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Abstract

Let R be a subring of the complex numbers and a be a cardinal. A system L of linear homogeneous
equations with coefficients in R is called a-regular over R if, for every a-coloring of the nonzero elements
of R, there is a monochromatic solution to L in distinct variables. In 1943, Rado classified those finite
systems of linear homogeneous equations that are a-regular over R for all positive integers a. For every
infinite cardinal a, we classify those finite systems of linear homogeneous equations that are a-regular
over R. As a corollary, for every positive integer s, we have 2ℵ0 > ℵs if and only if the equation x0 + sx1 =
x2 + · · · + xs+2 is ℵ0-regular over R. This generalizes the case s = 1 due to Erdős.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

One of the first results in Ramsey theory is Schur’s theorem [17], which states that for every fi-
nite coloring of the positive integers, there is a monochromatic solution to the equation x + y = z.
In 1927, van der Waerden [19] proved his celebrated theorem that every finite coloring of the
positive integers contains arbitrarily long monochromatic arithmetic progressions. These two
classical theorems of Schur and van der Waerden were beautifully generalized by Rado in his
1933 thesis [14] and even further in 1943 [15]. For an m × n matrix A = (aij ) with entries in
a subring R of the complex numbers, denote by L = L(A) the system of linear homogeneous
equations
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n∑
j=1

aij xj = 0 for 1 � i � m.

Let a be a cardinal number. The system L is called a-regular over R if, for every a-coloring
of the elements of R, there is a monochromatic solution to L in distinct variables. The system L
is called regular over R if it is a-regular over R for all positive integers a. The matrix A with
column vectors c1, c2, . . . , cn is said to satisfy the columns condition if there exists a partition
{1,2, . . . , n} = D1 ∪ · · · ∪ Dp such that

∑
i∈D1

ci = 0 and for each j ∈ {2,3, . . . , p}, ∑
i∈Dj

ci

is a linear combination of {ci : i ∈ ⋃j−1
k=1 Dk}. Rado [15] proved that the system L(A) is regular

over R if and only if the matrix A satisfies the columns condition and there is a solution to L(A)

in distinct variables.
Our main result is Theorem 1, which is an infinite color analogue of Rado’s theorem. For

an infinite cardinal a and subring R of the complex numbers, Theorem 1 classifies those finite
systems of linear homogeneous equations that are a-regular over R. Before jumping into the
main result, we start by describing some well-known ℵ0-colorings of the real numbers that are
free of monochromatic solutions in distinct variables to particular systems of linear homogeneous
equations.

There is an ℵ0-coloring of the nonzero real numbers without a monochromatic solution to
the Schur equation x + y = z in distinct variables. For a real number r > 1, we first define the
coloring cr : R>0 → Z of the positive real numbers by cr(x) = �logr x�. We have c2(x) = i if and
only if x lies in the interval [2i ,2i+1). It follows that if c2(x) = c2(y) = i, then c2(x +y) = i +1.
Therefore, c2 is free of monochromatic solutions to x + y = z. If we use ℵ0 more colors to color
the negative real numbers, and give 0 any color, then we can extend c2 to an ℵ0-coloring of
the real numbers that is free of monochromatic solutions to x + y = z in distinct variables. If a
matrix A satisfies that not all row sums of A are zero, then there is an r such that cr is free of
monochromatic solutions to L(A) and it follows that L(A) is not ℵ0-regular over R.

If we assume the axiom of choice, which we do until Section 5, then there are other systems
of linear equations that are not ℵ0-regular over R. We note that R is a vector space over Q.
Assuming the axiom of choice, every vector space has a basis. In particular, there is a well-
ordered basis B = {bp}p<2ℵ0 for R as a Q-vector space. Such a basis B is known as a Hamel
basis. Therefore, every real number x has a unique representation

x =
k∑

j=1

qjbpj

with p1 < · · · < pk and qj ∈ Q \ {0} for 1 � j � k. We may view each real number x as a
weighted finite subset of B , the weight being the vector w(x) = (q1, . . . , qk) and the subset being
e(x) = {bp1, . . . , bpk

}. According to Komjáth [12], Rado proved that there is an ℵ0-coloring
of R that is free of monochromatic 3-term arithmetic progressions. Rado’s coloring is defined
by assigning each real number x its weight w(x). In 1969, Ceder [3] made the same observation
as Rado. Later that year, Ceder [4] showed that there are no linear homogeneous equations in 3
variables that are ℵ0-regular over R. This follows from the general observation that for a vector
space V over a countable field F , we can assign to an element x ∈ V its weight w(x), and this
countable coloring is free of monochromatic solutions in distinct variables to every system L of
linear homogeneous equations such that the only solutions to L with xi ∈ {0,1} for i = 1, . . . , n

satisfy x1 = · · · = xn.
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Erdős and Kakutani [8] in 1943 proved that the continuum hypothesis is equivalent to there
being a countable coloring of the real numbers such that each monochromatic subset is linearly
independent over Q. Erdős followed this by proving that the Sidon equation x1 + x2 = x3 + x4
is ℵ0-regular over R is equivalent to the negation of the continuum hypothesis. A proof of this
result can be found in a paper by Davies [5].

Analogous to the columns condition of Rado, we find, for every infinite cardinal a, necessary
and sufficient conditions on the matrix A for the system L(A) to be a-regular over R. We first
need a few definitions, which we borrow from Komjáth [12].

Definition. Let A be an m × n matrix with column vectors c1, . . . , cn.

(1) We call a partition P = {D1, . . . ,Dl} of the set [n] = {1, . . . , n} balanced for A if∑
j∈Dk

cj = 0 holds for every k ∈ [l].
(2) A collection {P1, . . . ,Ps} of balanced partitions for A is called separative if for all distinct

u,v ∈ [n], there is a balanced partition Pj with u and v in different sets in Pj .
(3) We call the system L(A) separable if there exists a separative collection of balanced parti-

tions for A.
(4) For separable L(A), the separation number s(L(A)) is the least positive integer s such that

there exists a separative collection of s balanced partitions for A.

We suppose for the rest of the paper that a is an infinite cardinal. The successor cardinal of a

is denoted by a+, and the sth successor cardinal of a is denoted by a+s .
The following theorem is our main result.

Theorem 1. For an infinite cardinal a and subring R of the complex numbers, a finite system L
of linear homogeneous equations with coefficients in R is a-regular over R if and only if L is
separable and |R| � a+s(L).

We also have the following result, which is similar in character to results of Komjáth [13] and
Schmerl [16].

Theorem 2. For an infinite cardinal a, commutative ring R, and subfield F ⊂ R with |F | � a,
there is an a-coloring of R that is free of monochromatic solutions in distinct variables to all
finite systems L of linear homogeneous equations such that the coefficients of L are in F and L
is not a-regular over R.

For each positive integer s, Komjáth [12] gave an example of a system of linear homogeneous
equations that is ℵ0-regular over R if and only if 2ℵ0 > ℵs . Likewise, for each positive integer s,
Corollary 1 gives an example of a single linear homogeneous equation that is ℵ0-regular over
R if and only if 2ℵ0 > ℵs . Corollary 1 follows from Theorem 1 since the separation number for
Eq. (1) is s + 1. Corollary 1 generalizes the case s = 1 that Erdős solved.

Corollary 1. For every positive integer s, the linear homogeneous equation

x1 + sx2 = x3 + · · · + xs+3 (1)

is ℵ0-regular over R if and only if 2ℵ0 > ℵs .
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For a system L of linear homogeneous equations with rational coefficients, Komjáth [12]
defines λ(L) to be the least cardinal b such that if V is a rational vector space of dimension b,
then every ℵ0-coloring of V has a monochromatic solution to L in distinct variables. If no such
cardinal b exists, set λ(L) = ∞. We note that the dimension and cardinality of an uncountable
rational vector space are equal. Komjáth proved that if λ(L) � 2ℵ0 , then L is separable. He also
proved that if L is separable, then λ(L) � ℵs(L), where s(L) is the separation number of L. The
following theorem demonstrates that Komjáth’s upper bound on λ(L) is tight.

Theorem 3. If ℵs � 2ℵ0 , then a finite system L of linear homogeneous equations with rational
coefficients satisfies λ(L) = ℵs if and only if L is separable and s = s(L).

We deduce Theorems 1 and 3 from results we prove on hypergraph partition relations. These
results are discussed in the next section, and proved in Section 4. The deduction of Theorem 1
from results on hypergraph partition relations is established in Section 3. Up until Section 5, we
assume the axiom of choice. In Section 5, we investigate the problem of ℵ0-regularity over R

without the axiom of choice.

2. Hypergraph partition relations

A hypergraph H = (V ,E) consists of a set V and a collection E of subsets of V . The elements
of V are called vertices and the elements of E are called edges. A hypergraph H is called k-
uniform if every edge contains exactly k vertices. The Erdős–Rado arrow notation b → (d)ka
means that for every a-coloring of the subsets of cardinality k of a set of cardinality b, there is
a monochromatic complete k-uniform hypergraph on d vertices. We write b � (d)ka if b → (d)ka
does not hold. Ramsey’s theorem [14] can be written using the Erdős–Rado arrow notation: we
have

ℵ0 → (ℵ0)
k
r

for all positive integers r and k.
Erdős [6,9] in 1942 proved if a is an infinite cardinal, then(

2a
)+ → (

a+)2
a
, (2)

and

2a � (3)2
a. (3)

In 1943, Erdős and Kakutani [8] proved that if a is an infinite cardinal, then there is an a-
coloring of the edges of the complete graph on a+ vertices without any monochromatic cycles,
but every a-coloring of the edges of the complete graph on a+2 vertices contains a monochro-
matic cycle. For G a nonempty family of k-uniform hypergraphs and cardinals a and b, the
partition relation b → (G)ka is said to hold if, for every a-coloring of the edges of the complete
k-uniform hypergraph on b vertices, there is a monochromatic copy of a hypergraph G ∈ G. We
write b � (G)ka if b → (G)ka does not hold. Letting C denote the family of cycles, we can restate
the Erdős–Kakutani result as b → (C)2

a if and only if b � a+2.
Theorem 4 below classifies b → (G)2

a for every nonempty family G of finite graphs and car-
dinals a and b with a infinite. A star Sn is a graph on n + 1 vertices with one vertex of degree n

and the other n vertices of degree 1. We call a graph a galaxy if its connected components are
stars.
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Theorem 4. Let a and b be cardinals with a infinite. For a nonempty family G of finite graphs,
the partition relation b → (G)2

a holds if and only if (1), (2), (3), or (4) below are true.

(1) There exists G = (V ,E) ∈ G with |E| � 1 and |V | � b.
(2) b = a+ and there exists a galaxy G ∈ G.
(3) b > a+ and there exists a bipartite graph G ∈ G.
(4) b > 2a.

The forward directions of (3) and (4) of Theorem 4 follow from the Erdős–Hajnal partition
relation (4) below with k = 2 and the Erdős partition relation (2), respectively.

The main new result in Theorem 4 is that if a is an infinite cardinal, then there is an a-coloring
of the edges of the complete graph on a+ vertices such that the only connected monochromatic
subgraphs are stars, which strengthens the Erdős–Kakutani result. We give a proof of this result
in Section 4 as a warmup to the proof of Theorem 5.

Having fully answered the problem for graphs, we now turn our attention to the general prob-
lem for hypergraphs, which requires some terminology. A k-uniform hypergraph H = (V ,E)

is called k-partite if there exists a partition V = V1 ∪ · · · ∪ Vk of the vertex set V such that
every edge of H contains exactly one vertex in each Vi . Call H partite if H is k-partite for some
positive integer k.

We call a hypergraph H = (V ,E) an s-hybrid if there is a positive integer k and a partition
V = V1 ∪· · ·∪Vk such that every edge of H contains exactly one vertex in each Vi and, if vi ∈ Vi

for 1 � i � s, then at most one edge of E contains the set {v1, . . . , vs}. We note that a graph is a
galaxy if and only if it is a 1-hybrid. Also, any k-partite graph is vacuously an s-hybrid for s � k.

A polarized partition theorem due to Erdős and Hajnal [7,12,16], states that if G contains a
finite k-partite hypergraph, then

a+k → (G)ka. (4)

For a nonempty family G of hypergraphs and for cardinals a and b, the partition relation
b → (G)<ω

a is said to hold if for every a-coloring of the finite subsets of a set of cardinality b,
there is a monochromatic copy of a hypergraph G ∈ G.

Our main result on hypergraph partition relations is Theorem 5 below.

Theorem 5. Let a be an infinite cardinal and s a positive integer such that a+s � 2a. For a
nonempty family G of finite hypergraphs that does not contain an s-hybrid, we have

a+s � (G)<ω
a .

3. Reducing partition regularity to hypergraph partition relations

In order to make the reduction from partition regularity to hypergraph partition relations, we
next define, for a m × n matrix A, a family H(A) of finite hypergraphs each with n edges.

Definition. For a m×n matrix A with column vectors c1, . . . , cn, let H(A) be the family of finite
hypergraphs such that H = (W,E) is an element of H(A) with E = {e1, . . . , en} if and only if∑

w∈ed
cd = 0 holds for every vertex w ∈ W .

Lemma 1, Corollary 2, and Lemma 2 demonstrate a strong connection between separability
of L(A) and the existence of a partite hypergraph in H(A).
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Lemma 1. A system L(A) of linear homogeneous equations is separable if and only if there is a
partite hypergraph H ∈ H(A).

Proof. We prove a stronger result then the claim of the lemma. We construct a bijection be-
tween separative collections of (not necessarily distinct) balanced partitions for A and partite
hypergraphs in H(A). Let C = {P1, . . . ,Ps} be a separative collection of partitions of [n] that
are balanced for A, with Pi = {Di1, . . . ,Dili } for 1 � i � s. We associate with each set Dij

a vertex wij . Let Wi = {wij : j ∈ [li]} and W = W1 ∪ · · · ∪ Ws . Let E = {e1, . . . , en} with
ed = {wij : d ∈ Dij } for d ∈ [n]. Since C is a collection of partitions of [n], then for each d ∈ [n]
and i ∈ [s] there is exactly one j ∈ [li] such that d ∈ Dij (which is equivalent to wij ∈ ed ).
Therefore, each edge ed contains exactly one element from each Wi and H = (W,E) is s-partite
with partition W = W1 ∪ · · · ∪ Ws . Since each partition Pi is balanced, then

∑
wij ∈ed

cd = 0 for
each vertex wij . Since C is separative, then the sets ed1 and ed2 are distinct for 1 � d1 < d2 � n.
Hence, the s-partite hypergraph H is an element of H(A).

We show that the mapping we just described from separative collections of (not necessarily
distinct) balanced partitions for A and partite hypergraphs in H(A) is a bijection by exhibiting its
inverse. So suppose H = (W,E) ∈ H(A) is an s-partite hypergraph with s-partition W = W1 ∪
· · · ∪ Ws . Let Wi = {wi1, . . . ,wili } for i ∈ [s] and E = {e1, . . . , en}. For each vertex wij , define
the subset Dij = {d: ed ∈ wij } of [n]. Notice that

∑
d∈Dij

cd = 0 follows from the definition
of H(A). Therefore, Pi := Di1 ∪ · · · ∪ Dili is a balanced partition for A. Since the edges ed ∈ E

are distinct subsets of W , then the collection C := {P1, . . . ,Ps} of balanced partitions for A is
separative. �

Notice that the bijection constructed in the proof of Lemma 1 maps a separative collection of
s balanced partitions for A to an s-partite hypergraph in H(A). We therefore have the following
corollary.

Corollary 2. If L is a separable system of linear homogeneous equations, then there is an s(L)-
partite hypergraph H ∈ H(A).

For separable L(A), the following lemma combined with the previous corollary implies that
the minimum s such that there is an s-partite hypergraph in H(A) and the minimum s′ such that
there is an s′-hybrid in H(A) satisfy s = s′ = s(L(A)).

Lemma 2. If L(A) is a separable system of linear homogeneous equations, then there is no
s-hybrid H ∈ H(A) with s < s(L(A)).

Proof. Suppose for contradiction that there is a positive integer s < s(L(A)) and a k-partite
s-hybrid H = (W,E) ∈ H(A) with k-partition W = W1 ∪ · · · ∪ Wk such that for every set
{w1, . . . ,ws} with wi ∈ Wi , there is at most one edge that contains {w1, . . . ,ws}. To each sub-
set Wi there is an associated partition Pi of [|E|] that is balanced for A as in the proof of
Lemma 1. Since s < s(L(A)), then the collection C = {P1, . . . ,Ps} of balanced partitions for A

is not separative. Hence, there are edges ed1 and ed2 with d1 �= d2 such that ed1 ∩ (
⋃s

i=1 Wi) =
ed2 ∩ (

⋃s
i=1 Wi), contradicting the assumption that H is an s-hybrid. �
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For a subset S of a vector space V , we call a system L of linear homogeneous equations with
coefficients in F a-regular over S if, for every a-coloring of the nonzero elements of S, there is
a monochromatic solution to L in distinct variables.

Let 〈A,≺〉 be a well-ordered set of cardinality a and P(A) denote the set of subsets of A.
Let φ :V → P(A) be an injective function. For distinct subsets X and Y of A, let δ(X,Y ) be the
least element of A such that exactly one of X or Y contains δ(X,Y ).

Let B be a basis for a vector space V . For a finite subset e ⊂ B , let s(e) = ∑
b∈e b. Let

S(B) = {s(e): e is a finite subset of B}.

Theorem 6. Let V be a vector space over a field F , a be an infinite cardinal such that 2a � |V | >
a � |F |, and A be a finite matrix with entries in F . The system L(A) of linear homogeneous
equations is a-regular over V if and only if |V | → (H(A))<ω

a .

Proof. Let B = {bp: p < |V |} be a basis for V . We have |V | = |S(B)| = |B| since V is an
uncountable vector space over a field of lesser cardinality. Notice that H = (V ,E) with E =
{e1, . . . , en} is a subhypergraph of [B]<ω that is isomorphic to an element of H(A) if and only
if x = (s(e1), . . . , s(en)) is a solution to L(A) in distinct variables. Therefore, |B| → (H(A))<ω

a

is equivalent to L(A) being a-regular over S(B). Since |B| = |V | and S(B) ⊂ V , then |V | →
(H(A))<ω

a implies that L(A) is a-regular over V .
Our next task is to prove the harder direction: if L(A) is a-regular over V , then |V | →

(H(A))<ω
a . We prove this by proving the contrapositive. So suppose that there is an a-coloring c

of the finite subsets of B that realizes |V | � (H(A))<ω
a . We then present an a-coloring Γc of the

nonzero elements of V that is free of monochromatic solutions to L(A) in distinct variables.
Let A be a set of cardinality a and P(A) be the set of subsets of A. In Section 4.2, we

define the linear ordering ≺∗ of P(A) and the a-coloring C1 of [P(A)]<ω . By Theorem 7(1),
for every color D of C1, there are disjoint subsets P1, . . . ,Pk of P(A) such that every edge of
color D contains exactly one vertex in each Pi and every edge T = {t1, . . . , tk} ⊂ P(A) with
tk ≺∗ · · · ≺∗ t1 satisfies tj ∈ Pj for j ∈ [k].

Since B is a basis for V , then for each x ∈ V , there is a unique representation x = ∑k
i=1 fibpi

with p1 < · · · < pk . We let w(x) = (f1, . . . , fk) and e(x) = {bp1, . . . , bpk
} ⊂ B .

Let φ : [B]<ω → P(A) be an injective function. For an element x = ∑k
h=1 fhbph

of V , de-
fine σ(x) to be the permutation of [k] such that

φ(bpσ(1)
) ≺∗ · · · ≺∗ φ(bpσ(k)

).

We define the a-coloring Γc of the nonzero elements of V by

Γc(x) = (
C1

(
φ
(
e(x)

))
, σ (x),w(x), c

(
e(x)

))
.

Suppose for contradiction that x = (x1, . . . , xn) is a monochromatic solution to L(A) in dis-
tinct variables by coloring Γc . Let (D,σ,w,d) be the color of the monochromatic solution
to L(A). Let w = (f1, . . . , fk) be the weight that each of the xj ’s share. Let xj = ∑k

h=1 fhbph,j

be the unique basis representation for xj . Define the finite hypergraph H(x) = (V (x),E(x)) ∈
H(A) with vertex set V (x) ⊂ B defined by bj ∈ V (x) if πj (xp) �= 0 for at least one p ∈ {1, . . . , n}
and edge set E(x) = {e(x1), . . . , e(xn)}.

By coloring C1 and σ , there are disjoint subsets {B1, . . . ,Bk} of B such that every edge e =
{bp1, . . . , bpk

} of color D in the coloring C1 with p1 < · · · < pk satisfies bph
∈ Bh for 1 � h � k.
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Therefore, if b ∈ Bh, then the coefficient of b in xj is fh if b ∈ e(xj ) and 0 if b /∈ e(xj ). Since
x is a solution to L(A), then for each b ∈ Bh, we have

0 =
∑

b∈e(xj )

cj fh = fh

∑
b∈e(xj )

cj .

Hence,
∑

b∈e(xj ) cj = 0 for all b ∈ B . Therefore the hypergraph H(x), which is colored mono-
chromatic by coloring c, is an element of H(A). This contradicts that the coloring c is free of
monochromatic hypergraphs in H(A), and completes the proof. �

We now give a proof of Theorem 1, assuming hypergraph partition relations proved in the
next section.

Proof of Theorem 1. Let R be a subring of the complex numbers and Ax = 0 be a system of
linear equations over R. Let F be the subfield of C generated by the entries of A, so |F | = ℵ0.
Let V ⊂ C be the smallest vector space over F containing R, so V contains a basis B ⊂ R and
|V | = |B| = |R|. Since S(B) ⊂ R, then as noted in the first paragraph of the proof of Theorem 6,
we have |R| → (H(A))<ω

a is equivalent to L(A) being a-regular over S(B). Moreover, by The-
orem 6, |R| → (H(A))<ω

a is equivalent to L(A) being a-regular over V . Since B ⊂ R ⊂ V , then
|R| → (H(A))<ω

a is equivalent to L(A) being a-regular over R. By Lemma 1, L(A) is separa-
ble if and only if H(A) contains a partite hypergraph. By Corollary 2 and Lemma 2, if L(A) is
separable, then the smallest s such that H(A) contains an s-hybrid is s(L) and H(A) contains a
s(L)-partite hypergraph. We complete the proof of Theorem 1 by putting these results together
with the hypergraph partition relation (4) and Theorem 5. �

Similar to the proof of Theorem 1, Theorems 2 and 3 follow in a straightforward manner. We
leave the proofs out for brevity.

4. Graph and hypergraph colorings

In Section 4.1, we present an a-coloring of the edges of the complete graph on a+ vertices
such that the only monochromatic subgraphs are galaxies. In Section 4.2, we generalize this
result, demonstrating that if s is a positive integer satisfying a+s � 2a, then there is an a-coloring
of the finite subsets of a set of cardinality a+s such that the only monochromatic subhypergraphs
are s-hybrids. We first need some basic definitions from set theory.

Let A be a set of cardinality a, and define the power set P(A) as the set of subsets of A. The
power set P(A) has cardinality 2a. Let S be a subset of P(A) of cardinality a+s , where s is a
positive integer.

Let < denote the well-ordering of the ordinals. For a well-ordered set 〈R,≺〉 and a ∈ R,
define the segment Ra = {b ∈ R: b ≺ a}. The cardinality |R| of a set R is the least ordinal α

such that there exists a bijection φ :S → α. For a set R, let <R denote a well-ordering of R that is
order-isomorphic to the well-ordering < of |R|, that is, there is a bijection φ :R → |R| such that
for all x, y ∈ R, we have x <R y if and only if φ(x) < φ(y). Notice that for a well-ordered set
〈R,<R〉 and y ∈ R, the inequality |Ry | < |R| holds. For y ∈ S, let φy :Sy → |Sy | be a bijection.

For a cardinal κ and set S, define

[S]κ = {
T ⊂ S: |T | = κ

}
and [S]<κ = {

T ⊂ S: |T | < κ
}
.
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For the well-ordered set 〈A,<A〉 and distinct subsets X,Y ⊂ A, let

δ(X,Y ) = min{a ∈ A: exactly one of X and Y contains a}
and

X ≺∗ Y if δ(X,Y ) ∈ Y.

The linear ordering ≺∗ is called the lexicographic ordering of the power set P(A).

4.1. Coloring with galaxies

We assume in this subsection that s = 1, so that |S| = a+. We start by defining three colorings
c1, c2, and c3 of [S]2 below. For x = {x0, x1} ∈ [S]2 with x0 <S x1, let

c1(x) = δ(x0, x1), (5)

c2(x) =
{

0 if x0 ≺∗ x1,

1 if x1 ≺∗ x0,
(6)

c3(x) = φx1(x0). (7)

Notice that the set of colors for coloring c1 is A, the set of colors for coloring c2 is {0,1},
and the set of colors for c3 is the set of ordinals less than a. Hence, the product coloring
c = c1 × c2 × c3 given by c(x) = (c1(x), c2(x), c3(x)) is an a-coloring of [S]2. We now show
that the only monochromatic subgraphs in the coloring c are galaxies. Suppose G is a mono-
chromatic subgraph of color (δ, ε,α) in the coloring c. Define the partition S = S0 ∪ S1 by
S0 = {y: y ∈ S and δ /∈ y} and S1 = {y: y ∈ S and δ ∈ y}. Notice that every edge {x0, x1} that
is monochromatic of color δ in coloring c1 with x0 ≺∗ x1 satisfies x0 ∈ S0 and x1 ∈ S1. Hence,
G is bipartite with bipartition {S0, S1}. By coloring c2, every vertex of S1−ε is larger than its
neighbors in G by the well-ordering <S . By the coloring c3, a vertex y is adjacent in G to at
most one other vertex y′ satisfying y′ <S y. Therefore, every vertex of S1−ε has degree at most 1
in G, and so G must be a galaxy.

4.2. Coloring with s-hybrids

Our first task is to define three colorings, C1, C2, and C3. The coloring C1 colors all the finite
subsets of P(A), but sometimes (it will be clear by context) we consider the coloring C1 with
its domain restricted to the finite subsets of S. The colorings C2 and C3 only color the finite
subsets of S. We will prove that all the monochromatic subhypergraphs in the coloring C1 are
partite. Each of the colorings C1, C2, C3 use at most a colors, and we will prove that the only
monochromatic subhypergraphs in the a-coloring C = C1 × C2 × C3 of the finite subsets of S

are s-hybrids.
Let T = {t1, . . . , tk} be a finite subset of P(A) listed in decreasing lexicographic order: tk ≺∗

. . . ≺∗ t1. Let C1(∅) = 0 and otherwise let C1(T ) be the |T |× |T | matrix C1(T ) = (δij ) such that
δij = δ(ti , tj ) if i �= j and δij = 0 if i = j . Notice that the colors of C1 are 0 or finite matrices
whose entries are 0 or elements of A. Therefore, C1 is an a-coloring.

If T is a subset of S, then we next assign color C2(T ) and C3(T ) to T . Let C2(T ) =
C3(T ) = 0 if k � s. To define C2(T ) and C3(T ) when k > s, we first recursively define a listing
T (1), . . . , T (k) of the elements of T and a family

S ⊃ S(T ,1) ⊃ · · · ⊃ S(T , k)
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of subsets of S. Let T (1) be the largest element of T by well-ordering <S and S(T ,1) denote
the segment ST (1). Once T (j − 1) and S(T , j − 1) have been defined, let T (j) denote the largest
element of T \{T (1), . . . , T (j −1)} in the well-ordering <S(T ,j−1) of S(T , j −1) and let S(T , j)

be the segment S(T , j − 1)T (j).
Let C2(T ) be the permutation π of [k] such that tπ(i) = T (i) for i ∈ [k]. Since the colors of C2

are 0 or finite permutations, then C2 is an ℵ0-coloring.
Notice that∣∣S(T , k)

∣∣ < · · · < ∣∣S(T ,1)
∣∣ < |S|,

so the set S(T , s) has cardinality at most a.
Let C3(T ) be the image of the set {T (s + 1), . . . , T (k)} by a bijection φT (1),...,T (s) :

[S(T , s)]ω → |S(T , s)|. Notice that the image of φT (1),...,T (s) consists of ordinals less than a,
so C3 is an a-coloring. Also, if T and T ′ are distinct finite subsets of S each with at least s

elements and T (i) = T ′(i) for i ∈ [s], then C3(T ) �= C3(T
′) since φT (1),...,T (s) maps T and T ′ to

distinct ordinals less than a.
For the following theorem, we use the colorings C1, C2, and C3 that we just defined.

Theorem 7. Assume a is an infinite cardinal and s is a positive integer such that a+s � 2a. Let
A be a set of cardinality a, and S be a subset of the power set P(A) with cardinality a+s .

(1) In the a-coloring C1 of [P(A)]<ω , the monochromatic subhypergraphs are partite. More-
over, for every monochromatic subhypergraph H = (V ,E) in the coloring C1 of [P(A)]<ω ,
there are disjoint subsets P1, . . . ,Pk of P(A) such that every edge of H contains exactly one
vertex in each Pi and every edge T = {t1, . . . , tk} ∈ E with tk ≺∗ · · · ≺∗ t1 satisfies tj ∈ Pj

for j ∈ [k].
(2) There is an a-coloring C of [S]<ω such that every monochromatic subhypergraph is a s-

hybrid.

Proof. (1) Every monochromatic subhypergraph in the coloring C1 is uniform since the empty
set has color 0, and every k-set with k � 1 is a k × k matrix. For k = 0 or 1, every k-uniform
hypergraph is trivially k-partite. Let k � 2 and Δ = (δij ) be one of the k × k matrices that is one
of the colors of C1. For j ∈ [k], define the subset Pj of P(A) by x ∈ Pj if and only if δij /∈ x

for i < j and δjh ∈ x for j < h � k. For i, j ∈ [k] with i < j , every element of Pi contains δij

and no element of Pj contains δij . Hence, the sets P1, . . . ,Pk are pairwise disjoint. From the
definition of the coloring C1, every edge in a monochromatic subhypergraph of color Δ has a
vertex in each Pj for each j ∈ [k]. Hence, a monochromatic subhypergraph in the a-coloring C1

is partite. Moreover, if T = {t1, . . . , tk} with tk ≺∗ · · · ≺∗ t1 is an edge of color Δ, then tj ∈ Pj

for j ∈ [k].
(2) Let C be the product coloring C = C1 ×C2 ×C3, where C1, C2, and C3 are as previously

defined, and the domain of C1 is restricted to the finite subsets of S. Since each Ci for i ∈ {1,2,3}
uses at most a colors, then the product coloring C uses at most a colors.

By the coloring C1, every monochromatic subhypergraph is k-partite for some positive inte-
ger k. If k � s, then a k-partite hypergraph is a s-hybrid. So we may assume k > s.

By the colorings C1 and C2, for every color D = (Δ,π,α) of C, there is a positive integer k

and pairwise disjoint subsets S1, . . . , Sk of S such that every finite subset T of S that is colored D

by C satisfies |T | = k and T (i) ∈ Si for i ∈ [k]. By the coloring C3, every s-tuple (v1, . . . , vs)
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with vi ∈ Si satisfies that at most one edge e of color D satisfies {v1, . . . , vs} ⊂ e. Hence, the
only monochromatic subhypergraphs are s-hybrids. �

For a hypergraph H and cardinal b, the hypergraph bH consists of b disjoint copies of H .

Lemma 3. Let a and b be infinite cardinals such that a < b and b is a regular cardinal. If H is a
k-uniform hypergraph such that b → ({H })ka, then b → ({bH })ka.

Proof. We have b = b × b, so every a-coloring of the edges of the complete k-uniform hyper-
graph on b vertices has at least b monochromatic copies of H . Since b > a and b is regular, then
there are b monochromatic copies of H all of the same color. Hence, we have b → (bH)ka. �

For a hypergraph H = (V ,E) and vertex v ∈ V , define the neighborhood hypergraph
N(H,v) = (V ′,E′) by

V ′ = {
w: w ∈ V \ {v} and there is an edge e ∈ E such that {v,w} ⊂ e

}
and

E′ = {
e \ {v}: v ∈ e ∈ E

}
.

We define the infinite k-uniform hypergraph H(k,a) recursively. The 1-uniform hypergraph
H(1,a) = (V ,E) has a+ vertices and E = {{v}: v ∈ V }. For integer k � 2, define the k-uniform
hypergraph H(k,a) which consists of a+ disjoint copies of the k-uniform hypergraph which
consists of a root vertex v whose neighborhood hypergraph is H(k − 1,a).

Lemma 4. Let k be a positive integer and a an infinite cardinal. For every a-coloring of the finite
subsets of a set of cardinality a+ there is a monochromatic copy of H(k,a).

Proof. The proof is by induction on k. For k = 1, the result follows immediately from the trans-
finite pigeonhole principle. The induction hypothesis is that the lemma is true for k. Let v be any
of the a+ vertices, and consider the edges of size k + 1 containing v. By the induction hypoth-
esis, there is a monochromatic hypergraph where every edge contains v and the neighborhood
hypergraph of v is isomorphic to H(k,a). Combining this with Lemma 3, for every a-coloring
of the finite subsets of a set of cardinality a+ there is a monochromatic copy of H(k + 1,a). By
induction on k, we have verified the lemma. �

Every 1-hybrid k-uniform graph on at most a+ vertices is a subhypergraph of H(k,a). Hence,
Corollary 3 follows immediately from Lemma 4 and Theorem 7.

Corollary 3. For every infinite cardinal a and family G of hypergraphs, we have a+ → (G)<ω
a if

and only if G contains a 1-hybrid hypergraph on at most a+ vertices.

We next prove Erdős and Hajnal’s polarized partition relation (4). A proof of this result can
also be found in the papers of Schmerl [16] and Komjáth [12]. The complete k-partite hypergraph
P(k;n) = (V ,E) is defined by V = V1 ∪ · · · ∪Vk with |Vi | = n for 1 � i � k, and (v1, . . . , vk) ∈
E if vi ∈ Vi for 1 � i � k, and there are no other edges. Notice that every k-partite hypergraph
on n vertices is a subhypergraph of P(k;n).
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Lemma 5. Let k and n be positive integers and a an infinite cardinal. Every a-coloring of the
edges of the complete k-uniform hypergraph on a+k vertices contains a monochromatic P(k;n).

Proof. The proof is by induction on k. For k = 1, this result follows immediately from the
transfinite pigeonhole principle. The induction hypothesis is that the lemma is true for k. Consider
an a-coloring of the complete (k +1)-uniform hypergraph K

(k+1)

a+(k+1) on a+(k+1) vertices. Partition

the a+(k+1) vertices into two sets, X and Y , such that |X| = a+(k+1) and |Y | = a+k . For each
x ∈ X, consider the edges of K

(k+1)

a+(k+1) that include x and k vertices from Y . By the induction
hypothesis, there is a monochromatic (k + 1)-hypergraph such that each edge contains x and the
neighborhood of x is a copy of P(k;n) with vertices in Y . Make a pigeonhole for each copy
of P(k;n) with vertices in Y and color of the a colors. There are a+k such pigeonholes. Place
a vertex x ∈ X in a pigeonhole if the neighborhood of x in the color of the pigeonhole contains
the copy of P(k;n) of the pigeonhole. Since there are a+(k+1) such vertices x ∈ X and only a+k

pigeonholes, then there are n vertices in one pigeonhole. These n vertices, along with the vertices
of the copy of P(k;n) of the pigeonhole, are the vertices of a monochromatic P(k + 1;n) in the
color of the pigeonhole. By induction on k, we have verified the lemma. �
5. Regularity without the axiom of choice

In this section we study infinite color regularity over R without the axiom of choice. Finite
color regularity over R without the axiom of choice was studied by Fox and Radoičić [10] and
also by Alexeev, Fox, and Graham [1].

We first define the axioms we will be using. In 1942 Bernays [2] formulated the axiom known
as the principle of dependent choice.

Definition (Principle of dependent choices). If E is a binary relation on a nonempty set A and
for every a ∈ A there exists b ∈ A with aEb, then there exists a sequence a1, a2, . . . , an, . . . such
that anEan+1 for every n < ω.

The principle of dependent choice is usually denoted by DC. The axiom of choice implies DC,
but not conversely (Theorem 8.2 in [11]). As usual, ZF is short for Zermelo–Fraenkel system of
axioms, and ZFC is short for Zermelo–Fraenkel system of axioms with the axiom of choice.

Definition (Axiom LM). Every set of real numbers is Lebesgue measurable.

Axiom LM is not consistent with ZFC. However, In 1970, assuming the existence of an inac-
cessible cardinal, Solovay proved the following consistency result.

Theorem 8. (See Solovay [18].) The system of axioms ZF + DC + LM is consistent.

We call a system
n∑

i=1

aij xi = 0 for 1 � j � m

of linear homogeneous equations homothetic if
∑n

i=1 aij = 0 for 1 � j � m. Rado [15] first
proved that if L is a system of linear homogeneous equations that is not homothetic, then there
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is a countable coloring of the real numbers without a monochromatic solution to L in distinct
variables. The following theorem classifies those systems of linear homogeneous equations that
are ℵ0-regular in ZF + DC + LM.

Theorem 9. In ZF + DC + LM, a system L of homogeneous linear equations is ℵ0-regular
over R if and only if L is homothetic and there is a solution to L in distinct variables.

This classification is considerably different from the classification in ZFC given by Theo-
rem 1. For example, x1 + x2 = 2x3 is ℵ0-regular over R in ZF + DC + LM but not ℵ0-regular
over R in ZFC. The proof of Theorem 9 follows from a result of Ceder [4].

If S ⊂ Rn, then a homothetic copy of S is a set aS + b = {as + b: s ∈ S} where a, b ∈ R and
a �= 0. Notice that a system L of linear homogeneous equations is homothetic if and only if for
every solution (x1, . . . , xn) of L, we have (ax1 + b, . . . , axn + b) is also a solution of L for all a

and b in R. Hence the solution space of a system L of linear equations is closed under taking
homothetic copies if and only L is homothetic. The last ingredient of the proof of Theorem 9 is
the following theorem of Ceder [4].

Theorem 10. (Ceder 1969) If S is a finite subset of Rn, then every countable coloring of Rn with
each color class Lebesgue measurable contains a monochromatic homothetic copy of S.

Since the set of solutions to a linear homogeneous system of equations is closed by homothetic
copies, then Theorem 9 follows from Theorem 10.
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