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1. INTRODUCTION

In this paper we consider nonlinear elliptic boundary value problems of the
form

Lu + f(x,u) =0 in 2,
By =g on 982,

(1.1)

where L is a uniformly elliptic second-order differential operator, B is a linear
first-order boundary operator, and £ is an unbounded domain of real n-space
R with boundary 9£2. We are interested in the existence of classical solutions of
(L.1).

This problem has been considered by several authors in the case of a bounded
domain £, and in the case of nonlinear ordinary second-order differential
equations on an infinite interval. In particular we mention the work of Nagumo
[7], Amann [2], ITeller [5], Bandle [3], Simpson and Cohen [1], Wong [13], and
the survey paper of Schmitt [10]. We also refer to the paper by Ogata [9] where
bounded solutions of )1.1) are established in exterior domains under assump-
tions which include that f(x, #) is bounded in 2 X R.

The main purpose of this paper is to extend some of the results on bounded
domains to the case when £ is unbounded. In particular we show that, under
suitable smoothness hypotheses, problem (1.1) has at least one solution if there
exist smooth functions 7, < %, on {2 satisfying

Luy + f(x, u5) < 0in £, Bu, > g on 052;
Loy + f(x,09) = 0in Q, By, < g on 0Q.

We also present conditions which permits one to conclude the existence of
nonnegative solutions, positive solutions, maximal solutions, bounded solutions,
and solutions which converge to zero uniformly at co.

In the following section we introduce notation and formulate our assumptions.
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Section 3 contains the statements and proofs of our main results under the
assumption that £ is an exterior domain.
In Section 4 we obtain sifficient conditions involving growth and/or integral
conditions on f which guarantee the existence of nonnegative solutions of (1.1).
In Section 5 we consider the special case of (1.1) when B is the Dirichlet
operator. We show that the results of Section 3 can be established for more
general domains.

2. PRELIMINARIES

Let a € (0, 1) be fixed. Denote by £ an unbounded domain of real n-space R”
with boundary 62 and closure . As is usual, we denote by x = (X1 4.y xp) the
points of R" and differentiation with respect to x; by D; for: = 1, 2,..., .

For a bounded domain M C R", let C"*+*(M), m = 1, 2,..., denote the usual
Hélder space. The norm in this space will be denoted by I #{,,.,.57 -

We consider the second-order linear differential operator

Lu = Z aijDiD,-u + Z biDiu

iJ=1 i=1

with real coefficients a;; , b; defined in £ where we assume that a,; € C*+(#),
b; € Cv*(M) for all bounded domains M C Q. The operator L is assumed to be
uniformly elliptic on every bounded subdomain of 2.

Let B denote one of the boundary operators

Bu = u,
or

Bu = oufdv + y(x)u, xeof.

Here &/6v denotes the outward conormal derivative, and we assume y > 0
everywhere on the boundary 0Q.

Finally, let f: 2 x R — R and g: 82 — R be given functions. Then we
consider the boundary value problem (1.1) where by a solution u of (1.1) we
always mean a function u in £ such that u € C2+%(M) for every bounded domain
M C £ and satisfies (1.1) identically.

The functions f, g, and vy are required to satisfy the following conditions:

Assumptions A. (1) f(x, 1) e C{M x [a, b]) for all bounded domains M C 2
and all —o0 <a < b < ©;
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(ii) for any given bounded domain M C , and for any —o0 < a < b <
o0, there exists a positive constant K such that

flx 1)) — fx, 8) = —K(t, — 1)

for all @ < t, < t; < b and for all xe M;
(ili) ge C¥(S), y e C+*+(S) for any bounded subdomain S of a%.

3. EXISTENCE OF SOLUTIONS IN EXTERIOR DOMAINS

In this section we assume that £2 is an exterior domain with boundary o2
of class C%+,

Let a > 0 be chosen such that {x € R*: | x | > a} C £2. The following notation
will be used:

Qp ={xeQ:|x]| < b}
Sy ={xeRm: | x| =5}
D,, = C*(Q,), b>0.

LemMA 3.1. Let f, g, and y satisfy the assumptions A. If there exist functions
vy < 1y on Q of class D, ,, for all b > 0 satisfying

Lug + f(x, uy) < 0in 8, Bu, = g on 09,
and
Loy + f(x, v9) = 01in 2, By, < g on 092,
then there exists a sequence of functions u; on Q with the Jfollowing properties:
(D) vo<u, <u;<uy inQ;
(2) weD, s
(3) Lu; + f(x,u) =0 inQ,,;,
Bu; =g on 082,
U; = Uy on S,.;
foralj=1,23,...
Proof. We first consider the boundary problem
Lu +f(xy u) =0 in Qa+1)
Bu =g on 99, 3.1)

u=uy, onS,.,.
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Under the hypotheses of Lemma 3.1 a result of Amann [2] implies that problem
(3.1) has a solution U, of class D, ., satisfying

vo(x) < Uy(x) < uy(x), xeQy .

Let u, be the extension of U, to all of Q defined as u, for all | x | > a + 1. Then
vy < %, < 4y in £, and hence u, satisfies properties (1)-(3) of Lemma 3.1.
We use induction to construct the required sequence. Assume u; satisfies
properties (1)-(3) for all 7 <j. A u;,, satisfying the same properties will be
constructed below.

From assumption A(ii) there exists a constant K > 0 such that

F(xs ) — flx, 1) = —K(t, — 8,) (3.2)

for all xef,,;,; and for all minimum wy(x) < ¢, < ¢, < maximum uy(x),
where the minimum and the maximum are taken over Q,,;,, . Let y, be the
unique solution of the boundary value problem

Ly — Ky = —f(x,u;) — Ku; in Qg i1
By =g on 0%,

y =1, on S -

It is well known that the above problem has a unique solution y; € D, ,,;,; - We
show next that y; satisfies the properties

(1) v <y <y in Q45043
(i) »<w N5

Since v, < u; < %,y in £2,,;,, by the induction hypothesis, the hypothesis
on uy and (3.2) imply that in £, ;.

(L — KXy; — up) = —f(x, u;) — Ku; + f(x, %)) + Kuy > 0;
and

(L — K)(y; — vo) < —f(x, ) — Ku; + f(x, v5) + Kv, < 0.

Furthermore, B(y; — u#5) <0 on a2,y — uy = 0o0n S, ;,1, B(y; — v5) =0
on 992, and y; — vy 2> 0 on S,.;,, . Therefore, the maximum principle for
elliptic equations implies that v, < y; <C 4 on £,.;,, , which proves (i).

Since L(y; —u;) =0 on 2,5, B(y;— ;) =0 on 92, and y, — u; =
¥; — uy < 0 by (i), we deduce from the maximum principle that y;, — u; < 0
on 2,.;. But uy(x) = uy(x) fora +j < |x| <a+j-+ 1. Hence y; < u; on
£.1is1, which proves (ii).
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We consider now the boundary value problem

Lu +f(x7 u) =0 in 'QaJr.H—l ’
Bu =g on 842, (3.3)

U= Uy on Sy -

Since Ly; + f(%, y;) = f(%,3;) — f(%, u;) + K(y; — u;) <0, Bu; = g on 82,
Y, =t on S, ;,.1, and y; = v, in £, ;. from properties (i) and (ii), we can
apply the result of Amann [2] to conclude that (3.3) has a solution U, ., € D, 4,4,
satisfying v, < Uy,; < y;in2,,;,, . Let u;,, be the extension of U, to all of 2
defined as wuy(x) for | x | == a 4 j + 1. It is now easy to check that u;_, satisfies
all the properties (1)-(3) of Lemma 3.1 completing the inductive construction.

Remark 1. Without assumption A(ii) on f, and with the other hypotheses
of Lemma 3.1, it is easy to see from the above argument that there exists a
sequence of functions u; on 2 satisfying properties (2) and (3) of Lemma 3.1.
In fact, assumption A(ii) on f was only used in the argument to construct a
monotone sequence.

Lemma 3.2. Let the sequence {u;} be as in Lemma 3.1. Then for any given
integer | = 1 there exists a positive constant K, depending on n, o, J, 4y , and v, but
independent of §, such that

I #iia4am,,, < K (3-4)
Jorallj = J.

Proof. Forany given ], the functions u; ,j = J, are solutions of the boundary
problem

Lu+ f(v, ux) =0 in .y,
Bu =g on 022, 3.5)
u=u; onsS,.,.
Since the sequence {;} is uniformly bounded on 2, ,, the functions f; defined
by
fi(®) = flxeufx),  xeQe,,

are uniformly bounded on £2,,, . It then follows from Lemma 3.2 of Amann
[2, p. 132] that u; € W £2,,,) and

4 llw, 2 < 8ISy, + 11 &l 00
+ #5108, + 118 e

A o5l ycs,, p

<K (3.6)
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for some positive constant K independent of j, where 8 is a positive constant
independent of j, p > 1, and ¢ = pj(p — 1).

We apply the Sobolev embedding lemma to (3.6) with p = #/(1 — «) to
conclude that ;€ C*(Q,,,) and

“ U; Ha,!?aH < Kl ) ] = ]v (37)

for some K; > 0 independent of j.
The L -estimate of Agmon, Douglis, and Nirenberg [1. Theorem 15.2] applied
to (3.5) has the form

25 w2y, < Olll filiL 00,0

+ 11 &lli-1in (3.8)

for some 8, > 0 independent of j, j = J, where
gi(x) = g(x), xe 0,
ui(x),  ¥€Sayy
and
Il gilli-1/p = infl| o HW,}(QH,)
with the infimum being taken with respect to all functions v € C¥(,, ;) which

equal g; on 882,,,. From (3.6) and (3.8) we deduce that there exists a positive
constant K, independent of j such that

w2,y < Ky (3.9)

From (3.9) withp = n/(l — «) and the Sobolev embedding lemma we conclude
that there exists a positive constant K, independent of j such that u; € C1++(@Q,_ )
and

I % licr+=a,,n < Ks (3-10)
forallj = J.
The Schauder-type inequality [1, Theorem 9.1] applied to (3.5) has the form
[ u; HCH“(QH,) < 8(Il f; Ha,s’é‘,w

1 &5 b, ) (3.11)

for some 8, > 0 independent of j. The conclusion of the lemma follows from
(3.10) and (3.11). We combine Lemmas 3.1 and 3.2 to prove the following main
result.
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TrEOREM 3.3. Under the hypotheses of Lemma 3.1, the boundary value problem
(1.1) has a solution 4 satisfying

Do(%) < d(x) < uy(x) in 2.

Proof. Let {u;} be the sequence constructed in Lemma 3.1. For each integer
i =1,2,... it follows from Lemma 3.2 that there exists a positive constant K,
independent of j, such that || u ||, vadt,,, S Ko for all j > 1. The compactness of
the injection C2+*(Q,.,) — C%(£2,,,) then implies that {u;: j > 1} has a sub-
sequence {1} which converges in the C%(£2,,,) norm to a function #! on 2., .
Define u,° = u; for convenience and define {#,;*} inductively ot be subsequence
of {u}~'} which converges in the C%(£2,,;) norm to a function #* on 2,,,,i =
1,2,.... Define 4 in 22 by d(x) = w¥(x) if x € 2,,;; this definition is consistent
since 2,,; C Q,,,4; and w*+! = 4 on £2,,, obviously for each ¢ = 1, 2,... .

We shall show that # is the required solution. For any bounded domain
MC Q, M C ,,, for some integer 7, and hence the diagonal sequence {u7(x)}
converges in the C%(M) norm to #¢ = # on M. In particular u,/ and Lu; converge
uniformly to M to u and Lu, respectively. Since Lu; = —f(x, #;) in M by Lemma
3.1, it follows that 4 is a solution of (1.1) of class C%(M), and hence of class
C2+«(M) by a standard regularity arguments based on Schauder estimates. Since
(%) < u;7(x) << uy(x) for each § = 1, 2,..., the function 4 also satisfies v(x) <
f(x) << uy(x) in L.

Remark 2. Without assumption A(ii) on f we can still construct a sequence
of functions {x;} satisfying properties (2) and (3) of Lemma 3.1. (See Remark 1.)
We can then use Lemma 3.2 and the Ascoli-Arzela theorems to construct
sequences {#*}, k = 1, 2,..., satisfying the following properties

(i) {5 Cut Clud, k= 1,2,...;

(ii) for each & = 1, 2,..., {#;/%} converges uniformly on £2,,; to a function
u* e D, .., satisfying Lu* 4 f(x, u*) = 0 in £,,;, and Bu* = g on Q0.

If we define a function u on £ by
u(x) = uk(x) for xeBQ,.,

then it is easy to see that the diagonal sequence {#,} converges to # and that u is
a solution of problem (I.1).

CoROLLARY 3.4. Assume f, g, and y satisfy assumptions AQi), A(iii). Further-
more, assume that f(x,0) = 0in 2, and g(x) = 0 on 222
Then, a necessary and sufficient condition for the existence of a nonnegative
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solution of (1.1) is the existence of a nonnegative function u, in Q of class D, 44;
Jor allj =1, 2,..., satisfying .

Lu + f(x,u) <0 in Q,
Buy =g  on0f.

The proof follows easily from Theorem 3.3 and Remark 2 by taking v, =
on Q.

COROLLARY 3.5. Assume f, g, and y satisfy assumptions A. Furthermore, assume
that f(x,0) == 0in Q, and g = 0 on 052 with the strict inequality holding for least
one point x € 0G.

Then, a necessary and sufficient condition for the existence of a solution u of (1.1)
satisfying u > 0 in Q is the existence of a nonmegative function u, in £ of class
D, o forally = 1,2,..., satisfying

Luy + f(x,4) <0 in 82,
Bu, = ¢ on 082

Proof. By Corollary 3.4 is nonnegative solution # of (1.1) exists. We show
that u is positive in £2. Let ] be an arbitrary integer. In view of assumption A(ii),
we can select a constant K > 0 such that

Fru) —f(x,0) > —Ku  inQ,,. (3.12)

Since f(x, 0) > 0in £ by hypothesis, (3.12) implies that Lu — Ku < 0in £, , .
We also have Bu = g > 0 on 8 with the strict inequality for at least one point
on 052 by hypothesis. The maximum principle then implies that # > 0in @, ,,
and since [ is arbitrary, # > 0in Q.

For the following corollaries the operator L is required to be in the divergence
form. In particular, let L, denote the operator defined by

I

L= 3 Dyp:(x)Du),
i,=1

where p;; are real function on £2 of class C2+*(} ) for all bounded domains M C @,

and the matrix ( p;;(x)) is assumed to be positive definite on every bounded
subdomain of £2. Consider the boundary value problem

Liu+ f(x,u) =0 inQ,

3.13
u=4g on 092 G-13)

CoroLLARY 3.6. Assume f(x,0) >0 in Q, f(x, u) is monotonic decreasing
inufor allu > 0 and x € 2, g > 0 on 882, and assumptions A hold.
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If there exists a positive function uy on Q2 of class D, ,.; for all j = 1,2,...,
satisfying Ly + f(x, 1) < 0in Q2 and uy = g on 052, then there exists a maximal
Dpositive solution @ < u, of (3.13) in the sense that, for every nonnegative solution
u < uy of (3.13), the inequality u < i holds. Moreover, if this condition is satisfied
and uy(x) converges to O uniformly as x — oo, (3.13) has a unique solution 1(x)
which converges to 0 uniformly as | x | — oo.

Proof. Let {u;} be the sequence constructed in Lemma 3.1 with vy = 0.
Then the pointwise limit #(x) = limit;, #;,(x) is a nonnegative solution of
(3.13) by Lemma 3.2, satisfying # < u, in 2. From Corollary 3.5 and the
hypothesis g > 0 on 2€2, we conclude that Z > 0 on £2.

We show next that # is maximal. Let 0 < # < u, by any solution of (3.13).
Let J be an arbitrary positive integer. Then the functions « and u; , are solutions
of the equation Lyu + f(x, #) = 0 in 2,,,. Furthermore, u;, > 0 in Q,,; as
can be proved by a similar argument to the one used in Corollary 3.5. Alsou; > u
on 98,.; . We then apply a result of Bushard [4] to conclude that #, > u on
0,.,.Since u)(x) = uy(x) for | x | = J,u;, > uonQand d(x) = lim,., u,(x) >
u(x), x € . This proves that # is maximal. Finally, if #,(x) converges to zero
uniformly as | x | — oo, we show that (3.13) has a unique solution # satisfying
this property. That such a 4 exists follows from the first part of the proof. To
show uniqueness, let # be any other positive zolution satisfying this property.
Let € > 0 be arbitrary, and choose an integer [ such that 4(x) << u(x) + € for
all | x| = J + 4. The monotonicity hypothesis of f implies that the function
w = u -} ¢ satisfies

Lw + f(x,w) <Ly~ f(x,u) =0

inf,,;.Sincew > 0o0néR, ;,and & << u + eond2,,,, Bushard’s result [4]
implies that # <C u + ¢ on £,,;, and consequently on £2. Since ¢ is arbitrary,
# < uon . The inequality u < # on £ can be proved similarly, completing the
proof of Corollary 3.6.

4. CRITERIA FOR THE EXISTENCE OF INONNEGATIVE SOLUTIONS

In this section we derive sufficient conditions on the coefficient f and the
boundary data ¢ which giarantee the existence of a nonnegative solution of the
boundary value problem

du + f(x,u) =0, x| >1, @1

ulx) = glx), |x[=1,

where f and g are assumed to satisfy assumptions A.
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We note that simplicity of presentation and comparison to known results
have been considered in formulating our criteria. In fact analogs of the results
below can be obtained for the more general problem (1.1) by the introduction of
more notation and complexities.

CoRrOLLARY 4.1. Problem (4.1) has a solution u satisfying
0 < ulx) < C|ux |2t jae| >1

if the following conditions hold:
(1) f(x0=0, {x[=1
(2) gx) =0, |x|l=1
(3) supjy. flx, Clx |2 "+) < Ce(e — 2 — ) re™
forall| x| > 1, where C = maximum,_, g(x), and 0 < e << n — 1. Moreover,
u(x) > O0for |x| >1ifg = 0on|x| =1
Proof. Let uy(x) = C|x|*"*. Then condition (3) implies that Lu, +
flx, ) <0, x| >1,and %, = g, | x| = 1. The conclusions of Corollary 4.1

then follow from Corollary 3.5.
The above corollary applies, in particular, to the problem

du + p(x) wr = 0, fxl > 1,
ux) =g lxl=1,

where y > 0 and p is of class C*(N,) forany N, = {x: 1 < [ x| < b},0 < b <
0. In this case condition (3) of Corollary 4.1 becomes

Slllp plx) < Crve(n — 2 — €) b, 3¢
xl=r
where b = —n + (n — 1)y — (y — De.

This is quite sharp in the case p(x) > 0, | x| == 1,and y > 1 is the quotient of
two odd integers, in view of a result of the author and Swanson [8] which asserts
that all solutions of du + p(x) u¥ = O change sign in G, = {x: [ x| > a} for
any a > 1 if

fw rp(r)dr = 0, d=n—1—yn—2),
1

where p,, is the spherical mean of p(x) on a sphere of radius r.
In the linear case y = 1, we note that b = —2, and if e = §(n — 2), then (3)
becomes

sup P(x) < (71;2,)2’._2

, r> L
lat=r 4

This is quite sharp in view of the known {6] Hille—Kneser criterion.
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COROLLARY 4.2. Problem (4.1) has a maximal positive solution 4 satisfying

0 <dx) <Clxrrte, |x|>1

if the conditions (1), (2), (3) of Corollary 4.1 hold and
(@) &) >0for x| =1;
(5) f(x,u)ismonotonic decreasing inu, u > 0, x € Q2, where C = max,,_, g(x).

Moreover, if these conditions hold and n = 3, (4.1) has a unique solution #(x)
converging to zer uniformly as | x | — oo.

Proof. 'The proof follows from Corollary 3.6 by taking #y(x) = C | x |2+,
where C = supj,_; g(#), and 0 < e < n — 2 satisfying condition (3).

CoRrOLLARY 3.4. For any e satisfying (2 — n -+ €) << 0, problem (4.1) has
a solution u satisfying

0 <u(x) <c|x|>nte
if
(1) f(x,2) <0,f(x,00=0  forall|x| > landallu > 0;
(2) gx) =20, |x} =1, where ¢ = supj,_, g(x).
Moreover, if f(x,u) is monotonic decreasing in u for all u >0 and | x| > 1,
and g(x) > 0 for | x| = 1, (4.1) has a maximal solution 4 satisfying
0 <d(x) < | x|2nte

Jor any e satisfying e(2 — n 4+ €) < 0.

Proof. Letuy(x) = c | x |27, where ¢ = sup|,_; g(x),and (2 — n + €) <
0. Then (1) implies that duy, + f(x, uy) <O for | x| > 1, and uy(x) = g(x)
for | x| = 1. The conclusion of Corollary 4.3 then follows from Corollary 3.6.

Other criteria can be obtained by applying known one-dimensional criteria.
As an example we use a result of Wong [13, Lemma 1.5] to obtain a sufficient
condition which guarantees that the boundary value problem

n =2, Au = H(x, u), fx] >1,
(4.3)
u(x) = g(x), %] =1,

has a nonnegative solution #(x) converging uniformly to zero as | x| — co.
Here H and g are required to satisfy the following conditions

(a) —H and g satisfy conditions 4;
(b H(x,t) =tG(|x|,¢t) for all | x| > 1 and for all ¢t == 0, where G is
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continuous and positive forall | x | > land forallz > 0,G(}x{,0) = 0,and G
is monotonic increasing in ¢ forall f x| > 1 and all 2 > 0;

() H(x,0)=0. |x]|>1;
(d) &x) =0, 1| =1

Consider the ordinary differential equation

2 (%) = rpG(r, ). (@.4)

CoroLLARY 4.3. Assume H and g satisfy conditions a, b, ¢, d. Then (4.3) has
a unique solution u which converges to zero uniformly as| x | — w if foreach K > 0

[ “ tlog 1G(r, K) dr = 0. (4.5)
1

Proof. Liouville’s change of variables r = ¢° h(s) = p(e®) transforms (4.4)
into

" = eth(s) G(e*, h(s)). (4.6)

A result of Wong [13, Lemma 1.5] implies that (4.6) has a positive solution
converging to zero as s — o of for some a > 0,

[ “ se¥h(s) G(e*, K) ds = oo @.7)

for each K > 0. Since (4.7) is equivalent to (4.5), it follows that (4.5) is a suffi-
cient condition for (4.4) to have a positive solution pyr) on [1, o] converging
to zero as7 — o0. Let ¢ = 1 be chosen such that the function u(| x |) = cpy(l x |)
satisfies #y(1) > supj,i.y g{x). From the hypothesis (b} we obtain

H(x, uy) = cpoll x |) G x |, epol(] x 1))

= epof| x 1) G(| % |, pol} ¥ 1))
1d dug .
rdr( dr):Au‘“ r>1

and
u(l) = glx), |x|=1

Since the function oy(x)} = 0 obviously satisfies dvy == H(x, v,), [ | > 1,
and vg{x) << g{x), | x| == 1, Theorem 3.3 implies that (4.3) has a solution u
satisfying 0 < # < 1%, . Hence #(x) converges to zero uniformly as | x | — co.
Finally, the uniqueness of  follows by the same argument used in Corollary 3.6,
completing the proof of Corollary 4.3.
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5. D1ricHLET PROBLEM IN AN UNBOUNDED DOMAIN

For the case when £ is not an exterior domain, we require that 2 allows the
following decomposition:

There exists a sequence of bounded domains £, ,» = 1, 2,..., with boundaries
02, of class C?** such that

(1) 2,CR,,,CQRforalln = 1,2,...,and 2 = ,_; 2;
(2) xeéf2and | x| < n implies that x € 29, .

Consider the boundary value problem

Lu—+ f(x,u) =0 in Q,
u=4g on o682,

where L is the elliptic operator defined in 2, and f, g satisfy the conditions below.

Assumption B. (1) f satisfies assumptions A(i), (ii);
(2) g is a real-valued function on Q of class C2+*(}M) for all bounded
domains M C Q.

By replacing the domains £, ; in the proofs of Lemmas 3.1, 3.2 by the domains
£;,7 =1,2,..., we obtain

THEOREM 4.1. Let f, g, 82 satisfy the conditions of Section 4. If there exist
Sfunctions vy < uy in £ of class C2+*(M) for all bounded domains M C § satisfying

Luy + f(x,u5) <0 in Q,
Uy =g on 2
Loy + f(x,7) 2 0 in 2,
v L g on Q,
then the boundary value problem (5.1) has a solution 1 satisfying

Ty < < u, m .

Proof. The proof is very similar to the proof of Theorem 3.3. In fact, the
only modification required in the proofs of Lemmas 3.1 and 3.2 is to replace
2,,;by2;,j=1,2,.., n The details are left to the reader.

Analogs of the results in Section 3 can be easily written.
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