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Abstract

We prove a lower bound of 2mn+2n—m —2 for the bilinear complexity of the
multiplication of n x m-matrices with m x n-matrices using the substitution method
(m=n=3). In particular, we obtain the improved lower bound of 19 for the bilinear
complexity of 3 x 3-matrix multiplication.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In the late 1960s, Strassen [17] discovered a bilinear algorithm for multiplying
2 x 2-matrices using only 7 essential multiplications instead of 8. Using this
astonishing algorithm recursively, Strassen derived an algorithm for multiplying
n x n-matrices with O(n'°%7) = O(n*%%%) arithmetic operations. A lot of effort has
been spent on improving Strassen’s upper bound, see for example [2,8,16,18]. The
current “‘world record” is held by Coppersmith and Winograd [8]. They exhibit an
algorithm with O(n*37%) arithmetic operations. But the only algorithm which is of
practical relevance (at least until today) is Strassen’s algorithm [17]. In all other of
the mentioned algorithms, the constants hidden in the O-notation are far too huge.

One way to obtain faster algorithms of practical relevance is to find a good
bilinear algorithm for multiplying matrices of some small format. Since any bilinear
algorithm for multiplying 2 x 2-matrices requires at least 7 essential multiplications
[20], we have to look for another format. The most promising formats are probably
3 x 3-matrix multiplication and 4 x 4-matrix multiplication. The best bilinear
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algorithm for multiplying 3 x 3-matrices known so far uses 23 essential multi-
plications [14]. This yields an algorithm for multiplying n x n-matrices with
O(n'°&23) = O(n**%®) arithmetic operations. To improve Strassen’s algorithm, an
algorithm with 21 or less essential bilinear multiplications is required. The currently
best upper bound for 4 x 4-matrix multiplication follows by applying Strassen’s
algorithm two times. This yields the upper bound 49. Any improvement of this result
immediately yields an algorithm with less than O(n'°%7) arithmetic operations.

Investigating the bilinear complexity of the multiplication of matrices of some
small format is an interesting and challenging problem, see e.g. [7, Problem 17.1] for
the 3 x 3 case. The above considerations show that any improvement of the upper
bound might yield a new and faster matrix multiplication algorithm of practical
relevance. On the other hand, any strengthened lower bound sheds new light on the
problem of matrix multiplication and helps to understand its nature.

Before discussing the above issues in more detail, let us first settle the model of
computation. In the following, if V" is a vector space, let V* denote its dual space.

Definition 1. Let k be a field, U, V, and W finite-dimensional vector spaces over k,
and ¢ : U x V- W be a bilinear map.

(1) A sequence f = (fi,91,Wi,.... fr,gr, W) With f,eU*, g,eV* and w,eW is
called a bilinear computation of length r for ¢ if

r

o(u,v) = Zf,,(u)g,,(v)w,, for all ue U, veV.

p=1

(2) The length of a shortest bilinear computation for ¢ is called the bilinear
complexity or the rank of ¢ and is denoted by R(¢).

If we want to emphasize the underlying ground field &, we will sometimes write
R (¢) instead of R(¢). If we allow that f, and g, are both elements from (U x V)¥,
we get quadratic computations. The length of a shortest quadratic computation for
¢ is called the multiplicative complexity of ¢ and is denoted by C(¢) or Ci(¢).
Obviously, C(¢) < R(¢) and it is not hard to see that R(¢) <2C(¢) for any bilinear
mapping ¢. Since for the design of fast matrix multiplication algorithms, bilinear
computations play the most important role, we will focus on the bilinear complexity
in the following.

1.1. Previous bounds

Let in the following {/,m,n) : k" x k™" - k’*" denote the multiplication of
¢ x m-matrices with m X n-matrices. Asymptotically, the best lower bound for n x n-
matrix multiplication over arbitrary fields is

R(<n,n,n>)>%n2 — 3n,
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see [3]. However, this bound does not give any good results for n<8. For smaller
formats, we have

R mny)zim+mn+{ —m+n—3 for n=/(>2, (1)

see [4]. This bound even holds for the multiplicative complexity.

For (2,2,2), (1) together with Strassen’s algorithms yields R({2,2,2)) =7, see
also [20] for the lower bound. De Groote [9] even shows that up to equivalence, there
is only one bilinear computation of length 7 for {2,2,2>. So this case is well
understood.

The next format to investigate is <{2,2,3>. (Note that the rank of matrix
multiplication is invariant under permutations, see e¢.g. Eq. (14.21) in [7], so it does
not matter which of the three possibilities—<2,2,3>, <(2,3,2>, or <3,2,2>—we
consider.) Here, (1) yields R(<2,2,3>)>10 opposed to the upper bound
R({2,2,3)>)<11 obtained by combining Strassen’s algorithm with an ordinary
matrix-vector multiplication. Over GF(2), we even have Rgp()(<2,2,3)>) = 11, see
[12]. The upper bound of 11 gives an exponent of 2.895 which is worse than the
exponent by Strassen’s algorithm. Interestingly, we have C(<{2,2,3)) =10 over
fields of characteristic distinct from two by virtue of (1) for the multiplicative
complexity and Waksman’s algorithm [19].

For the format <{2,3,3), (1) yields R(<2,3,3))> 14, opposed to the upper bound
R(<{2,3,3)>)<15 by Hopcroft and Kerr [12]. The upper bound of 15 gives an
exponent of 2.811, still inferior to Strassen’s algorithm.

The next format is <3,3,3). This format is of particular interest, since it is the
first one for which the best lower and upper bounds known so far differ significantly.
On the other hand, the situation is not hopeless. Eq. (1) yields R({3,3,3>)>18. On
the other hand, Laderman [14] shows R(<3,3,3))<23. Johnson and McLoughlin
[13] present further bilinear computations for (3,3,3> of length 23 that are not
equivalent to Laderman’s computation.

This upper bound gives an exponent of 2.854. An upper bound of 21 would yield a
favorable exponent of 2.772.

For (4,4,4%, we have 33< R((4,4,4))<49, so there is currently not much hope
of determining the exact value of R(<{4,4,4)).

1.2. New results

The main achievement of the present work is another step towards the
determination of the value of R(<3,3,3)) as asked for in [7, Problem 17.1]. More
precisely, we prove the new lower bound

R(<3,3,3%)=19

over arbitrary fields. We will prove this bound in Section 4. The above bound is a
special case of the following bound:

R({n,m,ny)=2mn+2n—m—2 for m=n>=3
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which will be proven in Section 5. Compared with (1), this is an improvement by one.
This might seem like a small improvement at a first glance, but for instance, the
problem whether R(<3,3,3)) equals 17 or is strictly greater than 17 had been open
for over 20 years after the proof that R(<{3,3,3))>17 by Brockett and Dobkin [6].
Unfortunately, we are only able to prove this new bound for the bilinear complexity
and only for formats of the type {n,m,n) (instead of {/,m,n)).

2. Lower bound techniques

In this section we compile some of the results which were used by Alder and
Strassen [l] to prove their so-called Alder—Strassen bound. Their method is a
refinement of the substitution method, which is due to Pan [15]. Beside the original
paper of Alder and Strassen, Chapter IV.2 of [11] and Chapter 17 of [7] are excellent
treatments of the method of Alder and Strassen. The term “‘separate” and the
Extension Lemma are taken from there, but everything is also implicitly in the work
of Alder and Strassen. Alder and Strassen consider quadratic computations and
multiplicative complexity. Since bilinear computations and bilinear complexity are
only special cases, their results transfer to bilinear computations and bilinear
complexity at once. Because we are concerned with bilinear complexity in this work,
we focus on bilinear complexity in this section and state all of the results for the
bilinear complexity explicitly.

Definition 2. Let U, V, and W be vector spaces over some field &k and ff =
(f1,91,W1, ..., fr,gr,wr) be a bilinear computation for a bilinear map ¢ : U X
VoW. Let UicU, ViV, and W, < W be subspaces. The computation f
separates (Ui, Vi, W1), if there are disjoint sets of indices I,J<{p |w,¢ W1} such
that

Ui n ﬂ kerf; ={0} and Vin ﬂ ker g; = {0}.
iel jeJ
The latter condition is equivalent to the condition that (fi[y,);c; and (g;ly, ),
generate the dual spaces U} and V7§, respectively. This insight immediately yields the
following lower bound:

Lemma 3. Let U, V, and W be vector spaces over some ground field k and let
p=(f1,91,w1, .- fr,gr,wr) be a bilinear computation for some bilinear map ¢ :
UxV-o>W. Let UycU, Vi<V, and Wy S W be subspaces such that § separates
(U], V], W]). Then

r=dim U +dim V) + #{p |w,e W1 }.
To achieve good lower bounds by means of Lemma 3, one has to find an optimal
bilinear computation that separates a “large’ triple. An important tool to solve this

task is the following “Extension Lemma”. If T is a subset of some vector space over
a field k, let in the following < T') denote its k-linear span.
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Lemma 4 (Alder and Strassen). Let U, V, and W be vector spaces over a field k and
B be a bilinear computation for a bilinear map ¢:UXxV->W. Let
UicU,cU, VeV, and WS W be subspaces such that f separates the triple
(U1, Vi, Wh). Then f separates also (U, Vi, W1), or there is some ue U\ U; such
that

@, V)= <p(u, V1)) + W

The Extension Lemma holds in the same manner for a subspace V, with
VieV,< V. If one replaces the term ¢(u, V1) by ¢(Us, V1), then the Extension
Lemma also holds for quadratic computations. For a proof in the quadratic case, we
refer to [1,11] or [7]. For a proof in the bilinear case (with ¢(u, V1) instead of
¢ (U, V1)), see [5]. (Actually, all proofs in this paper also work with ¢(Ua, V7).)

3. Equivalence of computations

In this section, we establish some (well-known) equivalence transformations on
the set of all computations of a given length r for {/,m,n). We will exploit these
equivalence relations in the following sections frequently. For a comprehensive
theory of equivalence of computations for bilinear mappings, we refer to [10].

Let B=(fi,91,w1, .., /r,gr,w,) be a bilinear computation of length r for
{lymyny. Surely, permuting the products defines a equivalence relation. If
ack’™’, bek™™ and cek™" are invertible matrices, then

xy =a '(axb ") (byc Ve = Z folaxb™")g,(byc ™ Ya 'w,e
p=1

for all x,ye A. Therefore, ﬁ: (f],glvle, ...,f},g,.,w,.) is a bilinear computation for
(/,m,nY, where W, = a'w,c and the linear forms f, and j, are defined by f,(x) =
Jolaxb=") and §,(y) = g,(byc™") for all x, y. Due to the shape of the above equation,
this transformation is also called sandwiching. Finally, let fp and g, be defined by
Jfo(x)=g,(x7) and g,(y) =f,(»") for all xek™™ and yek™ ", respectively. The
computation (f],g]wf, N w/!) is a bilinear computation for {m,m,/),
because

pr(x)gp(y)wlj = (pr(yT)go(xT)Wp> =('x")" =xp.
p=1 p=1

We denote the resulting “transposed” computation by f .

4. Multiplying 3x3-matrices

In this section, we start with the proof of the new bound for the bilinear
complexity of the multiplication of matrices of small formats. To be kind to the
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reader’s patience, we first prove the bound R(<3,m,3)>)>5m+4 for m=3. In
particular, the rank of 3 x 3-matrix multiplication is at least 19. The rather technical
and elaborate proof of the general bound is postponed to the next section. We will
prove some intermediate results in its full generality, whenever we can achieve this
with little extra effort.

By switching over to the algebraic closure, we may assume w.l.o.g. for the
remainder of this paper that the underlying field is algebraically closed.

In the following, let R*", L¢" for 0<n<h, and Z;}h for 1<y’ <h denote the

following subspaces of k¢*":

0 0 0 O 0
R * % x *

* £ ok % *

0 0 0 = *
e.h 0 0 = *
Lo = o :

—— —

n

0 0 0 = *
eh 0 0 % = *
Z", = :

—_———

Each of the above three matrices denotes the vector space that is obtained by
substituting each ““*” by an arbitrary element from k. The extreme cases Lf)’h and LZ’h
are the whole space k¢* and the nullspace, respectively. We have the inclusions
L;”’ ch;J’ cL;’fl for all 1 <n<h. Furthermore, R®" - K/ = R¢/ and k<" . LZ;J = L;J.

In the following, m and n always specify the format of the matrix multiplication
map <{mn,m,ny we are investigating. Of crucial matter is the following lemma.
It also holds for the more general case of the multiplication of / x m-matrices with
m X n-matrices.

Lemma 5. With the above notations, let 1<t<n and let Wy, ..., W, be subspaces
of k" such that W.=Z/" and W,nL." ={0} for all 1<t<t—1 as well as
W, L\ and dimW, </ — 1. Then the following holds: if B is a bilinear computation
Jor {/,m,n), then B separates the triple (k"™ L"", W), where W = W\ + -+ + W,.
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Proof. As W,nL/" = {0} and W,=Z/"<=L’",, we may choose a projection 7, :
Lff’] —>Lf=” for all 1 <7<t such that W, < ker n;. Let p, = myo---om; for 1<t<1t. For
technical reasons, let py be the identity. Clearly, p. (W) = Wy + -+ + W,.

The proof of the lemma is divided into several steps, in each of these steps (except
the first) we utilize the Extension Lemma to extend a given triple.

1. By definition, f separates the triple ({0},{0}, W).

2. The computation f3 separates ({0}, L;"", W): if L"" = {0}, that is, 1 = n, then
this has already been proven in step 1. Otherwise, assume that f§ does not separate
({0}, L™, W). By the Extension Lemma, there is some be L;""\ {0} such that

k/xm b W.

The vector space k<" - b on the left-hand side of the above inclusion is contained
in L,/’”ch;”l. Applying p,_; to the above inclusion yields k/*™ -b< W,, a contra-
diction, since the dimension of the vector space k”*” - b is at least Z but dim W, </ — 1.

3. The computation f separates (R’”,L}"", W): otherwise, there is some
ae R\ {0} such that

a-k"™"<ca- LM+ W.

If we apply p;_, to this inclusion, we obtain p,_i (a - k™)< L/ + W,= L,". This is a
contradiction, since p,_;(a - K*") contains a matrix that has a nonzero entry in its
tth column. (The last assertion is easily seen as follows: there is an index pair (4, u)
such that a has a nonzero entry in position (4, 1). Let ue k" be the matrix that has
a one in position (g, ¢) and zeros elsewhere. The matrix au has a nonzero entry in its
tth column and is in L!”,. Thus p,_(au) = au.)

4. If B separates (R’™, L™, W), then also (R, L'"™", W): otherwise, there is some

)y 110
be L\ L} such that

k/xm . bgR/,m b +W.

The vector spaces k”*™ - b and R’™ - b are contained in L/”. Thus application of p,
yields

K™ b R ALY 4+ Wy + - + W,
This is a contradiction, since k"*" - b contains a matrix that has a nonzero entry in
position (1,7 + 1) (this is seen as in step 3) while the vector space on the right-hand
side is contained in Z.7.
5. By induction (steps 3 and 4), 8 separates (R’™, L\"", W).
6. Finally, B separates (k”*™ L™ W): otherwise, we can find a matrix
aek”™\ R’™ such that

a- kmxnga . Llln,n + WQL{’M + w.

This is a contradiction, because the set on the left-hand side contains a matrix that
has a nonzero entry in position (1, 1) (this is seen as in the previous steps), but the set

on the right-hand side is contained in Z{". [
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In the following, we will assume that there is a bilinear computation f =
(fi,91,w1, -y frygr,wr) of length r=2mn+2n—m—3 for <{mm,n) where
m>=n>=3. We will then prove that this assumption leads to a contradiction.
(Unfortunately, we are not able to give a direct proof, since we will utilize a
transformation which does not work for larger values of r.) The first goal in the
course of the proof is the following: transform f via equivalence transformations in
such a way that

(1) g1, ...,gu is a basis of (K™™)* where M = mn and
(2) there is an ae ﬂif;[ﬁmfl ker f, with 0<rka<n.
(In other words, a is neither zero nor of full rank.)

An important ingredient of the proof of this first goal is the following lemma which
is proven in [4, Section 4].

Lemma 6. Let k be an algebraically closed field. If ay, ..., ax, > € k™", then there are
invertible matrices u,ve k™" such that

U Ay U,y .o U oyn - VEZ™.

W .l.0.g. we may assume that £, ..., fj is a basis of (K”")*. By Lemma 6, we can
achieve warr_m, ..., w,€ Z}". By a suitable renumbering of the products 1, ..., M, we
may assume that in addition R™" N ﬂﬁi}m ker f, = {0}. Hence, for all b€ k" there
is a ue R™" such that

Jub) =fu(w),  1<pu<M —m. (2)

Let ¢ be an arbitrary element from (ﬂii’;ﬁ;il ker g,)\{0}. Let bek™™ be
arbitrary and ue R™" be such that (2) holds. Then
(b—u)c= Z Jo(b—u)g,(c)w,.

p=2M-m
Since uce R™", this yields
n,n
bee R + {Wart—my <oy Wr ) SZY".

Because b is arbitrary, ¢ cannot have full rank. (Since m>n, if xek"™ " and ye k™"
have full rank, then the homomorphisms induced by u+> xu and v+—vy are both
surjective.)

Let d =dim{gy—mi1,---s92m-m—1y and let iy, ..., i; be indices from the set
{M—-m+1,...,2M —m — 1} such that g, , ..., g;, form a basis of this vector space.
Obviously, d<M — 1. Choose indices igyi, ...,ipr€{1, .... M —m,2M —m, ...,r}
such that g;,...,g;, form a basis of (K”*")*. (This is indeed possible, because
g1, ..., gr generate (K™™*) Let yy, ...,yy denote the dual basis of g,,, ...,g;,. In
particular, y,s € ﬂgzl ker g;,. By construction, the linear span of g;, ..., g;, equals
1 ker g By the
above consideration (for ¢ = y,,), this implies that y,;, does not have full rank.

that of gar—mi1, ---,92m—m—1. Thus, we even have yyre )
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We permute the products of f such that i, = u for 1 <u< M. We have achieved so
far: gy, ..., g form a basis of (A"*")* with dual basis yi, ..., vy and y; does not
have full rank. By exploiting sandwiching, we may assume that the first column of
vy 1s nonzero. Permute the other y’s in such a way, that the first columns of
YMin-ms ---, Yy are linearly independent.

If now dim{fyrin_m, ....fr > <M — 1, then (ﬂ;:MM_m kerf,) contains a matrix
a#0 and we have

,
a-yu=> fol@)g,(n)wy =0, M+n—m<u<M.
p=1

The matrix a cannot have full rank, since each of its n rows is orthogonal to the first
column of each of the m —n + 1 many y, with M +n —m<u<M. Thus O<rka<n
and we have reached our first goal.

Otherwise, choose ji,...,jye{M +n—m,...,r} such that f;,....f;, form a
basis. We may permute the products of f such that for all 1<A<M, j, is
mapped to 4 and for all ISuysM+n—m—1, u is mapped to M + u. Then

. . 2M+n—m—1
fi,....fu is a basis and we have yye ﬂ,‘:;ﬁ]m kerg,, because we had

YMmE ﬂﬂgl ker g, before this permutation. Now we exchange the f’s with the g’s
by switching over to 8" = (fi,31,w,..../r,d,w,) which is again a bilinear
computation for {m,m,n). After this exchange, g, ...,gy form a basis and for
a=yj,wehave I<rka<n—1landae ﬂifﬁ';mfl ker f,,. This finishes the proof of
the following lemma.

Lemma 7. Let m>=n=3. If R({n,m,n))<2mn + 2n — m — 3, then there is a bilinear
computation B = (fi,91,W1, ., frsGrsWr) of length r=2mn+2n—m—3 for

{nym,n such that with M =mn, g, ...,gy form a basis of (kK"*")* and there is
an ae nftf;;"’*l ker f, with 1< rka<n— 1.

Let f=(fi,91,W1, .-y frs g, W) With r =2mn +2n —m — 3 be such a computa-
tion for <{m,m,mn). Let yi,...,yy denote the dual basis of g¢i,...,gy. By
sandwiching, we may assume that a has the form

0 .. 00 .. 00 .. 0
I O 00 .. 0
““lo .. o 00 ... 0
0 .. 00 .. 10 .. 0

n—rk a rk a
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For all ISu<M,

r
ay, = Jo(@gp(Vi)Wp € Wy Wangn—my - Wr ). (3)
p=1
By a suitable renumbering of ¢y, ...,gy and therefore also of yy, ..., yy, we may
assume w.l.o.g. that ayi,...,ay, form a basis of the vector space S =a-k"*".
Clearly, s = dim S = n - rk a. Eq. (3) yields
S WL,y ooy Wey WaM ey oevs Wrp =2 S,

Let d =dimS —dim S. Since r=2M +2n—m —3, d<n—2. Choose indices
iy oeyig€{l, ...;8,2M +n—m, ...,r} =: I such that

S+ Wiy ey Wiy > = WLy ey Wy Wabg ey ooy Wrp = S (4)

We now distinguish two cases: rk a>1 and rk @ = 1. Since the remainder of the proof
is rather technical and elaborate in its full generality, we here restrict ourselves to
case n = 3. The general case is proven in the next section.

If n = 3, then the case distinctionis tka = 2 or rk a = 1. We have M = 3m and the
length of 8 is r = Sm + 3. The constant d in (4) is either zero or one. Furthermore,
I=A{1,..,s7r}

We first treat the case rk @ = 2. In this case, S = R>3. If d = 0, then also S’ = R3?3.
If d =1, then we can transform w; by sandwiching with column operations into

0 0 = 0 0 =
wiel x % = and therefore also S'c| * x =
* * * * * *

Since this transformation is achieved by mapping w,+— w,c and ¢, — g, with §,(y) =
g,(yc1) for some cek>3, this does neither affect @ nor S. In addition, Eq. (4) still
holds. As S=§', dim S’ —dim(S'nL;*) =2 and dim §' — dim(S' " L) = 4. Let
Ji, .- jael ={1,...,6,r} be pairwise distinct such that

<wy, wiy > (\Lf’3 ={0} and {wj,...,w;,> ng‘3 = {0}.

Set Wi = {wj,,w;, ». Let p be a projection onto L7 such that W, < ker p. Set W, =
{p(wp,),p(wy,) >. Since wy,, w/;,eL?‘3 + {wy,wy, >, wiy, wy, € Wi+ W), By construc-
tion, W,nL» = {0} and W, =Z>3 for t1=1,2 as well as w;,, ..., w;, € W) + W».
Since B separates (k3 L’l”’3, Wi+ W;) by Lemma 5 (with ¢ =3, set formally
W3 = {0}), we obtain r=3m + 2m + 4 = 5m + 4 by Lemma 3. This contradicts the
assumption r = 5m + 3. Thus, we have indeed r>5m + 4 in this case.

We now treat the case rk @ = 1. As we did once before, we replace w, with w; by
“transposing’ the computation f. After this, S = L§”3. If d =1, then w; ¢S = Lg’3.
After possibly exchanging the first with the second column, we may assume w.l.o.g.
that w;, has a nonzero entry in its first column, that is, w;, ¢LT’3. This does not affect
S, since the third column is not affected. Choose distinct indices ji,j» € {1, ..., r} such
that {wj,,wj, > N L = {0}. (Note that {wy,...,w, > =k33) If d = 1, we choose
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J1 = i1. Now choose distinct indices j3,js €I\ {j1,/2}. This is possible, because I =
{1,2,3,r}, in particular #I = 4. Set W; = {wj,,w;, ». Let p be a projection onto L%’3
such that W, c kerp. Set W, = {p(w;,),p(w;,) >. By construction, W, mL?’3 = {0}
and W,cS, since wj,w, €S+ {w; ) and w; e kerp (in the case d =1) or
wj,, w;, €S (d =0). Clearly, dim W, <2. Like in the case tka = 2, w;,, ..., w;, e W| +
W, holds. By Lemma 5, B separates (k3 L’1’7"37 Wi+ W,) and by Lemma 3,
r=3m+ 2m + 4 = 5m + 4. This again contradicts the assumption » = 5m + 3. Thus,
also in this case we have indeed r > 5m + 4. This completes the proof of the following
proposition.

Proposition 8. For any field k and for all m=3,
R({(3,m,3))=5m+ 4.

In particular, we obtain the new lower bound 19 for the rank of 3 x 3-matrix
multiplication.

Corollary 9. For any field k, R({3,3,3>)>19.

5. The general case

For the proof of the new bound in the general case, we need the following
technical lemmata. In the following, Gj(e,k) =k and G'(e, k) =k®*¢ denote the
multiplicative groups of all invertible matrices of the form

ip O y 0
and ,
0 x 0 l}f,h

respectively, where i, and i,_, denote the identity matrices of size s x h and
(e — h) x (e — h), respectively, and x and y are invertible matrices of size (e — /) X
(e — h) and h x h, respectively. Multiplication with a matrix in Gj(e,k) from the
right corresponds to column operations of the columns /# + 1, ..., e. In the same way,
multiplication with a matrix in G”(e, k) from the left corresponds to row operations
of the rows 1, ..., . (Of course, the same holds if we exchange right with left and
columns with rows.) Let P,(e,k)<=Gy(e,k) and P(e k)= G'(e k) denote the
subgroups of all permutation matrices. These are the groups of all matrices where
x and y are permutation matrices.

Most parts of the following proof work also for general matrix multiplication
maps {/,m,n) (with possibly /5#n). More precisely, we could state the following
lemmata for L)" instead of L} and so on—with the exception of Lemma 13. For
Lemma 13, we would need the further assumption that /<mn. Since we might
interchange 7 and » in the course of the proof of Lemma 7, we cannot assure the
condition /<n in general. Therefore, we state everything only for the case £ = n.



54 M. Bldser | Journal of Complexity 19 (2003) 43-60

Lemma 10. Ler p: Ly"— Ly, be a projection and let W = kerp. If uek™" is

invertible and ve Gy (n, k), then there is a projection m : L;" — Ly, such that ker n =
uWv and n(uxv) = up(x)v for all xe L}".

Proof. We proceed in three steps.

1. Let yeL;" be arbitrary. The first 4+ 1 columns of yv equal the first / + 1
columns of y, since multiplication with elements in Gy, (n, k) does not affect the first
h+ 1 columns. Thus, uyve L,". If in addition ye L}, then even uyve L7, .

2. If wy, ..., w, is a basis of W and ¢, denotes the (4 + 1)th column of w,, then ug,

is the (4 + 1)th column of uw,v by step 1. Since ¢y, ..., ¢, are linearly independent, so
are uqy, ...,uq,. Thus (uWv)nLy" = {0}. Since (uWv)=L;" by step 1, we may

choose 7 as the projection along uWv onto L;,.

3.If xe L}", then x can be decomposed in a unique way into x = w + y with we W/

n,n

and ye L, Thus, up(x)v = uyv. On the other hand, uxv = uwv + uyv. As uwveulWv
and uyve L7, n(uxv) = uyv = up(x)v. [

Lemma 11. Let V be a vector space and X = Y be subspaces of V. Let q be a projection
such that (kerq)nY)+ X =Y. Then also (kerq)nY)+q(X) =Y.

Proof. Replace X by a subspace X'=X such that ((ker¢g)nY)@X =Y.
Each yeY can (uniquely) be written as y=a+b with ae(kerg)nY and
be(img)nY. On the other hand, » can be (uniquely) written as b=c+x
with ce(kerg)nY and xeX’. Since ¢ is a projection, b = g(b) = g(x). Thus y =
a+ q(x) yielding Y = ((kerg)nY)®¢(X’). But ¢(X)=¢q(X’) and the lemma
follows. O

Lemma 12. Let h<n—1, s<n—1—hand x\, ...,x;e L;". Then there are a matrix

ve Gy(n, k), a number t with 1<t<s+ 1 and subspaces Wy, ..., W, with W. = Z;"' and

Won Lyt = {0} for 1<t<t—1 as well as W, =L, and dim W,;<n — 1 such that

(X0, ., X0> = Wi+ - + W,

Proof. The proof is by backward induction in /:

1.If h=n—1, then s = 0. Thus we choose t = 1, W; = {0} und v as the identity
matrix.

2. Assume that h<n — 1. If still s =0, then we make the same choice as in

step 1.
3. Assume therefore s>0. Since s<n—1—/h, there is an invertible matrix
ue Gy(n, k) such that xu, ..., xueZ,”,. (To see this, note that one simply has to

produce an extra zero in position (1,4 + 1), because the x’s are already in L;".) If

now Xxiu, ...,xsueLZ;’_’I, then we complete the proof by setting v=u, t =1, and
W = {xquy o, XUy

4. Otherwise, let s = dim{xu, ..., xu) —dim({xu, ..., xu)> N L"), After a

suitable renumbering, we may assume that {xu, ..., xgu) mLZﬁl ={0}. Letpbe a
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projection from L;" onto Ly}, with {(xju,...,xyu) < kerp. By the induction
hypothesis, there is a matrix v € Gjy1(n, k), a number ¢ with 2<¢r<s—s 42 and
Wa, ..., W, such that W, =Z;"" and W.nL;" = {0} forall 2<t<¢—1, W,cL}"

h+t h+t h+t

and {p(xypu)t, ..., p(xu)v' > = Wr + --- + W,. (Note the index shift.)
5. Let W) =<{xju/,...,xyuv' ). By Lemma 10 (where we choose u=1 and
v="1'), there is a projection n from L;" onto L;7, such that W;< kern and

n(yuw') = p(yu)v for all ye Ly". (If ye L}", so is yu.)

6. With v = w/, we have {xjv,...,x,0) = W; + --- + W, by Lemma 11. To see
this, choose Y = {x1v,...,x50), X = {xgy40,...,x50y, and ¢g=mn. Then
Y n(kergq) = {xyv,...,xyv), thus the premises of Lemma 11 are fulfilled. There-
fore, Y = (kern)nY +n(X) by Lemma 11. But (kern)nY = W} and =n(X) =
{n(xg110), ooy m(xg0) > = K p(xgpu)t, ., p(xu)v' Y = Wo + -« + W,.  Since we
have v'€ Gj11(n, k) and xyu, ..., xueZ,! |, also Wi=Z," holds. O

For technical reasons, the number ¢ of vector spaces Wy, ..., W, in the next lemma
may be zero. In this case, the sum W, + --- + W, denotes the nullspace.

Lemma 13. Ler h<n—1, s<n—1—h and x,...,x;e};" such that
(X1, ey Xy ALY = {0}. Then there are matrices ue G**'(n, k), ve Py(n, k) with
L) -v=L",, anumber t with 0<t<s and subspaces W\, ..., W, with W. = Z}"" _and
Wen Ly = {0} such that {uxv, ..., uxgw) = Wi+ --- + W,

Proof. The proof is again by backward induction in /:

1.If h=n—1, then s = 0 and we choose ¢ = 0.

2. Assume h<n — 1. If {(xj,...,x;> = {0}, we again choose ¢ = 0.

3. Therefore assume dim<xy,...,x;»>0. Then there exists an index j with
h+ 1<j<n — 1 such that at least one of the x’s has a nonzero entry in column j. Let
vy be the permutation matrix that exchanges the jth column with the (/4 + 1)th
column and keeps the other columns fixed. We have voe Py(n, k). Let § =
dim {xvo, ..., X500 > — dim({xvo, ..., X090 > N LY ). Clearly, s'>0. W.L.o.g. assume
that {xivo, ..., xgyv0> N Ly7, = {0}.

4. There is a matrix uoe G**!(n, k) such that each of the entries in the positions
(Lh+1),....,(s+1—=5,h+1) of each of the matrices upxjvy, ...,UpXsvp 1S zero.
(This is due to the fact that the dimension of the vector space spanned by the
(h+ 1)th columns of x;vg, ..., X509 is §'.) Let X = ugx,vp for all 1<o<s.

5. We have (x{,...,x} > nL;'; = {0}. Let p be a projection onto L, such that
(X, x,yskerp.  As L =L",, {x1,....,x;pynL™ ={0} implies
Xy, Xy n Ly ={0}. By Lemma 11, {p(x},,),...,p(x})> nL" ={0}. (In
order to see this, choose ¥ = (x|,...,x,>, X =<{x,.,,...,x,>, and ¢ =p. We
obtain Y = ((kerp)nY)+p(X). In particular, YnL™ ={0} yields
p(X)n L ={0})

6. By the induction hypothesis, there are matrices u'eG***'(n, k) and

v €Ppii(n k) with L") = L™, a number ¢ with 1<7<s— s + 1, and subspaces
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Wa, ..., W, with W.=Z;" and W.nL;! ={0} for all 2<t<t such that
Cup(Xy Vs U p(X) Y = Wa 4 - + W,

7. Let Wy = (u/xXiv', ... ,u/xX,v' ). By Lemma 10, Wy n L7 = {0} and there is a
projection  onto L, with W) < ker z such that n(u'yv') = u'p(y)v’ for all ye L.

8. With ye L}", also ugyvoe L;". Thus, we may replace y with ugyvy above. By

Lemma 11, {uxv, ...,uxv)y = Wi+ -+ + W; with u = v'uy and v = vyv’. (Choose
Y = (uxyo, ... uxsvy, X = {uxgyqv,...,uxspy, and g=mn. We have Y =
(kerm)nY +n(X), as well as (kern)nY = {uxv,...,uxyvy, and furthermore
n(X) = {n(uxyi1v), ..., w(uxw) Y = up(Xy, ), . up(xX)v'y)  As ' eG!
(n,k) and each entry in the positions (1,24 1),...,(s—5 + 1,h+ 1) of each of
the xi, ..., x| is zero, we also have W, =Z;7,. O

After these preparatory lemmata, we are now able to refute the assumption that
there is a bilinear computation of length r = 2mn +2n —m — 3 for {(n,m,n) (for
m>=nz=3). Assume that = (fi,91, w1, ...,fr,gr, Wy) 18 a bilinear computation that
fulfills the assertions of Lemma 7. Since the considerations in Section 4 have been for
general n until the case distinction right after Eq. (4), we may start with this case
distinction.

Again, we first treat the case rk a> 1. By sandwiching with column operations, we
may achieve wy,, ...,w;, €Z]", because d<n—2. Since SSR*""cZ" and §' =
S+ {wy, ...,w;, >, this implies S'=Z}". Let p, : K" — k™" /L"" be the canonical
projection for I<v<n. Let e=dimp;(S’) and h=dimp,(S’). We have
2< rka<<e<n — 1. (The lower bound is due to the fact that rka>1, the upper
bound follows from S =Z{") Choose indices Ji,...,joel (where I[=
{1,...,dim S,2M +n — m, ...r} as defined in Section 4) such that

Wy oW, > 0L = {0}

Like in the case n = 3, we want to construct a vector space W) that contains the
matrices wj,, ...,w;,. But to obtain the improved bound, at least n — 1 of the w’s
should be in W, so if e<n — 1, simply setting Wy = {wj,, ..., w;, > is not enough. (In
the case n = 3, ¢ = n — 1 was automatically true because e> rka=2.) If e<n — 1,
we have to add some more w’s to W): by (4), we may assume that after a suitable

permutation, ji, ...,j, ¢ {i1, ..., iq} and jyi1, ..., je€ {1, ..., ia}, where o :=rk a.
By sandwiching with row operations of the rows 1, ...,n — o, we may achieve
0 = == ... =
0 = = ... =
n—e
Wi W € 0 % % L % (5)
* % % %
% % * %
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This does not affect S, because all matrices in S have solely zeros in the rows

1,...,n —a. We even have that each we S’ is contained in the vector space on the

right-hand side of (5), because otherwise ¢ would not be the dimension of p;(S’).
Choose hy, ..., hy—e—1€{1,...,r}\I such that

Wiy s Wiy Whyy ey Wi, > O LT = {0},

This is possible, because wy,...,w, generate k™*". By sandwiching with row
operations of the rows 1, ...,n — e, we may achieve
n,n
Whis ooy Wh, . €Z]7.

This does not affect S. In addition, all we S’ are still of the form as depicted in (5).

Since d<n—2, we may transform wj,...,w;, via sandwiching with column
operations of the columns 2, ..., n into
0 0 = ... =
0 == = ... =
n—e
Wi, oW, € 00 % % L0 % (6)
% * % %k
This does not affect S and we still have wy,, ..., w;,, , , € Z}", because the first column
remains unchanged. Since ' = S + {wj,, ..., w;, >, all we S’ are transformed into the
form depicted in (6). By Lemma 10, we still have
Wiy ey Wiy Whyy ey Wi, > O LT = {0},

because column operations of the columns 2,...,n correspond to the right
multiplication with an element from G, (n, k). Recall that s = dim p,(S”). It holds
h—e>rkaz=2. Choose indices j..1, ...,J; €I such that

Wy ooy wj, > LY = {0},
Then also
Wiy eees Wis Wiys ooy Wi > O LY = {0}

as the images of wp,, ...,wy, , , under the canonical projection onto the positions
(2,1), ..., (n — e, 1) are linearly independent but the images of wj,, ..., w;, are all zero.
Let

W= Wiy oo s Wiy Wiy ooy Wiy >
and
W, = <p(wjk+1)a "'7p(W.f/z)>7

where p denotes a projection onto L|" fulfilling W, < kerp. By construction,
W,nLP" = {0} and W,cZ!" for v=1,2. In addition, w,e W, + W, holds for
n—1+h—e>=n+1 distinct p’s. (Note that h—e>rka>2.) (The fact that
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Wity ees Wiss Whys ooy Wh, . € W1+ W5 again follows from Lemma 11: let Y =
Wy eees Wiy s Why s oos Wy s X =Wy, ..., wy, >, and ¢ = p. Then Y n(kergq) =
W, thus the assumption of the lemma is fulfilled by X, Y, and ¢. Therefore
Wi+pX)=W1+W,=Y)

Finally, let qi,...,qn—3€I\{j1,...,jn} be pairwise distinct. (Note that #I =
an +d and h<20 +d.) Let p’ be a projection of L}" onto L}" with W, < kerp’. By
Lemma 12 (with s = n — 3) there are a matrix ve G,(2, k), a t with 3<¢<n and vector
spaces W3, ..., W, such that W, nL!" = {0} and W, <=Z?" for all 3<t<t — 1 as well
as W,c L}, dim W;<n— 1, and

P (p(wg))v, o, p'(p(wy, ;) J0E W3 + - + Wi

By Lemma 10, (W,v) nLy" = {0} and there is a projection =’ : L}" — L5" fulfilling
Wove ker o’ and n'(xv) = p/(x)v for all xe L".

In the same way, (W;v) " L{" = {0} and there is a projection = onto L}" fulfilling
Wive ker n and n(xv) = p(x)v for all xek™".

Since veGy(n, k), we have Wiw=Z™ and Wrv=Zy". Therefore, the spaces
Whv, Wov, Wi, ..., W, fulfill the assumptions of Lemma 5. In addition, we have
wegveW = W+ W+ Wi+ - + W, for 1<v<n—3 by Lemma 11. (Choose
Y = Wy 0, oo, W0, Wg U, ooy Wy, 0, X = g0, ..., wy, ), and g = n'om.)

Thus, w,ve W for at least 2n—2 distinct p’s. Via sandwiching, we can
replace w, by w,v. Lemma 5 now asserts that § separates (K", L", W) and by
Lemma 3, r=2mn + 2n — m — 2 follows, contradicting the assumption r = 2mn +
2n—m — 3.

Now we treat the case rka = 1. As in the previous Section 4, by “transposing”
the computation f we may switch over from w, to pr. After this trans-
formation, S =L}". Let again p, : kK" > k™" /L"" denote the canonical pro-
jection. If d>0, then we may achieve e :=dimp;({wj,...,w;,»)>0 by a
permutation of the columns 1,...,n — 1. This does not affect S=L"". If d =0,
then we set e = 0 in the subsequent considerations. After a suitable permutation of
indices, we may assume that {wj,...,w;, > nL]" ={0}. Choose indices
Ty eeesJu—t—a &1 such that

Wiy eees Wigs Wiy ey Wy > 0L = {0},

Let h=e+n—1—d=#{i1,....l,J1,---,ju—1-a}. Via sandwiching with row
operations, we can achieve that

0 = *
: n—h.
0 = *
Wips woos Wipy W5 ooy Wiy, €
£ % %

Once again, this does not affect S. Let W1 = {wi, oo, Wi, Wiy oo, Wy, >
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Choose a projection p onto L7" fulfilling W;ckerp. Let s=d—e=

H#{ips1, .- iq}. We have s =n—h — 1. Lemma 13 assures the existence of matrices
ue G"(n,k) and ve P,(1,k) with L v =L Jatwith2<t<s=n—h—1<n -2

(if d = 0 then e = 0, thus s = 0) as well as subspaces W>, ..., W, fulfilling W, < Z""
and W,nL?" = {0} for all 2<t <t such that up(wj,,,)v, ..., up(w;, )ve Wr + --- + W,.

By Lemma 10, (uW,v) n L}" = {0}, and there is a projection = onto L|" such that
n(uyv) = up(y)v for all ye L}". Since multiplication with u from the left only affects
the rows 1, ...,n — h and multiplication from the right with v leaves the first column
fixed, we still have uW v=Z|". Moreover, uSv = S and

uWyo+ Wr+ -+ W,)nL;", = {0}.

(For the last statement, exploit the facts that (uWjv)nL}" = {0}, W.=Z"", and
W.n L = {0} for all 2<t<t<n — 2.)

n,n

Let ¢ be a projection onto S = L,", such that ulWjv+ W, + --- + W, < kerg.
Choose pairwise distinct indices Ay, ..., h,—1 € IN{il, ..., iz} (note that #I = n+d)
and set W = {q(uwyv), ...,q(uwy, v)> <L™. The subspaces ulv,
Wy, ..., W, fulfill the premises of Lemma 5 and their sum contains
UWj O, oUW, U, uw; U, L uwy, 0 and uwy v, ..., uwy, v by Lemma 11.

Thus uw,ve W =uWv+ Wr+ .- + Wy for at least 2n—2 different p’s.
Utilizing sandwiching, we may replace w, by uw,v. By Lemma 5, f separates
(k™" LY", W) and by Lemma 3, r>2M + 2n — m — 2 contradicting the assumption
that r = 2M + 2n — m — 3. This finally proves our main theorem.

Theorem 14. For any field k and for all m=n>=3,
R({n,m,n)y)=2mn+2n—m—2.
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