
186 Book Reviews/Science of Computer Programming 24 (1995) 183-187 

rithmic Logic, introduced by A. Salwicki and G. Mirkowska also and perhaps better 

known as Harel’s dynamic logic, four constructs are added to the assertion language: 

initially assertions, always assertions, sometimes assertions and previously assertions, 

whereas the latter ones may only occur in always assertions and previously assertions. 

This additional constructs offer the full power of dynamic logic for the specification of 

procedures. 

COLD-K is not only a specification language it is also a design language that can be 

used in all intermediate stages of design ranging from specification to implementation. 

This aim is achieved by constructs in COLD-K that allow the description of algorithms 

including the concept of side-effects in case of state-based algorithms. 

The main goal of the book is not the description of the language features but to show 

how algebraic and state-based specification techniques can be effectively used in the 

software development process. This aim is reflected in the structure of the book. In Part I 

algebraic specification techniques are presented together with methodological guidelines 

about structuring and implementing algebraic specifications. Part II presents state-based 

specification techniques together with methodological guidelines about structuring and 

implementing state-based specifications. Part III contains some theoretical topics and 

advanced language features and it deals briefly with the specification of large systems. 

The language constructs and the methodological guidelines are presented together with 

instructive examples. Especially the methodological topics make the present book very 

recommendable. 

Since the present book is not the only one and even not the first one on the market 

about formal specification and design there should be a serious comparison with similar 

languages and systems, for instance with the RSL language and the RAISE system. 

The comparison of COLD-K with the initial algebra approach in Section 9.3 is not 

well-founded. The described advantages of COLD-K are only correct in the case of 

algebraic specifications that are completely initially constraint. Most languages based 

on the initial algebra approach offer the possibility of initial constraints as axioms in 

addition to conditional equations. In that case the described advantages of COLD-K 

disappear. 

HORSTREICHEL 

Institute of Theoretical Computer Science 

Faculty of Computer Science 

TU Dresden 

D-01 062 Dresden 

Germany 

F. Nielson and H.R. Nielson, Wo-Level Functional Languages, Cambridge Tracts 

in Computer Science, Vol. 34 (Cambridge University Press, 1992) 

This book is an excellent exposition of the research by the authors (and others) in the 

area of semantic techniques for the efficient and correct implementation of (functional) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82145799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Book Reviews/Science of Computer Programming 24 (1995) 183-187 187 

programming languages. It is particularly suitable for researchers and postgraduate stu- 
dents. Some knowledge of Typed Calculi and Denotational Semantics is an essential 
prerequisite. 

The book provides a rational reconstruction of several techniques (scattered in the 
literature) and places them in a coherent and unifying context. To exemplify these 
techniques, the authors apply them to a lazy functional language, which amounts to a 
lambda-calculus with lists. 

In this subject proofs tend to be rather long and boring, with a lot of induction and 
case analysis, but the authors have found a reasonable compromise. They assist the 
reader who wants to go through all steps, by breaking long proof into a sequence of 
(meaningful) lemmas, by commenting definitions and also critical steps in a proof, by 
providing several indexes and a list of tables. 

Each chapter includes bibliographic notes, with pointers to the literature, and exercises, 
either to fill the gaps or to propose variations on the theme of the chapter. 

The first part of the book (Chapters 2-4) is devoted to making concepts explicit. The 

general idea is that before generating (optimized) code corresponding to a high-level 
program, the program should undergo some massaging. Chapter 2 introduces explicit 
type information, the techniques are standard, and it is a warming up for the following 
chapter. Chapter 3 introduces the distinction between compile-time and run-time, the 
attribute two-level in the title refers to this distinction. Chapter 4 takes the distinction 
between the two levels to the extreme, by differentiating the syntax for compile-time 
and run-time expressions: lambda-terms for the former, combinators for the latter. 

Chapter 5 exploits the fully explicit language, obtained via the previous massaging, 
to introduce a flexible notion of semantics: parametrized semantics. In this semantics 
the interpretation of compile-time expressions is parametric in an interpretation of run- 
time expressions. By choosing different interpretations for the run-time expressions, one 
can capture in this framework several semantics: the standard denotational semantics, 
various forms of abstract interpretation, and (optimized) code generation. 

The following chapters (Chapter 6-7) consider specific instances of parametrized 
semantics and prove their correctness w.r.t. the standard semantics, using the technique 
of (Kripke) logical relations. 

In the last chapter the authors hint to other parametrized semantics, combining abstract 
interpretation and code generation, for generating optimized code. They discuss also 
ways of adapting the ideas developed in a purely functional context to the implementation 
of an imperative language. 

E. MOGGI 

DISI 
Universitd di Genova 
viale Benedetto XV 3 

16132 Genova 
Italy 


