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1. INTRODUCTION 

In this paper we consider nonlinear elliptic boundary value problems of the 
form 

Lu + f(X, 4 = 0 in Q, 

Bu =g on 352, 
(1.1) 

where L is a uniformly elliptic second-order differential operator, B is a linear 
first-order boundary operator, and 52 is an unbounded domain of real n-space 
IL!” with boundary aQ. We are interested in the existence of classical solutions of 
(1.1). 

This problem has been considered by several authors in the case of a bounded 
domain Q, and in the case of nonlinear ordinary second-order differential 
equations on an infinite interval. In particular we mention the work of Nagumo 
[7], Amann [2], Ueller [5], Bandle [3], Simpson and Cohen [l], Wong [13], and 
the survey paper of Schmitt [lo]. M Fe also refer to the paper by Ogata [9] where 
bounded solutions of )l .l) are established in exterior domains under assump- 
tions which include thatf(x, U) is bounded in B x R. 

The main purpose of this paper is to extend some of the results on bounded 
domains to the case when Q is unbounded. In particular we show that, under 
suitable smoothness hypotheses, problem (1.1) h as at least one solution if there 
exist smooth functions z!, < u,, on 0 satisfying 

Lu, + f(~, 4 < 0 in Q, Bu, > g on aQ; 

Lo, + f(x, vo) > 0 in .Q, Bv, < g on aQ. 

We also present conditions which permits one to conclude the existence of 
nonnegative solutions, positive solutions, maximal solutions, bounded solutions, 
and solutions which converge to zero uniformly at CO. 

In the following section we introduce notation and formulate our assumptions. 
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Section 3 contains the statements and proofs of our main results under the 
assumption that Q is an exterior domain. 

In Section 4 we obtain sifficient conditions involving growth and/or integral 
conditions on f which guarantee the existence of nonnegative solutions of (1.1). 

In Section 5 we consider the special case of (1.1) when B is the Dirichlet 
operator. We show that the results of Section 3 can be established for more 
general domains. 

2. PRELIMINARIES 

Let (Y E (0, 1) be fixed. Denote by Q an unbounded domain of real n-space II%‘“, 
with boundary &? and closure 8. As is usual, we denote by .3: = (.vr ,..., s,) the 
points of UP and differentiation with respect to .vi by Dj for i = 1, 2,. . ., n. 

For a bounded domain $1 C UP, let C”“ia(M), m = 1, 2,..., denote the usual 
Holder space. The norm in this space will be denoted by 11 u lIln+&,z . 

We consider the second-order linear differential operator 

LU G f aijD,Dju + f biDiU 
i.i=l i=l 

with real coefficients aij , bi defined in fi where we assume that a,j E Cifa(R), 
bi E Cr+a(M) for all bounded domains M C 52. The operator L is assumed to be 
uniformly elliptic on every bounded subdomain of Q. 

Let B denote one of the boundary operators 

Bu = u, 

or 

Bu = i?u/iio + y(x)u, s E alI. 

Here ;i/% denotes the outward conormal derivative, and we assume y > 0 
everywhere on the boundary aQ. 

Finally, let f: 0 x R - R and g: a&’ -+ R be given functions. Then we 
consider the boundary value problem (1.1) where by a solution u of (1.1) we 
always mean a function u in 0 such that u E C2fU(M) for every bounded domain 
M C 52 and satisfies (1.1) identically. 

The functionsf, g, and y are required to satisfy the following conditions: 

Assumptions A. (i) f(x, t) E Ca(a x [a, b]) for all bounded domains MC Q 
andall -,zc <a <b < co; 
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(ii) for any given bounded domain MC Q, and for any -co < a < b < 
00, there exists a positive constant K such that 

f(X, t1) -f(X, tz) 2 --K(t, - tz) 

for all a < t, < t, < b and for all x E IV; 

(iii) g E P+=(S), y E C1+a(S) f or any bounded subdomain S of aQ. 

3. EXISTENCE OF SOLUTIONS IN EXTERIOR DOMAINS 

In this section we assume that Q is an exterior domain with boundary a52 
of class Cz+a. 

Let a > 0 be chosen such that {X E IJP: 1 x 1 > a} C Q. The following notation 
will be used: 

Q,={xEB:IxI <b), 

s, = {x E UP: 1 x 1 = b}, 

Da,, = Cz+a(& b > 0. 

LEMMA 3.1. Let f, g, and y satisfy the assumptions A. If there exist functions 
v,, < u,, on D of class Da,b for all b > 0 sutisfying 

Bu, > g on a52, 

Lv, + f (x, vo) > 0 in Q, Bv, < g on asl, 

then there exists a sequence of functions uj on I& with the following properties: 

(1) v -=cu. -=cu.<u o-. 3+1\ 310 in@ 

(2) uj E Da.n+j; 

(3) L"j +f(x9 Ki) = 0 in Qa+j I 

Buj =g on a52, 

uj = u. on Sa+i 

for all j = 1,2, 3 ,... . 

Proof. We first consider the boundary problem 

Lu+f(x,u) = 0 in Q,+1 , 

Bu =g on af2, 
u = u, on Safl . 

(3.1) 
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Under the hypotheses of Lemma 3.1 a result of Amann [2] implies that problem 
(3.1) has a solution U, of class D,,,,, satisfying 

Let u1 be the extension of U, to all of 0 defined as ua for all 1 x 1 > a + 1. Then 
v,, < ur < ua in Q, and hence u1 satisfies properties (l)-(3) of Lemma 3.1. 
We use induction to construct the required sequence. Assume ui satisfies 
properties (l)-(3) for all i < j. A u~+~ satisfying the same properties will be 
constructed below. 

From assumption A(ii) there exists a constant K > 0 such that 

for all x E Isz,+j+l and for all minimum r+,(x) < t, < t, < maximum z+,(x), 
where the minimum and the maximum are taken over oa+j+, . Let yj be the 
unique solution of the boundary value problem 

LY - KY = -f(x, Uj) - KUj in Qa+jfl 7 

BY =g on a52, 

Y = uo on Sa+ifl . 

It is well known that the above problem has a unique solution yj E Dor,a+j+l . We 
show next that yj satisfies the properties 

(i) v. d yj < u. in Qa+j+l; 
(ii) yj < Uj in %+M - 

Since V. < Uj < U. in !2;2,+j+l by the induction hypothesis, the hypothesis 
on u. and (3.2) imply that in Qn+j+l 

and 

(L - K)(yj - UO) >, -.f(x, Uj) - Kuj + f(xt UO) + Ku0 3 0; 

(L - K)(Y~ - 00) < -f(x, uj) - Kuj f f(~, VO) + KVO < 0. 

Furthermore, B(y, - uo) < 0 on aQ, y - u. = 0 on S,+j+l , B(yj - vo) > 0 
on 352, and yj - v. > 0 on Sa+j+r . Therefore, the maximum principle for 
elliptic equations implies that v. < yj < u. on Qa+j+, , which proves (i). 

Since L(yj - Uj) = 0 on Qa+, , B(yj - uj) = 0 on aQ, and yj - Uj = 
yj - ~0 G 0 by (‘) r , we deduce from the maximum principle that yj - Ilj < 0 
onSZ,+j.But~~(Jc)=uo(x)foru+j~IxIdu+j+1.Henceyjdu,on 

sZ,+j+l t which proves (ii). 
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We consider now the boundary value problem 

Lu + f(X, u) = 0 in Qfl+j+l y 

Bu = g on ?X2, (3.3) 

u =. u, on sfl+j+l . 

Since Lyj +f(x, yi) = f(x, yi) -f(x, ui) + K(yj - Uj) < 0, Buy = g on 3.0, 

yi = u. on Sa+jfl , and yj 3 v. in Qa+j+l from properties (i) and (ii), we can 
apply the result of Amann [2] to conclude that (3.3) has a solution U,+l E Da.a+i+l 
satisfying o. < U,,r < yj in sZ,,,,i . Let u~+~ be the extension of lJj+r to all of 0 
defined as uo(x) for 1 x ( > a + j + 1. It is now easy to check that u~+~ satisfies 
all the properties (l)-(3) of Lemma 3.1 completing the inductive construction. 

Remark 1. Without assumption A(ii) on f, and with the other hypotheses 
of Lemma 3.1, it is easy to see from the above argument that there exists a 
sequence of functions uj on D satisfying properties (2) and (3) of Lemma 3.1. 
In fact, assumption A(ii) on f was only used in the argument to construct a 
monotone sequence. 

LEMMA 3.2. Let the sequence (uj> be as in Lemma 3.1. Then for any given 
integer J >, 1 there exists a positive constant K, depending on n, 01, J, u, , and v. but 
independent of j, such that 

II uj k+m.n,+, < K (3.4) 

JOY allj >, J. 

Proof. For any given J, the functions zlj , j 3 J, are solutions of the boundary 
problem 

LU + f(bV, Uj(X)) = 0 in Qn,+, , 

Bu =g on aQ, (3.5) 
u = uj on S,+J. 

Since the sequence (ui} is uniformly bounded on oO+, , the functions fi defined 
by 

fj(uv) = f(xt uj(x)), X~Ql+,, 

are uniformly bounded on DatJ . It then follows from Lemma 3.2 of Amann 
[2, p. 1321 that Uj E W,l(Qn,+,) and 

(3.6) 
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for some positive constant K independent of j, where 6 is a positive constant 
independent of j, p > 1, and 4 = p/( p - 1). 

We apply the Sobolev embedding lemma to (3.6) with p = n/(1 - a) to 
conclude that I+ E @(I?~+,) and 

II % IIu.G~+J d Kl I j >, J, (3.7) 

for some KI > 0 independent of j. 
The L,-estimate of Agmon, Douglis, and Nirenberg [l. Theorem 15.21 applied 

to (3.5) has the form 

(3.8) 

for some 6, > 0 independent of j, j > J, where 

id4 = ml x E asz, 

%(X)7 h’ E LJ 

and 

II gi Ill--119 =z infll 0 IIw~~Q+~) 

with the infimum being taken with respect to all functions w E C1(aa+j) which 
equal gj on aQ,+, . From (3.6) and (3.8) we deduce that there exists a positive 
constant K2 independent of j such that 

Ii % IIWn2Q+~) G G (3.9) 

From (3.9) withp = n/(1 - CX) and the Sobolev embedding lemma we conclude 
that there exists a positive constant K, independent of j such that uj E C1+o(aa+J) 
and 

for all j > J. 

II uj IIC1+~LccI,+~) G K3 (3.10) 

The Schauder-type inequality [l, Theorem 9.11 applied to (3.5) has the form 

II *i lIC2+J(s7a+~) G %zll.fj Ila.s?,+~ 

-t II gj llI+a&2,+~) (3.11) 

for some S, > 0 independent of j. The conclusion of the lemma follows from 
(3.10) and (3.11). We combine Lemmas 3.1 and 3.2 to prove the following main 
result. 
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THEOREM 3.3. Under the hypotheses of Lemma 3.1, the boundary value problem 
(1.1) has a solution a satisfying 

vo(4 G w G Icow in Q. 

Proof. Let {z+> be the sequence constructed in Lemma 3.1. For each integer 
i = 1, 2,... it follows from Lemma 3.2 that there exists a positive constant K,, , 
independent ofj, such that 11 U, &+or.~,+, < K, for all j > i. The compactness of 
the injection C2+~(fi0+,) --f C2(L(z,+J then implies that {z+:i > I} has a sub- 
sequence {Uj’} which converges in the C2(Da+,) norm to a function u1 on oa+, . 
Define ujo = uj for convenience and define {uj’] inductively ot be subsequence 
of {z&‘} which converges in the C2(Da+J norm to a function ui on Da+i , i = 
1, 2,... . Define ti in D by a(x) = ui(x) if x E Q+,i; this definition is consistent 
since rR,+i C Q,+,+l and ui+l = ui on aa+i obviously for each i = 1, 2,... . 

We shall show that li is the required solution. For any bounded domain 
&? C Sz, z C oO+i for some integer i, and hence the diagonal sequence {$(x)> 
converges in the C”(a) norm to ui = ti on m. In particular ujj and Lu, converge 
uniformly to m to u and Lu, respectively. Since Luj == -f (x, z+) in M by Lemma 
3.1, it follows that a is a solution of (1.1) of class C”(H), and hence of class 
C2+a(&?) by a standard regularity arguments based on Schauder estimates. Since 
vo(x) < uj(x) < uo(x) for eachj = 1,2,..., the function a also satisfies vo(x) < 
O(x) < uo(x) in Q. 

Remark 2. Without assumption A(ii) on f we can still construct a sequence 
of functions {uj} satisfying properties (2) and (3) of Lemma 3.1. (See Remark 1.) 
We can then use Lemma 3.2 and the Ascoli-Arzela theorems to construct 
sequences {ujk}, k = 1, 2,. . , satisfying the following properties 

(i) {u:“} C {uj”} C {uj}, k = 1, 2,...,; 

(ii) for each k = 1, 2,. .., {z+*} converges uniformly on Da+k to a function 
uk E Dar.a+k satisfying Lu’ + f (x, uk) = 0 in 1;2,+, and Buk = g on 52a. 

If we define a function u on D by 

u(x) = u”(x) for x E D,+k , 

then it is easy to see that the diagonal sequence {I+‘> converges to u and that u is 
a solution of problem (1.1). 

COROLLARY 3.4. Assume f, g, and y satisfy assumptions A(i), A(iii). Further- 
more, assume that f (x, 0) > 0 in Sz, and g(x) > 0 on ?X2. 

Then, a necessary and su~cient condition for the existence of a nonnegative 
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solution of (1.1) is the existence of a nonnegative function u0 in D of class Da,a+j 
for all j = 1, 2,..., satisfying 

Lu + f (x, uo) d 0 in Q, 

But, >g on 82. 

The proof follows easily from Theorem 3.3 and Remark 2 by taking v, = 0 
on 0. 

COROLLARY 3.5. Assume f, g, and y satisfy assumptions A. Furthermore, assume 
that f (x, 0) > 0 in Q, and g > 0 on EN2 with the strict inequality holding for least 
one point x E aG. 

Then, a necessary and su@ient condition for the existence of a solkm u of (1.1) 
satisfying u > 0 in 52 is the existence of a nonnegative fun&n u,, in Q of class 
D a,a+j for all j = 1, 2 ,..., satisfying 

Lu, + f (x, u0) e 0 in 52, 

Bu, >g on asr. 

Proof. By Corollary 3.4 is nonnegative solution u of (1.1) exists. We show 
that u is positive in 9. Let J be an arbitrary integer. In view of assumption A(ii), 
we can select a constant K > 0 such that 

f (x, u) -f (x, 0) > -Ku in Q,,, . (3.12) 

Since f (x, 0) > 0 in Liz by hypothesis, (3.12) implies that Lu - Ku < 0 in SZa+J . 
We also have Bu = g > 0 on aQ with the strict inequality for at least one point 
on Z2 by hypothesis. The maximum principle then implies that u > 0 in Q;2,+J, 
and since J is arbitrary, u > 0 in Q. 

For the following corollaries the operator L is required to be in the divergence 
form. In particular, IetL, denote the operator defined by 

L,u EC t Di(Pii(X) D#4), 
i.j=l 

where p, are real function on D of class P+“(M) for all bounded domains M C Q, 
and the matrix (pii( is assumed to be positive definite on every bounded 
subdomain of Sz. Consider the boundary value problem 

LlU + f (x, u) = 0 in Q, 

u=g on af2. 
(3.13) 

COROLLARY 3.6. Assume f(x, 0) > 0 in 52, f(x, u) is monotonic decreasing 
in II for all u > 0 and x E Q, g > 0 on aQ, and assumptions A hold. 
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If there exists a positive function u,, on D of class Da,a+j for all j = 1, 2,,.., 
satisfying L,u, + f (x, u,,) < 0 in Q and u,, 3 g on an, then there exists a maximal 
positive solution ti < u0 of (3.13) in the sense that, for every nonnegative solution 
u < u0 of (3.13), the inequality u < ti holds. Moreover, if this condition is satisJed 
and u,,(x) converges to 0 unsformly as x + co, (3.13) has a unique solution u(x) 
which converges to 0 uniformly as 1 x 1 - a3. 

Proof. Let {z+} be the sequence constructed in Lemma 3.1 with v,, G 0. 
Then the pointwise limit a(x) = limitj+, uj(x) is a nonnegative solution of 
(3.13) by Lemma 3.2, satisfying li < u,, in Q. From Corollary 3.5 and the 
hypothesis g > 0 on %2, we conclude that zi > 0 on liLi. 

We show next that ti is maximal. Let 0 < u < u,, by any solution of (3.13). 
Let J be an arbitrary positive integer. Then the functions u and u, , are solutions 
of the equation L,u + f(x, u) = 0 in Qa+, . Furthermore, uJ > 0 in fi,+j as 
can be proved by a similar argument to the one used in Corollary 3.5. Also u, > u 
on iXI,+j . We then apply a result of Bushard [4] to conclude that uJ 3 u on 
In,+, . Since uJ(x) = u,,(x) for 1 x 1 3 J, uJ > u on 0 and a(x) = lim,,, u,(x) > 
u(x), x E 0. This proves that G is maximal. Finally, if u,,(x) converges to zero 
uniformly as 1 x 1 -+ co, we show that (3.13) h as a unique solution zi satisfying 
this property. That such a zi exists follows from the first part of the proof. To 
show uniqueness, let u be any other positive zolution satisfying this property. 
Let E > 0 be arbitrary, and choose an integer J such that G(x) < u(x) + E for 
all / x / >, J + a. The monotonicity hypothesis off implies that the function 
w = u + E satisfies 

L,w +f(x, w) < L,u +f(x, u) = 0 

in Q,,, . Since w > 0 on aQn,+, , and zi .< u + E on 6Q;2,,, , Bushard’s result [4] 
implies that Ei < u + E on Dafj , and consequently on 0. Since E is arbitrary, 
fi < u on 0. The inequality u < ii on D can be proved similarly, completing the 
proof of Corollary 3.6. 

4. CRITERIA FOR THE EXISTENCE OF NONNEGATIVE SOLUTIONS 

In this section we derive sufficient conditions on the coefficient f and the 
boundary data g which giarantee the existence of a nonnegative solution of the 
boundary value problem 

Au + f (x, u) = 0, Ix/ > 1, 

44 = g(x), IxI= 1, 
(4.1) 

where f and g are assumed to satisfy assumptions A. 
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We note that simplicity of presentation and comparison to known results 
have been considered in formulating our criteria. In fact analogs of the results 
below can be obtained for the more general problem (I, 1) by the introduction of 
more notation and complexities. 

COROLLARY 4.1. Problem (4.1) has a solution u satisfying 

0 < u(x) < c j x p+e, id> 1 

if the following conditions hold: 

(1) f (x, 0) > 0, 1x12 1; 
(2) A-4 3 0, IxI= 1; 

(3) supjrlX7 f(x, C j x /2-n+s) < CG(C - 2 - c) rc+ 

for all 1 x 1 3 1, where C = maximuml,l=,g(x), and 0 < E < n - 1. Moreover, 
u(x) > 0 for 1 x 1 > 1 ifg 0 0 on / x / = 1. 

Proof. Let U,,(X) = C / x /2--n+E. Then condition (3) implies that Lu, + 
f (x, ZQ,) < 0, I x I > 1, and ~a > g, 1 x I = 1. The conclusions of Corollary 4.1 
then follow from Corollary 3.5. 

The above corollary applies, in particular, to the problem 

Au + p(x) uy = 0, IxI> 1, 

u(x) = g, Ix/= 1, 

where y > 0 and p is of class C&(N,) f or any N,, = {s: 1 < / x j < b}, 0 < b < 
co. In this case condition (3) of Corollary 4.1 becomes 

sup p(x) < CFYe(n - 2 - .s) rb, 
IsI=r 

(3)l 

where b = --II + (n - 1)~ - (y - 1)~. 
This is quite sharp in the case p(x) > 0, I x I 3 1, and y > 1 is the quotient of 

two odd integers, in view of a result of the author and Swanson [8] which asserts 
that all solutions of Au + P(X) UY = 0 change sign in G, = {x: [ x / > a} for 
any a > 1 if 

s 

03 
rdp.dr) dr = 00, d = n - 1 - r(n - 2) 

1 

where p, is the spherical mean of p(x) on a sphere of radius r. 
In the linear case y = 1, we note that b = -2, and if E = +(n - 2) then (3) 

becomes 

sup P(X) G 4 
(n - 212 r-2 

9 r > 1. 
Ixl=r 

This is quite sharp in view of the known [6] Hille-Kneser criterion. 
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COROLLARY 4.2. Problem (4.1) has a maxim&positive solution Q satisjj.&g 

0 < 22(x) < c / x I*--n+r, Ixl>l 

if the conditions (l), (2), (3) of Corollary 4.1 hold and 

(4) g(x) >OfOY 1x1 = 1; 

(5) f(x, u)ismonotonicde~easinginu, u > 0, XEQ, where C = ma+l,,g(x). 

Moreover, if these conditions hold and n > 3, (4.1) has a unique solution a(x) 
converging to zer uniformly as 1 x / + co. 

Proof. The proof follows from Corollary 3.6 by taking u,,(x) = C ( x 12++<, 
where C = suplal=rg(x), and 0 < l < n - 2 satisfying condition (3). 

COROLLARY 3.4. For any E satisfying r(2 - n + 6) < 0, problem (4.1) has 
a solution u satisfying 

0 < u(x) < c 1 x I*--n+s 

if 
(1) f(x,u) <O,f(x,O) = 0 foraZl\xl b 1andaZZu >O; 

(2) g(x) 3 0, I x I = 1, where c = suplZIZ1g(x). 

Moreover, if f (x, u) is monotonic decreasing in u for all u > 0 and 1 x 1 > 1, 
a&g(x) > 0 for 1 x 1 = 1, (4.1) has a maximalsolution ti satisfying 

0 < G(x) < c 1 x l*--n+c 

for any E satisfying ~(2 - n + c) < 0. 

Proof. Let us(x) = c 1 x lz--n+r, where c = sup~+~=rg(x), and ~(2 - n + E) ,( 
0. Then (1) implies that du, + f (x, uO) < 0 for I x 1 > 1, and U,,(X) > g(x) 
for I x 1 = 1. The conclusion of Corollary 4.3 then follows from Corollary 3.6. 

Other criteria can be obtained by applying known one-dimensional criteria. 
As an example we use a result of Wong [13, Lemma 1.4 to obtain a sufficient 
condition which guarantees that the boundary value problem 

n = 2, Au = H(x, u), lxI> 1, 

44 = g(x), IxI= 1, 
(4.3) 

has a nonnegative solution u(x) converging uniformly to zero as I x I -+ co. 
Here H and g are required to satisfy the following conditions 

(a) -H and g satisfy conditions -4; 

(b) H(x, t) > tG(I x I, t) for all 1 x 1 > 1 and for all t > 0, where G is 
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continuous and positive for all j x 1 >, 1 and for all t > 0, G(I x (, 0) = 0, and G 
is monotonic increasing in t for all / x / >, 1 and all t > 0; 

(c) H-(x,0)-0. 1x1 2 1; 

(4 g(x) >, 0, I x I = 1. 

Consider the ordinary differential equation 

(4.4) 

COROLLAXY 4.3. Assume H andg satisfy condi~i~s a, 6, c, d. Then (4.3) has 
a unique solution u which converges to zero uniformly as ( x ( -+ to iffor each K > 0 

f 

m 
Y log rG(r, K) dr = co. (4.5) 

1 

Proof. Liouville’s change of variables r = es, h(s) = ,o(e8) transforms (4.4) 
into 

h” = e28h(s) G(eS, h(s)). (4.6) 

A result of Wong [13, Lemma IS] implies that (4.6) has a positive solution 
converging to zero as s --+ co of for some a > 0, 

I 
cc2 

se2#h(s) G(eS, K) ds = CC (4.7) 
a 

for each K > 0. Since (4.7) is equivalent to (4.5), it follows that (4.5) is a suffi- 
cient condition for (4.4) to have a positive solution p,,(r) on [I, CO] converging 
to zero as r -+ co. Let c 2 1 be chosen such that the function u,,( 1 s I) = cp,,(\ x 1) 
satisfies r+,( 1) >, sup~,/,~ g(x). From the hypothesis (b) we obtain 

fQx, u(t) 2 c~o(I x I) (21 x 1, c~otl x I>) 
,a c~o(l x I) GO x I, ~“(1 x 1)) 

01 r> 1; 

and 

uo(l) z &a /xl=: 1. 

Since the function Q(X) = 0 obviously satisfies Av,, > H(x, vo), [ x / > 1, 
and v&x) < g(x), j x j = 1, Th eorem 3.3 implies that (4.3) has a solution u 
satisfying 0 < u < uO. Hence U(X) converges to zero uniformly as j x 1 -+ co. 
Finally, the uniqueness of u follows by the same argument used in Corollary 3.6, 
completing the proof of Corollary 4.3. 
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5. DIRICHLET PROBLEM IN AN UNBOUNDED DOMAIN 

For the case when J2 is not an exterior domain, we require that Q allows the 
following decomposition: 

There exists a sequence of bounded domains 52, , n = 1, 2,. . . , with boundaries 
652, of class C2+* such that 

(1) Qn c -Qn,+, C Sz for all n = 1, 2 ,..., and Q := Uzcp=, J&; 

(2) x E 8Q and 1 x 1 < n implies that x E %Q, . 

Consider the boundary value problem 

Lu+f(x,u) =o in Q, 

U=g on X2, 

where L is the elliptic operator defined in 2, and f, g satisfy the conditions below. 

-&sumption B. (1) f satisfies assumptions A(i), (ii); 

(2) g is a real-valued function on 0 of class C2+*(M) for all bounded 
domains M C Q. 

By replacing the domains J2,+j in the proofs of Lemmas 3.1, 3.2 by the domains 
.Qj,j = 1, 2,..., we obtain 

THEOREM 4.1. Let f, g, 52 satisfy the conditions of Section 4. If there exist 
functions q, < uO in 0 of class C*+&(M) f or all bounded domains M C Q satisfying 

&I + f (x, uo) < 0 in Q, 

uo 3B on !?I; 

Loo + f (x, wo) 2 0 in Q, 

no Gg on 0, 

then the boundary value problem (5.1) has a solution B satis-ing 

co < ti < u. in Q. 

Proof. The proof is very similar to the proof of Theorem 3.3. In fact, the 
only modification required in the proofs of Lemmas 3.1 and 3.2 is to replace 
!2n,+j by 52, , j = 1, 2,..., 12. The details are left to the reader. 

Analogs of the results in Section 3 can be easily written. 
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