain faster algorithms of practical relevance is to find a good

bilinear algorithm for multiplying matrices of some small format. Since any bilinear
algorithm for multiplying 2� 2-matrices requires at least 7 essential multiplications
[20], we have to look for another format. The most promising formats are probably
3� 3-matrix multiplication and 4� 4-matrix multiplication. The best bilinear
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algorithm for multiplying 3� 3-matrices known so far uses 23 essential multi-
plications [14]. This yields an algorithm for multiplying n � n-matrices with

Oðnlog323Þ ¼ Oðn2:858Þ arithmetic operations. To improve Strassen’s algorithm, an
algorithm with 21 or less essential bilinear multiplications is required. The currently
best upper bound for 4� 4-matrix multiplication follows by applying Strassen’s
algorithm two times. This yields the upper bound 49. Any improvement of this result

immediately yields an algorithm with less than Oðnlog27Þ arithmetic operations.
Investigating the bilinear complexity of the multiplication of matrices of some

small format is an interesting and challenging problem, see e.g. [7, Problem 17.1] for
the 3� 3 case. The above considerations show that any improvement of the upper
bound might yield a new and faster matrix multiplication algorithm of practical
relevance. On the other hand, any strengthened lower bound sheds new light on the
problem of matrix multiplication and helps to understand its nature.
Before discussing the above issues in more detail, let us first settle the model of

computation. In the following, if V is a vector space, let Vn denote its dual space.

Definition 1. Let k be a field, U ; V ; and W finite-dimensional vector spaces over k;
and f : U � V-W be a bilinear map.

(1) A sequence b ¼ ð f1; g1;w1;y; fr; gr;wrÞ with frAUn; grAVn; and wrAW is

called a bilinear computation of length r for f if

fðu; vÞ ¼
Xr

r¼1
frðuÞgrðvÞwr for all uAU ; vAV :

(2) The length of a shortest bilinear computation for f is called the bilinear

complexity or the rank of f and is denoted by RðfÞ:

If we want to emphasize the underlying ground field k; we will sometimes write

RkðfÞ instead of RðfÞ: If we allow that fr and gr are both elements from ðU � VÞn;
we get quadratic computations. The length of a shortest quadratic computation for
f is called the multiplicative complexity of f and is denoted by CðfÞ or CkðfÞ:
Obviously, CðfÞpRðfÞ and it is not hard to see that RðfÞp2CðfÞ for any bilinear
mapping f: Since for the design of fast matrix multiplication algorithms, bilinear
computations play the most important role, we will focus on the bilinear complexity
in the following.

1.1. Previous bounds

Let in the following /c;m; nS : kc�m � km�n-kc�n denote the multiplication of
c� m-matrices with m � n-matrices. Asymptotically, the best lower bound for n � n-
matrix multiplication over arbitrary fields is

Rð/n; n; nSÞX5
2

n2 � 3n;
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see [3]. However, this bound does not give any good results for no8: For smaller
formats, we have

Rð/c;m; nSÞXcm þ mn þ c� m þ n � 3 for nXcX2; ð1Þ

see [4]. This bound even holds for the multiplicative complexity.
For /2; 2; 2S; (1) together with Strassen’s algorithms yields Rð/2; 2; 2SÞ ¼ 7; see

also [20] for the lower bound. De Groote [9] even shows that up to equivalence, there
is only one bilinear computation of length 7 for /2; 2; 2S: So this case is well
understood.
The next format to investigate is /2; 2; 3S: (Note that the rank of matrix

multiplication is invariant under permutations, see e.g. Eq. (14.21) in [7], so it does
not matter which of the three possibilities—/2; 2; 3S; /2; 3; 2S; or /3; 2; 2S—we
consider.) Here, (1) yields Rð/2; 2; 3SÞX10 opposed to the upper bound
Rð/2; 2; 3SÞp11 obtained by combining Strassen’s algorithm with an ordinary
matrix–vector multiplication. Over GFð2Þ; we even have RGFð2Þð/2; 2; 3SÞ ¼ 11; see

[12]. The upper bound of 11 gives an exponent of 2.895 which is worse than the
exponent by Strassen’s algorithm. Interestingly, we have Cð/2; 2; 3SÞ ¼ 10 over
fields of characteristic distinct from two by virtue of (1) for the multiplicative
complexity and Waksman’s algorithm [19].
For the format /2; 3; 3S; (1) yields Rð/2; 3; 3SÞX14; opposed to the upper bound

Rð/2; 3; 3SÞp15 by Hopcroft and Kerr [12]. The upper bound of 15 gives an
exponent of 2.811, still inferior to Strassen’s algorithm.
The next format is /3; 3; 3S: This format is of particular interest, since it is the

first one for which the best lower and upper bounds known so far differ significantly.
On the other hand, the situation is not hopeless. Eq. (1) yields Rð/3; 3; 3SÞX18: On
the other hand, Laderman [14] shows Rð/3; 3; 3SÞp23: Johnson and McLoughlin
[13] present further bilinear computations for /3; 3; 3S of length 23 that are not
equivalent to Laderman’s computation.
This upper bound gives an exponent of 2.854. An upper bound of 21 would yield a

favorable exponent of 2.772.
For /4; 4; 4S; we have 33pRð/4; 4; 4SÞp49; so there is currently not much hope

of determining the exact value of Rð/4; 4; 4SÞ:

1.2. New results

The main achievement of the present work is another step towards the
determination of the value of Rð/3; 3; 3SÞ as asked for in [7, Problem 17.1]. More
precisely, we prove the new lower bound

Rð/3; 3; 3SÞX19

over arbitrary fields. We will prove this bound in Section 4. The above bound is a
special case of the following bound:

Rð/n;m; nSÞX2mn þ 2n � m � 2 for mXnX3
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which will be proven in Section 5. Compared with (1), this is an improvement by one.
This might seem like a small improvement at a first glance, but for instance, the
problem whether Rð/3; 3; 3SÞ equals 17 or is strictly greater than 17 had been open
for over 20 years after the proof that Rð/3; 3; 3SÞX17 by Brockett and Dobkin [6].
Unfortunately, we are only able to prove this new bound for the bilinear complexity
and only for formats of the type /n;m; nS (instead of /c;m; nS).

2. Lower bound techniques

In this section we compile some of the results which were used by Alder and
Strassen [1] to prove their so-called Alder–Strassen bound. Their method is a
refinement of the substitution method, which is due to Pan [15]. Beside the original
paper of Alder and Strassen, Chapter IV.2 of [11] and Chapter 17 of [7] are excellent
treatments of the method of Alder and Strassen. The term ‘‘separate’’ and the
Extension Lemma are taken from there, but everything is also implicitly in the work
of Alder and Strassen. Alder and Strassen consider quadratic computations and
multiplicative complexity. Since bilinear computations and bilinear complexity are
only special cases, their results transfer to bilinear computations and bilinear
complexity at once. Because we are concerned with bilinear complexity in this work,
we focus on bilinear complexity in this section and state all of the results for the
bilinear complexity explicitly.

Definition 2. Let U ; V ; and W be vector spaces over some field k and b ¼
ð f1; g1;w1;y; fr; gr;wrÞ be a bilinear computation for a bilinear map f : U �
V-W : Let U1DU ; V1DV ; and W1DW be subspaces. The computation b
separates ðU1;V1;W1Þ; if there are disjoint sets of indices I ; JDfr j wreW1g such

that

U1-
\
iAI

ker fi ¼ f0g and V1-
\
jAJ

ker gj ¼ f0g:

The latter condition is equivalent to the condition that ð fijU1
ÞiAI and ðgjjV1

ÞjAJ

generate the dual spaces Un
1 and Vn

1 ; respectively. This insight immediately yields the
following lower bound:

Lemma 3. Let U ; V ; and W be vector spaces over some ground field k and let

b ¼ ð f1; g1;w1;y; fr; gr;wrÞ be a bilinear computation for some bilinear map f :
U � V-W : Let U1DU ; V1DV ; and W1DW be subspaces such that b separates

ðU1;V1;W1Þ: Then

rXdim U1 þ dim V1 þ#fr j wrAW1g:
To achieve good lower bounds by means of Lemma 3, one has to find an optimal

bilinear computation that separates a ‘‘large’’ triple. An important tool to solve this
task is the following ‘‘Extension Lemma’’. If T is a subset of some vector space over
a field k; let in the following /TS denote its k-linear span.
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Lemma 4 (Alder and Strassen). Let U ; V ; and W be vector spaces over a field k and

b be a bilinear computation for a bilinear map f : U � V-W : Let

U1DU2DU ; V1DV ; and W1DW be subspaces such that b separates the triple

ðU1;V1;W1Þ: Then b separates also ðU2;V1;W1Þ; or there is some uAU2WU1 such

that

fðu;VÞD/fðu;V1ÞSþ W1:

The Extension Lemma holds in the same manner for a subspace V2 with
V1DV2DV : If one replaces the term fðu;V1Þ by fðU2;V1Þ; then the Extension
Lemma also holds for quadratic computations. For a proof in the quadratic case, we
refer to [1,11] or [7]. For a proof in the bilinear case (with fðu;V1Þ instead of
fðU2;V1Þ), see [5]. (Actually, all proofs in this paper also work with fðU2;V1Þ:)

3. Equivalence of computations

In this section, we establish some (well-known) equivalence transformations on
the set of all computations of a given length r for /c;m; nS: We will exploit these
equivalence relations in the following sections frequently. For a comprehensive
theory of equivalence of computations for bilinear mappings, we refer to [10].
Let b ¼ ð f1; g1;w1;y; fr; gr;wrÞ be a bilinear computation of length r for

/c;m; nS: Surely, permuting the products defines a equivalence relation. If

aAkc�c; bAkm�m; and cAkn�n are invertible matrices, then

xy ¼ a�1ðaxb�1Þðbyc�1Þc ¼
Xr

r¼1
frðaxb�1Þgrðbyc�1Þa�1wrc

for all x; yAA: Therefore, *b ¼ ðf̃1; *g1w̃1;y; f̃r; *gr; w̃rÞ is a bilinear computation for

/c;m; nS; where w̃r ¼ a�1wrc and the linear forms f̃r and *gr are defined by f̃rðxÞ ¼
frðaxb�1Þ and *grðyÞ ¼ grðbyc�1Þ for all x; y: Due to the shape of the above equation,

this transformation is also called sandwiching. Finally, let %fr and %gr be defined by
%frðxÞ ¼ grðx?Þ and %grðyÞ ¼ frðy?Þ for all xAkn�m and yAkm�c; respectively. The

computation ð %f1; %g1w?
1 ;y; %fr; %gr;w?

r Þ is a bilinear computation for /n;m; cS;
because

Xr

r¼1

%frðxÞ %grðyÞw?
r ¼

Xr

r¼1
frðy?Þgrðx?Þwr

 !?

¼ ðy?x?Þ? ¼ xy:

We denote the resulting ‘‘transposed’’ computation by b?:

4. Multiplying 3�3-matrices

In this section, we start with the proof of the new bound for the bilinear
complexity of the multiplication of matrices of small formats. To be kind to the
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reader’s patience, we first prove the bound Rð/3;m; 3SÞX5m þ 4 for mX3: In
particular, the rank of 3� 3-matrix multiplication is at least 19. The rather technical
and elaborate proof of the general bound is postponed to the next section. We will
prove some intermediate results in its full generality, whenever we can achieve this
with little extra effort.
By switching over to the algebraic closure, we may assume w.l.o.g. for the

remainder of this paper that the underlying field is algebraically closed.

In the following, let Re;h; Le;h
Z for 0pZph; and Z

e;h
Z0 for 1pZ0ph denote the

following subspaces of ke�h:

Re;h ¼

0 ? 0 0 0 ? 0

* ? * * * ? *

^ ^ ^ ^ ^

* ? * * * ? *

0
BBB@

1
CCCA;

Le;h
Z ¼

 
0 ? 0 0

0 ? 0 0

^ ^ ^

0 ? 0 0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Z

* ? *

* ? *

^ ^

* ? *

!
;

Z
e;h
Z0 ¼

 
0 ? 0 0

0 ? 0 *

^ ^ ^

0 ? 0 *|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Z0

* ? *

* ? *

^ ^

* ? *

!
:

Each of the above three matrices denotes the vector space that is obtained by

substituting each ‘‘* ’’ by an arbitrary element from k: The extreme cases Le;h
0 and Le;h

h

are the whole space ke�h and the nullspace, respectively. We have the inclusions

Le;h
Z CZe;h

Z CLe;h
Z�1 for all 1pZph: Furthermore, Re;h � kh�j ¼ Re;j and ke�h � Lh;j

Z ¼ Le;j
Z :

In the following, m and n always specify the format of the matrix multiplication
map /n;m; nS we are investigating. Of crucial matter is the following lemma.
It also holds for the more general case of the multiplication of c� m-matrices with
m � n-matrices.

Lemma 5. With the above notations, let 1ptpn and let W1;y;Wt be subspaces

of kc�n such that WtDZc;n
t and Wt-Lc;n

t ¼ f0g for all 1ptpt � 1 as well as

WtDLc;n
t and dimWtpc� 1: Then the following holds: if b is a bilinear computation

for /c;m; nS; then b separates the triple ðkc�m;Lm;n
1 ;WÞ; where W ¼ W1 þ?þ Wt:
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Proof. As Wt-Lc;n
t ¼ f0g and WtDZc;n

t DL
c;n
t�1; we may choose a projection pt :

L
c;n
t�1-Lc;n

t for all 1ptot such that WtD ker pt: Let pt ¼ pt3?3p1 for 1ptot: For

technical reasons, let p0 be the identity. Clearly, ptðWÞ ¼ Wtþ1 þ?þ Wt:
The proof of the lemma is divided into several steps, in each of these steps (except

the first) we utilize the Extension Lemma to extend a given triple.
1. By definition, b separates the triple ðf0g; f0g;WÞ:
2. The computation b separates ðf0g;L

m;n
t ;WÞ: if L

m;n
t ¼ f0g; that is, t ¼ n; then

this has already been proven in step 1. Otherwise, assume that b does not separate

ðf0g;Lm;n
t ;WÞ: By the Extension Lemma, there is some bALm;n

t Wf0g such that

kc�m � bDW :

The vector space kc�m � b on the left-hand side of the above inclusion is contained

in Lc;n
t CLc;n

t�1: Applying pt�1 to the above inclusion yields kc�m � bDWt; a contra-

diction, since the dimension of the vector space kc�m � b is at least c but dim Wtpc� 1:

3. The computation b separates ðRc;m;L
m;n
t ;WÞ: otherwise, there is some

aARc;mWf0g such that

a � km�nDa � Lm;n
t þ W :

If we apply pt�1 to this inclusion, we obtain pt�1ða � km�nÞDLc;n
t þ WtDLc;n

t : This is a
contradiction, since pt�1ða � km�nÞ contains a matrix that has a nonzero entry in its
tth column. (The last assertion is easily seen as follows: there is an index pair ðl; mÞ
such that a has a nonzero entry in position ðl; mÞ: Let uAkm�n be the matrix that has
a one in position ðm; tÞ and zeros elsewhere. The matrix au has a nonzero entry in its

tth column and is in L
c;n
t�1: Thus pt�1ðauÞ ¼ au:)

4. If b separates ðRc;m;Lm;n
tþ1;WÞ; then also ðRc;m;Lm;n

t ;WÞ: otherwise, there is some
bALm;n

t WLm;n
tþ1 such that

kc�m � bDRc;m � b þ W :

The vector spaces kc�m � b and Rc;m � b are contained in Lc;n
t : Thus application of pt

yields

kc�m � bDRc;n-Lc;n
t þ Wtþ1 þ?þ Wt:

This is a contradiction, since kn�n � b contains a matrix that has a nonzero entry in
position ð1; tþ 1Þ (this is seen as in step 3) while the vector space on the right-hand

side is contained in Z
c;n
tþ1:

5. By induction (steps 3 and 4), b separates ðRc;m;Lm;n
1 ;WÞ:

6. Finally, b separates ðkc�m;Lm;n
1 ;WÞ: otherwise, we can find a matrix

aAkc�mWRc;m such that

a � km�nDa � Lm;n
1 þ WDLc;n

1 þ W :

This is a contradiction, because the set on the left-hand side contains a matrix that
has a nonzero entry in position ð1; 1Þ (this is seen as in the previous steps), but the set
on the right-hand side is contained in Zc;n

1 : &
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In the following, we will assume that there is a bilinear computation b ¼
ð f1; g1;w1;y; fr; gr;wrÞ of length r ¼ 2mn þ 2n � m � 3 for /n;m; nS where
mXnX3: We will then prove that this assumption leads to a contradiction.
(Unfortunately, we are not able to give a direct proof, since we will utilize a
transformation which does not work for larger values of r:) The first goal in the
course of the proof is the following: transform b via equivalence transformations in
such a way that

(1) g1;y; gM is a basis of ðkn�mÞn where M ¼ mn and
(2) there is an aA

T2Mþn�m�1
m¼Mþ1 ker fm with 0ork aon:

(In other words, a is neither zero nor of full rank.)

An important ingredient of the proof of this first goal is the following lemma which
is proven in [4, Section 4].

Lemma 6. Let k be an algebraically closed field. If a1;y; a2n�2Akn�n; then there are

invertible matrices u; vAkn�n such that

u � a1 � v;y; u � a2n�2 � vAZ
n;n
1 :

W.l.o.g. we may assume that f1;y; fM is a basis of ðkn�mÞn: By Lemma 6, we can
achieve w2M�m;y;wrAZ

n;n
1 : By a suitable renumbering of the products 1;y;M; we

may assume that in addition Rn;m-
TM�m

m¼1 ker fm ¼ f0g: Hence, for all bAkn�m there

is a uARn;m such that

fmðbÞ ¼ fmðuÞ; 1pmpM � m: ð2Þ

Let c be an arbitrary element from ð
T2M�m�1

m¼M�mþ1 ker gmÞWf0g: Let bAkn�m be

arbitrary and uARn;m be such that (2) holds. Then

ðb � uÞc ¼
Xr

r¼2M�m

frðb � uÞgrðcÞwr:

Since ucARn;n; this yields

bcARn;n þ/w2M�m;y;wrSDZ
n;n
1 :

Because b is arbitrary, c cannot have full rank. (Since mXn; if xAkn�m and yAkm�n

have full rank, then the homomorphisms induced by u/xu and v/vy are both
surjective.)
Let d ¼ dim/gM�mþ1;y; g2M�m�1S and let i1;y; id be indices from the set

fM � m þ 1;y; 2M � m � 1g such that gi1 ;y; gid form a basis of this vector space.

Obviously, dpM � 1: Choose indices idþ1;y; iMAf1;y;M � m; 2M � m;y; rg
such that gi1 ;y; giM form a basis of ðkm�nÞn: (This is indeed possible, because

g1;y; gr generate ðkm�nÞn:) Let y1;y; yM denote the dual basis of gi1 ;y; giM : In

particular, yMA
Td

d¼1 ker gid : By construction, the linear span of gi1 ;y; gid equals

that of gM�mþ1;y; g2M�m�1: Thus, we even have yMA
T2M�m�1

m¼M�mþ1 ker gm: By the

above consideration (for c ¼ yM), this implies that yM does not have full rank.
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We permute the products of b such that im ¼ m for 1pmpM:We have achieved so

far: g1;y; gM form a basis of ðkm�nÞn with dual basis y1;y; yM and yM does not
have full rank. By exploiting sandwiching, we may assume that the first column of
yM is nonzero. Permute the other y’s in such a way, that the first columns of
yMþn�m;y; yM are linearly independent.

If now dim/fMþn�m;y; frSpM � 1; then ð
Tr

r¼Mþn�m ker frÞ contains a matrix

aa0 and we have

a � ym ¼
Xr

r¼1
frðaÞgrðymÞwr ¼ 0; M þ n � mpmpM:

The matrix a cannot have full rank, since each of its n rows is orthogonal to the first
column of each of the m � n þ 1 many ym with M þ n � mpmpM: Thus 0ork aon

and we have reached our first goal.
Otherwise, choose j1;y; jMAfM þ n � m;y; rg such that fj1 ;y; fjM form a

basis. We may permute the products of b such that for all 1plpM; jl is
mapped to l and for all 1pmpM þ n � m � 1; m is mapped to M þ m: Then

f1;y; fM is a basis and we have yMA
T2Mþn�m�1

m¼Mþ1 ker gm; because we had

yMA
TM�1

m¼1 ker gm before this permutation. Now we exchange the f ’s with the g’s

by switching over to b? ¼ ð %f1; %g1;w?
1 ;y; %fr; %gr;w?

r Þ which is again a bilinear

computation for /n;m; nS: After this exchange, %g1;y; %gM form a basis and for

a ¼ y?
M ; we have 1p rk apn � 1 and aA

T2Mþn�m�1
m¼Mþ1 ker %fm: This finishes the proof of

the following lemma.

Lemma 7. Let mXnX3: If Rð/n;m; nSÞp2mn þ 2n � m � 3; then there is a bilinear

computation b ¼ ð f1; g1;w1;y; fr; gr;wrÞ of length r ¼ 2mn þ 2n � m � 3 for

/n;m; nS such that with M ¼ mn; g1;y; gM form a basis of ðkm�nÞn and there is

an aA
T2Mþn�m�1

m¼Mþ1 ker fm with 1p rk apn � 1:

Let b ¼ ð f1; g1;w1;y; fr; gr;wrÞ with r ¼ 2mn þ 2n � m � 3 be such a computa-
tion for /n;m; nS: Let y1;y; yM denote the dual basis of g1;y; gM : By
sandwiching, we may assume that a has the form

a ¼

 
0 y 0

^ & ^

0 y 0

0 y 0

^ ^

0 y 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�rk a

0 y 0

^ ^

0 y 0

1 y 0

^ & ^

0 y 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
rk a

0 y 0

^ ^

0 y 0

0 y 0

^ ^

0 y 0

!
:
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For all 1pmpM;

aym ¼
Xr

r¼1
frðaÞgrðymÞwrA/wm;w2Mþn�m;y;wrS: ð3Þ

By a suitable renumbering of g1;y; gM and therefore also of y1;y; yM ; we may
assume w.l.o.g. that ay1;y; ays form a basis of the vector space S ¼ a � km�n:
Clearly, s ¼ dim S ¼ n � rk a: Eq. (3) yields

SD/w1;y;ws;w2Mþn�m;y;wrS ¼: S0:

Let d ¼ dim S0 � dim S: Since r ¼ 2M þ 2n � m � 3; dpn � 2: Choose indices
i1;y; idAf1;y; s; 2M þ n � m;y; rg ¼: I such that

S þ/wi1 ;y;widS ¼ /w1;y;ws;w2Mþn�m;y;wrS ¼ S0: ð4Þ
We now distinguish two cases: rk a41 and rk a ¼ 1: Since the remainder of the proof
is rather technical and elaborate in its full generality, we here restrict ourselves to
case n ¼ 3: The general case is proven in the next section.
If n ¼ 3; then the case distinction is rk a ¼ 2 or rk a ¼ 1:We have M ¼ 3m and the

length of b is r ¼ 5m þ 3: The constant d in (4) is either zero or one. Furthermore,
I ¼ f1;y; s; rg:
We first treat the case rk a ¼ 2: In this case, S ¼ R3;3: If d ¼ 0; then also S0 ¼ R3;3:

If d ¼ 1; then we can transform wi1 by sandwiching with column operations into

wi1A

0 0 *

* * *

* * *

0
B@

1
CA and therefore also S0D

0 0 *

* * *

* * *

0
B@

1
CA:

Since this transformation is achieved by mapping wr/wrc and gr/ *gr with *grðyÞ ¼
grðyc�1Þ for some cAk3�3; this does neither affect a nor S: In addition, Eq. (4) still

holds. As SDS0; dim S0 � dimðS0-L3;3
1 Þ ¼ 2 and dim S0 � dimðS0-L3;3

2 Þ ¼ 4: Let

j1;y; j4AI ¼ f1;y; 6; rg be pairwise distinct such that

/wj1 ;wj2S-L3;3
1 ¼ f0g and /wj1 ;y;wj4S-L3;3

2 ¼ f0g:

Set W1 ¼ /wj1 ;wj2S: Let p be a projection onto L3;3
1 such that W1C ker p: Set W2 ¼

/pðwj3Þ; pðwj4ÞS: Since wj3 ;wj4AL
3;3
1 þ/wj1 ;wj2S; wj3 ;wj4AW1 þ W2: By construc-

tion, Wt-L3;3
t ¼ f0g and WtDZ3;3

t for t ¼ 1; 2 as well as wj1 ;y;wj4AW1 þ W2:

Since b separates ðk3�m;Lm;3
1 ;W1 þ W2Þ by Lemma 5 (with t ¼ 3; set formally

W3 ¼ f0g), we obtain rX3m þ 2m þ 4 ¼ 5m þ 4 by Lemma 3. This contradicts the
assumption r ¼ 5m þ 3: Thus, we have indeed rX5m þ 4 in this case.

We now treat the case rk a ¼ 1: As we did once before, we replace wr with w?
r by

‘‘transposing’’ the computation b: After this, S ¼ L
3;3
2 : If d ¼ 1; then wi1eS ¼ L

3;3
2 :

After possibly exchanging the first with the second column, we may assume w.l.o.g.

that wi1 has a nonzero entry in its first column, that is, wi1eL
3;3
1 : This does not affect

S; since the third column is not affected. Choose distinct indices j1; j2Af1;y; rg such
that /wj1 ;wj2S-L3;3

1 ¼ f0g: (Note that /w1;y;wrS ¼ k3�3:) If d ¼ 1; we choose
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j1 ¼ i1: Now choose distinct indices j3; j4AIWfj1; j2g: This is possible, because I ¼
f1; 2; 3; rg; in particular #I ¼ 4: Set W1 ¼ /wj1 ;wj2S: Let p be a projection onto L

3;3
1

such that W1C ker p: Set W2 ¼ /pðwj3Þ; pðwj4ÞS: By construction, W1-L
3;3
1 ¼ f0g

and W2CS; since wj3 ;wj4AS þ/wi1S and wi1A ker p (in the case d ¼ 1) or

wj3 ;wj4AS ðd ¼ 0Þ: Clearly, dim W2p2: Like in the case rk a ¼ 2; wj1 ;y;wj4AW1 þ
W2 holds. By Lemma 5, b separates ðk3�m;L

m;3
1 ;W1 þ W2Þ and by Lemma 3,

rX3m þ 2m þ 4 ¼ 5m þ 4: This again contradicts the assumption r ¼ 5m þ 3: Thus,
also in this case we have indeed rX5m þ 4: This completes the proof of the following
proposition.

Proposition 8. For any field k and for all mX3;

Rð/3;m; 3SÞX5m þ 4:

In particular, we obtain the new lower bound 19 for the rank of 3� 3-matrix
multiplication.

Corollary 9. For any field k; Rð/3; 3; 3SÞX19:

5. The general case

For the proof of the new bound in the general case, we need the following

technical lemmata. In the following, Ghðe; kÞCke�e and Ghðe; kÞCke�e denote the
multiplicative groups of all invertible matrices of the form

ih 0

0 x

 !
and

y 0

0 ie�h

 !
;

respectively, where ih and ie�h denote the identity matrices of size h � h and
ðe � hÞ � ðe � hÞ; respectively, and x and y are invertible matrices of size ðe � hÞ �
ðe � hÞ and h � h; respectively. Multiplication with a matrix in Ghðe; kÞ from the
right corresponds to column operations of the columns h þ 1;y; e: In the same way,

multiplication with a matrix in Ghðe; kÞ from the left corresponds to row operations
of the rows 1;y; h: (Of course, the same holds if we exchange right with left and

columns with rows.) Let Phðe; kÞCGhðe; kÞ and Phðe; kÞCGhðe; kÞ denote the
subgroups of all permutation matrices. These are the groups of all matrices where
x and y are permutation matrices.
Most parts of the following proof work also for general matrix multiplication

maps /c;m; nS (with possibly can). More precisely, we could state the following

lemmata for L
c;n
h instead of L

n;n
h and so on—with the exception of Lemma 13. For

Lemma 13, we would need the further assumption that cpn: Since we might
interchange c and n in the course of the proof of Lemma 7, we cannot assure the
condition cpn in general. Therefore, we state everything only for the case c ¼ n:
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Lemma 10. Let p : L
n;n
h -L

n;n
hþ1 be a projection and let W ¼ ker p: If uAkn�n is

invertible and vAGhþ1ðn; kÞ; then there is a projection p : Ln;n
h -Ln;n

hþ1 such that ker p ¼
uWv and pðuxvÞ ¼ upðxÞv for all xAL

n;n
h :

Proof. We proceed in three steps.

1. Let yAL
n;n
h be arbitrary. The first h þ 1 columns of yv equal the first h þ 1

columns of y; since multiplication with elements in Ghþ1ðn; kÞ does not affect the first
h þ 1 columns. Thus, uyvALn;n

h : If in addition yALn;n
hþ1; then even uyvALn;n

hþ1:

2. If w1;y;wn is a basis of W and qn denotes the ðh þ 1Þth column of wn; then uqn

is the ðh þ 1Þth column of uwnv by step 1. Since q1;y; qn are linearly independent, so

are uq1;y; uqn: Thus ðuWvÞ-Ln;n
hþ1 ¼ f0g: Since ðuWvÞDLn;n

h by step 1, we may

choose p as the projection along uWv onto L
n;n
hþ1:

3. If xALn;n
h ; then x can be decomposed in a unique way into x ¼ w þ y with wAW

and yALn;n
hþ1 Thus, upðxÞv ¼ uyv: On the other hand, uxv ¼ uwv þ uyv: As uwvAuWv

and uyvAL
n;n
hþ1; pðuxvÞ ¼ uyv ¼ upðxÞv: &

Lemma 11. Let V be a vector space and XDY be subspaces of V : Let q be a projection

such that ððker qÞ-YÞ þ X ¼ Y : Then also ððker qÞ-YÞ þ qðXÞ ¼ Y :

Proof. Replace X by a subspace X 0DX such that ððker qÞ-Y Þ"X 0 ¼ Y :
Each yAY can (uniquely) be written as y ¼ a þ b with aAðker qÞ-Y and
bAðim qÞ-Y : On the other hand, b can be (uniquely) written as b ¼ c þ x

with cAðker qÞ-Y and xAX 0: Since q is a projection, b ¼ qðbÞ ¼ qðxÞ: Thus y ¼
a þ qðxÞ yielding Y ¼ ððker qÞ-YÞ"qðX 0Þ: But qðXÞ ¼ qðX 0Þ and the lemma
follows. &

Lemma 12. Let hpn � 1; spn � 1� h and x1;y; xsAL
n;n
h : Then there are a matrix

vAGhðn; kÞ; a number t with 1ptps þ 1 and subspaces W1;y;Wt with WtDZn;n
hþt and

Wt-L
n;n
hþt ¼ f0g for 1ptpt � 1 as well as WtDL

n;n
hþt and dim Wtpn � 1 such that

/x1v;y; xsvS ¼ W1 þ?þ Wt:

Proof. The proof is by backward induction in h:
1. If h ¼ n � 1; then s ¼ 0: Thus we choose t ¼ 1; W1 ¼ f0g und v as the identity

matrix.
2. Assume that hon � 1: If still s ¼ 0; then we make the same choice as in

step 1.
3. Assume therefore s40: Since spn � 1� h; there is an invertible matrix

uAGhðn; kÞ such that x1u;y; xsuAZ
n;n
hþ1: (To see this, note that one simply has to

produce an extra zero in position ð1; h þ 1Þ; because the x’s are already in Ln;n
h :) If

now x1u;y;xsuALn;n
hþ1; then we complete the proof by setting v ¼ u; t ¼ 1; and

W1 ¼ /x1u;y; xsuS:

4. Otherwise, let s0 ¼ dim/x1u;y; xsuS� dimð/x1u;y; xsuS-L
n;n
hþ1Þ: After a

suitable renumbering, we may assume that /x1u;y; xs0uS-L
n;n
hþ1 ¼ f0g: Let p be a
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projection from L
n;n
h onto L

n;n
hþ1 with /x1u;y; xs0uSD ker p: By the induction

hypothesis, there is a matrix v0AGhþ1ðn; kÞ; a number t with 2ptps � s0 þ 2 and

W2;y;Wt such that WtDZ
n;n
hþt and Wt-L

n;n
hþt ¼ f0g for all 2ptpt � 1; WtDL

n;n
hþt

and /pðxs0þ1uÞv0;y; pðxsuÞv0S ¼ W2 þ?þ Wt: (Note the index shift.)
5. Let W1 ¼ /x1uv0;y; xs0uv0S: By Lemma 10 (where we choose u ¼ 1 and

v ¼ v0), there is a projection p from Ln;n
h onto Ln;n

hþ1 such that W1D ker p and

pðyuv0Þ ¼ pðyuÞv0 for all yAL
n;n
h : (If yAL

n;n
h ; so is yu:)

6. With v ¼ uv0; we have /x1v;y; xsvS ¼ W1 þ?þ Wt by Lemma 11. To see
this, choose Y ¼ /x1v;y; xsvS; X ¼ /xs0þ1v;y; xsvS; and q ¼ p: Then
Y-ðker qÞ ¼ /x1v;y; xs0vS; thus the premises of Lemma 11 are fulfilled. There-
fore, Y ¼ ðker pÞ-Y þ pðXÞ by Lemma 11. But ðker pÞ-Y ¼ W1 and pðX Þ ¼
/pðxs0þ1vÞ;y; pðxsvÞS ¼ /pðxs0þ1uÞv0;y; pðxsuÞv0S ¼ W2 þ?þ Wt: Since we

have v0AGhþ1ðn; kÞ and x1u;y; xsuAZ
n;n
hþ1; also W1DZ

n;n
hþ1 holds. &

For technical reasons, the number t of vector spaces W1;y;Wt in the next lemma
may be zero. In this case, the sum W1 þ?þ Wt denotes the nullspace.

Lemma 13. Let hpn � 1; spn � 1� h and x1;y; xsAL
n;n
h such that

/x1;y; xsS-L
n;n
n�1 ¼ f0g: Then there are matrices uAGsþ1ðn; kÞ; vAPhðn; kÞ with

Ln;n
n�1 � v ¼ Ln;n

n�1; a number t with 0ptps and subspaces W1;y;Wt with WtDZn;n
hþt and

Wt-L
n;n
hþt ¼ f0g such that /ux1v;y; uxsvS ¼ W1 þ?þ Wt:

Proof. The proof is again by backward induction in h:
1. If h ¼ n � 1; then s ¼ 0 and we choose t ¼ 0:
2. Assume hon � 1: If /x1;y; xsS ¼ f0g; we again choose t ¼ 0:
3. Therefore assume dim/x1;y; xsS40: Then there exists an index j with

h þ 1pjpn � 1 such that at least one of the x’s has a nonzero entry in column j: Let
v0 be the permutation matrix that exchanges the jth column with the ðh þ 1Þth
column and keeps the other columns fixed. We have v0APhðn; kÞ: Let s0 ¼
dim/x1v0;y; xsv0S� dimð/x1v0;y; xsv0S-L

n;n
hþ1Þ: Clearly, s040: W.l.o.g. assume

that /x1v0;y; xs0v0S-L
n;n
hþ1 ¼ f0g:

4. There is a matrix u0AGsþ1ðn; kÞ such that each of the entries in the positions
ð1; h þ 1Þ;y; ðs þ 1� s0; h þ 1Þ of each of the matrices u0x1v0;y; u0xsv0 is zero.
(This is due to the fact that the dimension of the vector space spanned by the
ðh þ 1Þth columns of x1v0;y; xsv0 is s0:) Let x0

s ¼ u0xsv0 for all 1psps:

5. We have /x0
1;y; x0

s0S-L
n;n
hþ1 ¼ f0g: Let p be a projection onto L

n;n
hþ1 such that

/x0
1;y; x0

s0SD ker p: As L
n;n
n�1v0 ¼ L

n;n
n�1; /x1;y; xsS-L

n;n
n�1 ¼ f0g implies

/x0
1;y; x0

sS-Ln;n
n�1 ¼ f0g: By Lemma 11, /pðx0

s0þ1Þ;y; pðx0
sÞS-Ln;n

n�1 ¼ f0g: (In
order to see this, choose Y ¼ /x0

1;y; x0
sS; X ¼ /x0

s0þ1;y; x0
sS; and q ¼ p: We

obtain Y ¼ ððker pÞ-Y Þ þ pðX Þ: In particular, Y-L
n;n
n�1 ¼ f0g yields

pðXÞ-L
n;n
n�1 ¼ f0g:)

6. By the induction hypothesis, there are matrices u0AGs�s0þ1ðn; kÞ and

v0APhþ1ðn; kÞ with L
n;n
n�1v

0 ¼ L
n;n
n�1; a number t with 1ptps � s0 þ 1; and subspaces
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W2;y;Wt with WtDZ
n;n
hþt and Wt-L

n;n
hþt ¼ f0g for all 2ptpt such that

/u0pðx0
s0þ1Þv0;y; u0pðx0

sÞv0S ¼ W2 þ?þ Wt:

7. Let W1 ¼ /u0x0
1v

0;y; u0x0
s0v

0S: By Lemma 10, W1-L
n;n
hþ1 ¼ f0g and there is a

projection p onto Ln;n
hþ1 with W1D ker p such that pðu0yv0Þ ¼ u0pðyÞv0 for all yALn;n

h :

8. With yAL
n;n
h ; also u0yv0AL

n;n
h : Thus, we may replace y with u0yv0 above. By

Lemma 11, /ux1v;y; uxsvS ¼ W1 þ?þ Wt with u ¼ u0u0 and v ¼ v0v
0: (Choose

Y ¼ /ux1v;y; uxsvS; X ¼ /uxs0þ1v;y; uxsvS; and q ¼ p: We have Y ¼
ðker pÞ-Y þ pðXÞ; as well as ðker pÞ-Y ¼ /ux1v;y; uxs0vS; and furthermore

pðXÞ ¼ /pðuxs0þ1vÞ;y; pðuxsvÞS ¼ /u0pðx0
s0þ1Þv0;y; u0pðx0

sÞv0S:) As u0AGs�s0þ1

ðn; kÞ and each entry in the positions ð1; h þ 1Þ;y; ðs � s0 þ 1; h þ 1Þ of each of

the x0
1;y; x0

s is zero, we also have W1DZ
n;n
hþ1: &

After these preparatory lemmata, we are now able to refute the assumption that
there is a bilinear computation of length r ¼ 2mn þ 2n � m � 3 for /n;m; nS (for
mXnX3). Assume that b ¼ ð f1; g1;w1;y; fr; gr;wrÞ is a bilinear computation that
fulfills the assertions of Lemma 7. Since the considerations in Section 4 have been for
general n until the case distinction right after Eq. (4), we may start with this case
distinction.
Again, we first treat the case rk a41: By sandwiching with column operations, we

may achieve wi1 ;y;widAZ
n;n
1 ; because dpn � 2: Since SDRn;nCZ

n;n
1 and S0 ¼

S þ/wi1 ;y;widS; this implies S0DZn;n
1 : Let pn : kn�n-kn�n=Ln;n

n be the canonical

projection for 1pnpn: Let e ¼ dim p1ðS0Þ and h ¼ dim p2ðS0Þ: We have
2p rk apepn � 1: (The lower bound is due to the fact that rk a41; the upper

bound follows from S0DZn;n
1 :) Choose indices j1;y; jeAI (where I ¼

f1;y; dim S; 2M þ n � m;yrg as defined in Section 4) such that

/wj1 ;y;wjeS-Ln;n
1 ¼ f0g:

Like in the case n ¼ 3; we want to construct a vector space W1 that contains the
matrices wj1 ;y;wje : But to obtain the improved bound, at least n � 1 of the w’s

should be in W1; so if eon � 1; simply setting W1 ¼ /wj1 ;y;wjeS is not enough. (In

the case n ¼ 3; e ¼ n � 1 was automatically true because eX rk aX2:) If eon � 1;
we have to add some more w’s to W1: by (4), we may assume that after a suitable
permutation, j1;y; jaefi1;y; idg and jaþ1;y; jeAfi1;y; idg; where a :¼ rk a:
By sandwiching with row operations of the rows 1;y; n � a; we may achieve

wjaþ1 ;y;wjeA

0 * * y *

0 * * y *

^ ^ ^ ^

0 * * y *

* * * y *

^ ^ ^ ^

* * * y *

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

9>>>=
>>>;n � e:

ð5Þ
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This does not affect S; because all matrices in S have solely zeros in the rows
1;y; n � a: We even have that each wAS0 is contained in the vector space on the
right-hand side of (5), because otherwise e would not be the dimension of p1ðS0Þ:
Choose h1;y; hn�e�1Af1;y; rgWI such that

/wj1 ;y;wje ;wh1 ;y;whn�e�1S-L
n;n
1 ¼ f0g:

This is possible, because w1;y;wr generate kn�n: By sandwiching with row
operations of the rows 1;y; n � e; we may achieve

wh1 ;y;whn�e�1AZ
n;n
1 :

This does not affect S: In addition, all wAS0 are still of the form as depicted in (5).
Since dpn � 2; we may transform wi1 ;y;wid via sandwiching with column

operations of the columns 2;y; n into

wi1 ;y;widA

0 0 * y *

0 * * y *

^ ^ ^ ^

0 * * y *

* * * y *

^ ^ ^ ^

* * * y *

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

9>>>=
>>>;n � e:

ð6Þ

This does not affect S and we still have wh1 ;y;whn�e�1AZ
n;n
1 ; because the first column

remains unchanged. Since S0 ¼ S þ/wi1 ;y;widS; all wAS0 are transformed into the
form depicted in (6). By Lemma 10, we still have

/wj1 ;y;wje ;wh1 ;y;whn�e�1S-L
n;n
1 ¼ f0g;

because column operations of the columns 2;y; n correspond to the right
multiplication with an element from G1ðn; kÞ: Recall that h ¼ dim p2ðS0Þ: It holds
h � eX rk aX2: Choose indices jeþ1;y; jhAI such that

/wj1 ;y;wjhS-L
n;n
2 ¼ f0g:

Then also

/wj1 ;y;wjh ;wh1 ;y;whn�e�1S-L
n;n
2 ¼ f0g

as the images of wh1 ;y;whn�e�1 under the canonical projection onto the positions
ð2; 1Þ;y; ðn � e; 1Þ are linearly independent but the images of wj1 ;y;wjh are all zero.

Let

W1 ¼ /wj1 ;y;wje ;wh1 ;y;whn�e�1S

and

W2 ¼ /pðwjeþ1Þ;y; pðwjhÞS;

where p denotes a projection onto Ln;n
1 fulfilling W1D ker p: By construction,

Wn-Ln;n
n ¼ f0g and WnDZn;n

n for n ¼ 1; 2: In addition, wrAW1 þ W2 holds for

n � 1þ h � eXn þ 1 distinct r’s. (Note that h � eX rk aX2:) (The fact that
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wj1 ;y;wje ;wh1 ;y;whn�e�1AW1 þ W2 again follows from Lemma 11: let Y ¼
/wj1 ;y;wjh ;wh1 ;y;whn�e�1S; X ¼ /wjeþ1 ;y;wjhS; and q ¼ p: Then Y-ðker qÞ ¼
W1; thus the assumption of the lemma is fulfilled by X ; Y ; and q: Therefore
W1 þ pðX Þ ¼ W1 þ W2 ¼ Y :)
Finally, let q1;y; qn�3AIWfj1;y; jhg be pairwise distinct. (Note that #I ¼

an þ d and hp2aþ d:) Let p0 be a projection of Ln;n
1 onto Ln;n

2 with W2D ker p0: By
Lemma 12 (with s ¼ n � 3) there are a matrix vAGnð2; kÞ; a t with 3ptpn and vector
spaces W3;y;Wt such that Wt-Ln;n

t ¼ f0g and WtDZn;n
t for all 3ptpt � 1 as well

as WtDL
n;n
t ; dim Wtpn � 1; and

p0ðpðwq1ÞÞv;y; p0ðpðwqn�3ÞÞvAW3 þ?þ Wt:

By Lemma 10, ðW2vÞ-Ln;n
2 ¼ f0g and there is a projection p0 : Ln;n

1 -Ln;n
2 fulfilling

W2vD ker p0 and p0ðxvÞ ¼ p0ðxÞv for all xALn;n
1 :

In the same way, ðW1vÞ-Ln;n
1 ¼ f0g and there is a projection p onto Ln;n

1 fulfilling

W1vD ker p and pðxvÞ ¼ pðxÞv for all xAkn�n:

Since vAG2ðn; kÞ; we have W1vDZ
n;n
1 and W2vDZ

n;n
2 : Therefore, the spaces

W1v;W2v;W3;y;Wt fulfill the assumptions of Lemma 5. In addition, we have
wqnvAW ¼ W1v þ W2v þ W3 þ?þ Wt for 1pnpn � 3 by Lemma 11. (Choose

Y ¼ /wj1v;y;wjh v;wq1v;y;wqn�3vS; X ¼ /wq1v;y;wqn�3vS; and q ¼ p03p:)
Thus, wrvAW for at least 2n � 2 distinct r’s. Via sandwiching, we can

replace wr by wrv: Lemma 5 now asserts that b separates ðkn�n;L
n;n
1 ;WÞ and by

Lemma 3, rX2mn þ 2n � m � 2 follows, contradicting the assumption r ¼ 2mn þ
2n � m � 3:
Now we treat the case rk a ¼ 1: As in the previous Section 4, by ‘‘transposing’’

the computation b we may switch over from wr to w?
r : After this trans-

formation, S ¼ L
n;n
n�1: Let again pn : kn�n-kn�n=Ln;n

n denote the canonical pro-

jection. If d40; then we may achieve e :¼ dim p1ð/wi1 ;y;widSÞ40 by a

permutation of the columns 1;y; n � 1: This does not affect S ¼ L
n;n
n�1: If d ¼ 0;

then we set e ¼ 0 in the subsequent considerations. After a suitable permutation of

indices, we may assume that /wi1 ;y;wieS-L
n;n
1 ¼ f0g: Choose indices

j1;y; jn�1�deI such that

/wi1 ;y;wie ;wj1 ;y;wjn�1�d
S-L

n;n
1 ¼ f0g:

Let h ¼ e þ n � 1� d ¼ #fi1;y; ie; j1;y; jn�1�dg: Via sandwiching with row
operations, we can achieve that

wi1 ;y;wie ;wj1 ;y;wjn�1�d
A

0 * y *

^ ^ ^

0 * y *

* * y *

^ ^ ^

* * y *

0
BBBBBBBBB@

1
CCCCCCCCCA

9>=
>;n � h:

Once again, this does not affect S: Let W1 ¼ /wi1 ;y;wie ;wj1 ;y;wjn�1�d
S:
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Choose a projection p onto L
n;n
1 fulfilling W1D ker p: Let s ¼ d � e ¼

#fieþ1;y; idg: We have s ¼ n � h � 1: Lemma 13 assures the existence of matrices

uAGn�hðn; kÞ and vAPnð1; kÞ with L
n;n
n�1v ¼ L

n;n
n�1; a t with 2ptps ¼ n � h � 1pn � 2

(if d ¼ 0 then e ¼ 0; thus s ¼ 0) as well as subspaces W2;y;Wt fulfilling WtDZn;n
t

and Wt-Ln;n
t ¼ f0g for all 2ptpt such that upðwieþ1Þv;y; upðwid ÞvAW2 þ?þ Wt:

By Lemma 10, ðuW1vÞ-L
n;n
1 ¼ f0g; and there is a projection p onto L

n;n
1 such that

pðuyvÞ ¼ upðyÞv for all yAL
n;n
1 : Since multiplication with u from the left only affects

the rows 1;y; n � h and multiplication from the right with v leaves the first column

fixed, we still have uW1vDZ
n;n
1 : Moreover, uSv ¼ S and

ðuW1v þ W2 þ?þ WtÞ-L
n;n
n�2 ¼ f0g:

(For the last statement, exploit the facts that ðuW1vÞ-L
n;n
1 ¼ f0g; WtDZn;n

t ; and

Wt-Ln;n
t ¼ f0g for all 2ptptpn � 2:)

Let q be a projection onto S ¼ Ln;n
n�1 such that uW1v þ W2 þ?þ WtD ker q:

Choose pairwise distinct indices h1;y; hn�1AIWfi1;y; idg (note that #I ¼ n þ d)

and set Wtþ1 ¼ /qðuwh1vÞ;y; qðuwhn�1vÞSCL
n;n
n�1: The subspaces uW1v;

W2;y;Wtþ1 fulfill the premises of Lemma 5 and their sum contains
uwi1v;y; uwid v; uwj1v;y; uwjn�1�d

v and uwh1v;y; uwhn�1v by Lemma 11.

Thus uwrvAW :¼ uW1v þ W2 þ?þ Wtþ1 for at least 2n � 2 different r’s.
Utilizing sandwiching, we may replace wr by uwrv: By Lemma 5, b separates

ðkn�n;Ln;n
1 ;WÞ and by Lemma 3, rX2M þ 2n � m � 2 contradicting the assumption

that r ¼ 2M þ 2n � m � 3: This finally proves our main theorem.

Theorem 14. For any field k and for all mXnX3;

Rð/n;m; nSÞX2mn þ 2n � m � 2:

References

[1] A. Alder, V. Strassen, On the algorithmic complexity of associative algebras, Theoret. Comput. Sci.

15 (1981) 201–211.

[2] D. Bini, M. Capovani, G. Lotti, F. Romani, Oðn2:7799Þ complexity for matrix multiplication, Inform.
Process. Lett. 8 (1979) 234–235.

[3] M. Bläser, A 5
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