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The absolute value of the Miibius function of a bounded poset P with n + 2 
elements satisfies 

IP( G max ,,O p,+ mapp =n PI tpf- l). P,Pl ’ 
This bound is sharp. The posets achieving it are classified. The same problem is 
solved for graded posets of given rank and attacked for finite lattices. D 1991 

Academic Press, Inc. 

1. INTRODUCTION 

The Mobius function of a finite poset was recognized by G.-C. Rota [6] 
in 1964 as a central tool in combinatorial enumeration. Its theory has since 
been systematically explored and developed by various authors. We refer 
to R. Stanley’s exposition in [7, Chap. 31 for a thorough treatment, 
containing all the basic results and the posets terminology used in the 
following. Throughout this paper we are dealing with finite posets only. 

Recall that the sum and the ordinal sum of two posets P and Q are 
formed such that P and Q are (induced) subposets, where for x E P and 
y E Q, x and y are always incomparable in P + Q, whereas x < y in P 0 Q. 
In particular, the finite chain with n elements arises as an ordinal sum 
n=l@ . ..@l. while the n element antichain is a sum nl=l+ ... +l. 
The length of a chain is defined such that I(n) = n - 1. The length I(P) of an 
arbitrary poset P is the maximal length of a chain in P. Its width w(P) is 
the maximal size of an antichain in P. 

We will denote the number of chains respectively maximal chains in a 
poset by c(P) (respectively MC(P)). Similarly, A(P) and MA(P) are the num- 
ber of antichains and the number of maximal antichains in the poset P. 

We will write x Q y for x, y E P if y couers x, that is, if x < y and there 
is no ZE P such that x < z < y. In this case y is a cover of x, and x is a 
cocouer of y. 

203 
0097-3165/91 $3.00 

Copynght Q 1991 by Academic Press, Inc. 
582a/56/2-3 All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82145792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


204 GijNTER M. ZIEGLER 

The Miibius function on the (closed) intervals of a posets is defined recur- 
sively by 

1 if x= y, 

,4x, Y) = 
-x $< ~(x, z) otherwise. 

Y 

A poset is bounded if it contains a unique minimal element 0 and a unique 
maximal element 1. For every poset P, P = 6 0 P@ 1 is bounded. The 
inverse operation produces the proper part P = P - {a, I> of a bounded 
poset. We will also use P = P- {I). The Miibius function of a bounded 
poset P is p(P) = &,I). 

The question for the maximum (absolute) value of the Mobius function 
of a bounded poset with n +2 elements was posed by R. Stanley as 
[7, Exercise 3.41a]. Our answer was announced with the solutions to the 
exercises [7, p. 1871. In Section 2 of this paper we give a short and simple 
proof for this result and determine the extreme examples (Theorem 2.5). 

With a similar approach in Section 3 we study the case of graded posets 
of given length. For this we agree that a poset with 6 is ranked if for all 
x E P, all maximal chains of [b, x] have the same length r(x). P is graded 
if it is bounded and ranked; that is, if all maximal chains in P have the 
same length 1(P) = r(l). 

In the graded case (Theorem 3.2) the structure of the extreme examples 
is more complicated and correspondingly the induction used for the proof 
needs more care. In both cases the extreme examples tend to be series 
parallel posets L-7, p. 1001: they arise from one element posets 1 by 
successive sums and ordinal sums. (Equivalently, they do not contain the 
N-shaped four element poset as a subposet [8].) This motivates us to put 
the Mobius function of the series and parallel connection of bounded 
posets on record-they, as given in the following lemma, are the analogues 
of sums and ordinal sums in the category of bounded posets. 

LEMMA 1.1. Let P and Q be two bounded posets. Then the Miibius 

function of their Txllel connection P?Q = 0 @ (P + Q) 0 1 and their 

series connection P @ 0 = 6 0 PO & @ ? are given by 

c1(6O(P+a,o?,=~c(P,+~L(Q)+l, 

,d@(POe,@~,= -,dP)~AQ,. 

In Section 4 we will discuss the case of posets with given length in which 
every element has at most k covers and cocovers, corresponding to 
[7, Exercise 3.421. We develop a technique to construct posets of this type 
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with high Mobius function (Proposition 4.4), which in particular for k = 2 
yields non-trivial lower bounds. Finally, in Section 5 we discuss the maxi- 
mal Mobius function for finite lattices and give a proof, due to J. Kahn and 
P. Edelman, for a subexponential upper bound in this case. 

Our methods are not quite as ad hoc as they may seem. In fact they are 
closely related to the compression techniques of extremal set theory, as 
surveyed in [4]. They lead naturally, as a topological counterpart, to the 
study of maximal f- and b-vectors of simplicial complexes, as pursued 
in [2]. 

As a warm-up exercise in extremal poser theory, we ask for the maximal 
numbers of (maximal) chains and antichains in n element posets. Already 
for these simple questions, the keys to the proofs are the corresponding 
monotonicity properties. More precisely, (weak) monotonicity is needed to 
allow for induction proofs, whereas strict monotonicity allows us to 
characterize all the extremal examples. 

LEMMA 1.2. Let P be a poset and XE P: 

(1) C(P-X)<C(P),MC(P-X)<MC(P); 

(2) A(P-x)<A(P),MA(P-x)GMA(P). 

PROPOSITION 1.3. Let P be a poset of length I- 1 with n elements 
(O<Z<n). 

(1) P contains at most 

c(n, I) := p, + myp,=n ivl (pi + I) 
P,> 1 

(1.1) 

chains, with equality if and only if P is an ordinal sum of antichains 

Prrp,l@ ... @prl 

such that the pi achieve the maximum in (1.1). 

(2) P contains at most 

MC(n, I):= (1.2) 

maximal chains, with equality if (but not only if) P is an ordinal sum of 
antichains 

Pzp,l@ ... @P/l 

that achieves the bound in (1.2). 
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Proof. Let P be a poset of cardinality n, and let T := max(P) be its set 
of maximal elements. From P we form a new poset P’ := (P- T) 0 T. It 
has the same length I(P) = I(P). For the number c(P) of chains in P we 
obtain, denoting the number of chains that contain the element x by c(x), 

c(P)= c c(x)+c(P-T)<c(P-T)(ITI+l)=c(P’), 
.XE T  

with equality if and only if P = P’. Similarly for the number of maximal 
chains, 

MC(P) = 1 MC(X) < MC(P- T) ITI = MC(P)), 

.YG T  

where equality holds if P N (P - T) 0 T= P’, but also, for example, for 
P = 1 + 2 with n = 3 (and I= 2). By induction on size or length, the claims 
now follow. i 

For fixed I, the expressions for c(n, I) and MC(~, I) grow like polynomials 
in n of degree 1. If we do not restrict the length, we get exponential 
formulas for the maximal number of (maximal) chains in a poset of given 
size. 

Namely, if P has n elements, then it contains at most 2” chains, with 
equality if and only if P is a chain. This (trivial) result follows from 
Proposition 1.3 with 

max c(n, I) = 2”, 
O</dfl 

where the maximum is achieved only for pi = . . . = p, = 1 in formula ( 1.1). 
Similarly, if P is an n element poset, then it has at most 

max O<,Gn MC(IZ, I) maximal chains. To evaluate this, we observe 
2(n - 2) > n for n > 4 (with equality only for n = 4) such that without loss 
of generality we may assume pie (2, 3) for n > 1. From 23 < 32 we see that 
every optimal product in (1.2) contains the factor “2” at most twice. Thus 
for n > 2 we obtain 

343 for n=Omod 3, 
MC(n) = max Mc(n, I) = 4 . 3(n-4)‘3 for nElmod3, 

Oc/<n 2 .3+2)/3 for nE2mod3. 

In particular we obtain 4/3”“. 3”j3 < MC(n) < 3”13 for n 2 2, and thus 

lim loi3 Mc(n 1 
“-a n 

+og 3. 
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MC(~) is the maximal number of maximal complete subgraphs of a 
comparability graph on n nodes. Moon and Moser [S] prove that the 
same upper bound holds for arbitrary graphs. 

Similarly, we can treat the maximal number of (maximal) antichains in 
a poset of given width (maximal size of an antichain) w. 

PROPOSITION 1.4. Let P be a poset of width w with n elements 
(O<w<n). 

(1) Then P contains at most c(n, w) antichains, with equality if and 
only if P is a sum of chains 

Pzp1+ ... +pH 

such that the pi achieve the maximum in (1.1). 
(2) P contains at most Mc(n, w) maximal antichains, with equality if 

(but not only if) P is a sum of chains 

P = p1 + . ‘. + pII, 

that achieves the bound in ( 1.2). 

ProoJ: Let P be a poset of cardinality n and width w. By Dilworth’s 
theorem [ 1, Theorem 8.143 P can be written as a disjoint union P= 
C,O’.. 0 C, of w  chains. We will compare P to P’ = C, + . +. + C,. Every 
antichain of P is an antichain of P’, and thus we obtain for the numbers 
of antichains, 

A(P)<A(P’)= fi (pi+ I) 
i= 1 

for pi = (Ci (, with equality if and only if every antichain in P’ is an 
antichain in P; that is, P’ 2: P. 

Now consider a fixed antichain A, in P that has maximal size w  = IA, (, 
so that A, A Ci = {a:} (1 d i < w). With this for every maximal antichain A 
of P we define a maximal antichain A’ of P’ by 

Now consider maximal antichains A,, A, of P such that A; = A;. We 
obtain for these A,-A,=A;-A,=A&-AO=A,-AO. Thus A, n A,c 
A, and this implies that A, u A, is again an antichain in P; hence A, = A,. 
From this we can conclude 

MA(P) < MA(P’) = fi pi. 
i= 1 

which proves the result. 
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Considering P = 10 (1 + 1) for n = 3 (and w  = 2), we see that the sums 
of chains are not the only extremal posets. 1 

It may seem curious that the extremal numbers coincide for the cases of 
chains and of antichains. However, this fits nicely into the duality between 
chains and antichains that appears throughout much of extremal set theory 
and may to a certain extent be explained in linear programming terms. 

In fact the reader may observe that the extremal posets, although 
different, are in both cases series parallel posets. For every series parallel 
poset P, there is another series parallel poset P’ on the same ground set, 
such that the (maximal) chains of P are (maximal) antichains of P’, and 
vice versa. It is easy to see how the extremal posets for the Theorems 1.3 
and 1.4 correspond to each other in this way. (The fact that for a poset P 
there is a poset P’ whose chains are the antichains of P extends to, and 
in fact characterizes, posets of order dimension at most 2; see [7, 
Exercise 3.101 for further references.) 

The same phenomena appear in the analysis of posets with minimal 
numbers of (maximal) chains or antichains, which we leave to the 
interested reader to work out. 

2. POSETS WITH MAXIMAL MOBIUS FUNCTION 

DEFINITION 2.1. For n 3 0, let 

p,(n) := max{ Ip( : P a bounded poset, IPI = n}, 

and for O<r<n, 

p&n, r) := maxi [p(P)1 : P a graded poset of rank r + 1, IPI = n}, 

LEMMA 2.2. (1) p,(O) = 1, p,(l)=O, p,(2) = 1. 

kin + 1) 2 k.(n) for n>l. 

(2) p&n, r) = 0 for n < 2r, pGp(2r, r) = 1. p&n, 1) = n - 1, 

p&n + 1, r) 2 pLGP(n, r) for n > r. 

Proof. If P is any bounded poset, n = IPI > 0, then we can form a new 
poset P’ by adding to P a new element x that covers a unique element 
y E is. Then ~(0, x) = 0, hence ,u(P’) = p(P), which proves p,(n + 1) > ,uL,(n) 
for n > 1. If P is graded, and r(P) > 2, then we can construct P’ such that 
y has corank 2, and such that y QX <I. Then P’ is again graded of the 
same rank, which proves the monotonicity of p&n, r) in n. I 
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Our goal will be to determine pL,(n) and pLGP(rz, r). In this section we will 
deal with the first case of pP(n), which turns out to be easy (“[3-l” in 
R. Stanley’s [7] classification) because the posets achieving the bound have 
very simple structure. 

DEFINITION 2.3. A bounded poset has level type if it is an ordinal sum 
of antichains. 

If P has level type, rank l(P) = r + 1, and rank generating function 
Ci,op;t’, then 

P=O@p,l@ ... @p,l@I. 

In this case we compute 

P(p)=(-l)‘+’ n (Pi-l), 

i= 1 

for example by induction on r, with Lemma 1.1. Let &(n) and p&.(n, r) be 
the maximal Mobius functions achieved by posets (respectively, by graded 
posets of given length) of level type. For these we can make explicit com- 
putations. 

LEMMA 2.4. 

&,(n, r) = ,,+ma+xpzn ,v (Pi-11 for n&r. r 
P,, 1 

l-l 

In particular, u;(n) is strictly increasing in n for n 2 1. 

With this we obtain our first main result, 

THEOREM 2.5. Let P be a boundedposet of length I+ 1 and IP( = n. Then 
the Mobius function of P is bounded by 

IP( Q max O<r<l PI+ ma+xp En .fi cp,- l). PI31 r I-l 
(2.1) 

If P satisfies this with equality, then P has level type. Furthermore, for every 
poset P there is a bounded poset P* with I PI = 1 P*l and l(P*) G l(P) which 
achieves the bound in (2.1). In particular, this means that 

up(n) = max 
r>O p,+ yxp =” .n (pi-l). r 

P,Z 1 
I-1 

(2.2) 



210 GtiNTER M. ZIEGLER 

Proof: We use induction on n, the claim being trivial for n = 0, 1, 2 
with p,(O)= 1, pJl)=O and p,(2)= 1 (cf. Lemma 2.2(l)). Let P be a 
poset with maximal Mobius function, IPI 2 2. Recall P = P - {I}. By 
T :=_max(P) = {x,, . . . . x,} we denote the elements in P that are covered 
by 1; that is, T is the set of maximal elements of P. Now from [7, 
Lemma 3.14.43 we obtain 

P(P)=PC(P- T)- f ~(6, Xj). 
j= I 

Here we assume that the elements xi’ T are labelled so that xi makes a 
maximal contribution to Ip(P that is, 

where c = sign@(P)). This allows us to construct a poset P’ from P as 

where for x E P - T, 

and the yj are (incomparable) maximal elements of p. That is, if 
T’ = max(F) denotes the elements of P’ covered by 1, then 

{Y , , . . . . y,} G T’. 

In analogy with the “compression” technique of extremal set theory (see 
[4, Sect. 8]), we could call P’ a compression of P. 

The poset P’ is constructed so that l(P’) < I(P) and 

~(f”)=l*(P- Tbwd, x,), 

where P - T = P’ - T, and thus 

IP( 2 IP(P)I, 

because of our special choice of x,. Now as long as (yi, . . . . ym} c T’ we 
can iterate this construction, producing a sequence of posets P, P’, P”. . . 
with Ip( d Ip( < ... and II(P)1 2 II(P’)I > .... Furthermore (T( < 
IT’1 < . . . . and thus the sequence has to stop, because 1 T(‘)I <n. Thus it 
suffices to study the case where P, P’ are as above and { y,, . . . . y,} = T’; 
we have to show that then P 2: P’. 
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In this case we have x, > x for all x E P - T, and hence 

P’z(P-T)@ml@l. 

We conclude that P- T= [6, x,]; hence p(P- T) =p(o, x1) and 

AP)=p(P’)= --(m-1)&,x,). 

This implies, by induction, that [6, x1] has level type. Because pb is strictly 
monotone by Lemma 2.4, we have 1 [b, x,] 1 = 1 [o, x,] 1 for all 1~ j < m and 
hence every xj satisfies xj > x for every x E P - T. Thus 

P-(P-T)@ml@i 

and hence P has level type, with P N P’. 1 

To illustrate the proof technique of Theorem 2.5, we show in Fig. 2.1 the 
posets P’ and P” derived from a given poset P. 

Of course, it is interesting to evaluate the expression for p,(n) given by 
Theorem 2.5. The same technique we used to computeMc(n)in Proposition 1.3 
here yields 

n-l for l<n<7, 
4 45 for n - 0 mod k.(n) 5, = 
5 .4’” 

~ 6V5 
for n E 1 mod 5, n B 6, 

3i.d(n-4’)/5 for n=-imod5,ie{1,2,3},n>S. 

In particular, this yields 5 4(“-6)/5 < p&n) < 4”j5 for all n > g and thus 

lim log&.(n) 2 
n-cc n 

= 5 log 2. 

FIG. 2.1. Two alternative sequences of posets P + P’ + P” as generated in the proof of 
Theorem 2.5, with p,(P) = p(P’) = 0 and p(F) = -2 (top) (resp. p(P”) = 4 (bottom)). 
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3. RANKED POSETS WITH MAXIMAL MOBIUS FUNCTION 

Since the posets with maximal Mobius function are all of level type 
and hence graded, one would assume that the posets of level type again 
maximize the Mobius function among the graded posets of given rank and 
cardinality. This is in fact the case. However, our proof for Theorem 2.5 
does not solve the problem for graded posets of given rank because the P 
constructed there may not be a graded poset even if P is, and the length 
may drop (see Fig. 2.1). 

Instead, we will now work with an induction on n that depends on 
removing a suitable element from P. The problem we face here is that even 
if P is graded with all pi large, there may not be an x E P such that P - x 
is again graded. This motivates the attack on the more general problem for 
posets P such that P = P - {I} is ranked. This property is preserved under 
removal of maximal elements of P. 

One more problem arises: even if we only consider graded posets (of 
given rank), not all extremal posets have level type. The smallest example 
for this arises is n = 4 and r = 2, with pG,(4,2) = 1 and P = 6 @ (2 + 2) @ 1. 
If we only require that lj be ranked, then there may not even be an 
extremal graded poset of level type (e.g., for n = 3 and r = 2). The following 
results contain a complete analysis of the extremal cases that can arise. 

DEFINITION 3.1. A bounded poset P of length Z(P) = r + 1 has 
generalized level type if P is an ordinal sum of antichains and of copies of 
posets P, = k + k (k > 2). 

Equivalently, P is of generalized level type if it is graded and every rank 
selection Pji,i+ ,) for 1~ i< r is isomorphic either to the ordinal sum 
ml 0 nl of two antichains, or to the sum 2 + 2. 

THEOREM 3.2. Let P be a bounded poset of length r + 1 such that 
P = P - {I} is ranked with rank generating function 1 + xi= 1 pit’ (pi 2 1). 
Let s :=min{i> l:p,= l} (where we set p,+I := 1). Then 

s- 1 

IPL(p)I d n (Pi-l). (3.1) 
i= 1 

Furthermore, if t := max { i < s : pi > 3) (with t = 1 tf this set is empty) and P 
achieves the bound in (3.1), then there is a unique t’ satisfying t < t’ <s such 
that 

(i) the rank selection 

P ,,.,={O}u{x~P:1<r(x)<t’}u{I} 

of P has generalized level type, with u(i?, x) # 0 for all x of rank t’, and 
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(ii) the elements in P- PC,,, do not contribute to the Miibius function 

of P, that is, p(6, y) = 0 for y E j with r(y) > t’. 

Proof: (See Fig. 3.1). Assume that P is a bounded poset with maximal 
Ip( among the bounded posets for which k is ranked with a given rank 
generating function 1 + XI=, pit’. We may assume s > 1 and hence p1 2 2. 
Thus Ip( >ns:: (p,- l), which is achieved taking PC,, of level type (cf. 
Lemma 2.4) and inserting the other elements y E P with r(y) > t so that 
~(6, y) = 0. In particular, we have p(P) # 0. We proceed by induction on 
n = C:= 1 pi. 

(i) We may assume that sE{r,r+l} (that is,p,a2 for l<i<r), 
because pi = 1 implies ~(6, y) = 0 for all y E P with r(y) > i, so that these 
elements can be deleted from P without changing p(P), and we are done 
by induction. 

(ii) Now, as the first case to consider, assume that there is an 
element x~max(P) with prCx, > 3. By (i) we have r(x) <s. Then from 
p(P) = p(P - x) - ~(0, x) with 

s-l 
IP(p)I 2 n (pi-l), 

i=l 

r(x) - 1 

*=I 

IAP - XII G (f%(X) -2). n (Pi-l)? 

(3.2) 

(3.3) 

l<ics 
i#T(X) 

we obtain 
s-1 

n (Pi-l)=l; 

i=?(x)+ 1 

hence r(x) = s - 1, and equality holds in (3.2), (3.3), and (3.4). Thus P - x 
and [o, x] have the described structure by induction, and the rest is 
routine to check. 

FIG. 3.1. Two ranked posets P with maximal Ip(P@ i)l = 2 (and t’ = 4 respectively t’ = 3) 
for given rank generating function 1 + 2p + 2p* + 3p’ + 2p4 + 2p5. 
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(iii) For our second case, assume that there is an element x E max(p) 
with P,(~, = 2 and T(X) < r. Then we obtain ~(0, y) = 0 for all y E P with 
r(y) > r(x) as in (i), considering the poset P-x. This implies that we can 
delete these elements y from P, and the induction proceeds. 

(iv) Now all we are left with is the third case where max(P) = T= 
{yEP:r(y)=r} and ITI <2. If T= {x,}, then this implies .u<x, <I for 
all x E P and thus p(P) = 0. If T= {x,, x2 }, then with the “compression 
technique” of Theorem 2.5 we can modify P so that both top elements 
x, , xq cover the same set of elements in P. The argument there in particular 
implies &xl)=p(6,x,). If now x,,x2>x for all x~P--{x~,x~}, then 
P= (P- T)@ T and we are done by induction. Otherwise we get new 
maximal elements in p and have thus reduced the problem to case (ii) 
or (iii). 1 

COROLLARY 3.3. Let P be a graded poset of rank r + 1, with IPI = n 2 r. 
Then 

IP( G k&c r) = p,+ ma+xp,sn 2, tpi- l), PI 2 1 
and this bound is sharp. Furthermore, if P achieves this bound and n B 2r, 
then P has generalized level type. If n B 3r - 1, then P has level type. 

Proof: The first part is clear from Theorem 3.2. Note that if n < 2r, then 
pi = 1 for some 1 < i < r, which for a graded poset implies p(P) = 0. For 
n 2 2r we can choose pi 2 2 for all i, hence ,u&n, r) > 0 in this case. 

If pi = 2 for some i in an optimal poset, then pi < 3 for all j, because 
p, - 1~ 2(pj - 2) for pi 2 4. Thus any optimal poset that contains P, as a 
rank selection has n < 2 .2 + (r - 2) .3 = 3r - 2. 1 

4. POSETS WITH BOUNDED DEGREES 

In [7, Exercise 3.421 R. Stanley asks for the maximum Mobius function 
of a bounded poset of length I + 1 in which every element is covered by at 
most k other elements. P. Edelman, who originally posed this problem, 
noted (see [7, p. 1873) that the answer is not the obvious one: one can do 
considerably better than Ip( = (k - l)‘, which is achieved by the poset 
P=o@kl@ .., @kl@j of level type. 

In this section we will systematically construct examples for this. Our 
construction technique will then be employed to yield examples for an even 
more restricted version, in which we require that not only the number of 
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covers, but also the number of cocovers of every element in P is bounded 
by k, that is, so that in the Hasse diagram of P (viewed as a directed 
graph), every element has not only its outdegree, but also its indegree 
bounded by k. 

DEFINITION 4.1. Fix integers k 2 1 and I> 0. 

(1) A finite bounded poset P has updegree bounded by k if every 
element in P has at most k covers. The maximal absolute value of the 
Mobius function on bounded posets of length I+ 1 with updegrees 
bounded by k will be denoted by p,,(k, I). 

(2) A finite bounded poset P has degrees bounded by k if every 
element in P covers at most k other elements, and it is covered by at most 
k other elements, that is, every x E P has at most k covers and at most k 
cocovers. The maximal absolute value of the Mobius function on bounded 
posets of length I + 1 with degrees bounded by k will be denoted by 
Uk 1). 

We start by collecting some simple cases and lower bounds. 

LEMMA 4.2. 

(i) ~~~(1, I)= P,,(L I)= 1 i 
for l=O, 

else. 

(ii) p”,(k, i) = pc,,(k, i) = (k - 1)’ for i=o, 1,2. 

(iii) p,,(k, I) > pL,,(k, I) >, (k - 1)’ forall l>O,k>l. 

Proof. (i) is trivial and (iii) is clear with the above. The only part 
needing proof is pL,,(k, 2) d (k - 1 )2, which follows from elementary 
counting in the possible length 3 posets. 1 

LEMMA 4.3. 

In particular, p”,(k, 1) and p,,(k, 1) are monotone in 1 for k = 2 and strictly 
monotone in 1 for k > 3. 

Proof: This follows from the series connection construction, see 
Lemma 1.1. 1 

The lower bound of Lemma 4.2 can be improved considerably. One 
construction technique is given by the proof of following proposition. We 
think that the lower bounds produced by it may well be optimal. 
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PROPOSITION 4.4. 

s 
CL,&, I) 2 max max (k-l). fl (k’c-1), (4.1) 

S>O ,*+ -..1,=1-I 
r,t I 

i= 1 

P&, I) 2 max max (k-l). Jj (k”-1). (4.2) s>o I,+ ... +r,=(/+s)/z--I 
r,> 1 i=l 

Proof: Let s>O and t,, . . . . t, > 1. For pi := k*l we define the bounded 
poset P of level type (with Z(P) = s + 2) by 

P=&kl@p#B ... @p,l@l, 

with 

IP( = (k- 1). i (Pi- 1). 
i=l 

We will now construct from P a new poset P’ with the same Mobius 
function and updegree bounded by k. For this, we insert between every 
element x > 0 of P and its pi = k” covers a complete k-ary tree (of depth ti). 
This yields, from P, a new poset P’ with updegrees bounded by k so that 
p(P) = p(P) (because we have only inserted elements that cover a unique 
element larger than 6 in P and thus do not contribute to the Mobius 
function), and I( P’) = 2 + CT= I ti = I+ 1. This proves (4.1). 

See Fig. 4.1 for an example that derives p,,(2, 3) 2 3 from the case s = 1, 
t1 = 2. 

For (4.2), we start with the poset P, 

P=@kl@p,l@ ... @p,l@kl&, 

of level type with Z(P) = s + 3 and 

Ip( = (k- I)*. n (Pi- 1). 
i= 1 

FIG. 4.1. Construction of a poset demonstrating &2, 3) > 3. 
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Now for every element that is covered by or covers k’l elements we insert 
a complete k-ary tree upwards (resp. downwards), so that we get a new 
poset P’ of length 1(P’)=(s+3)+2C;=,(ti-1)=3+Cf=,(2ti-1) and 
Mijbius function p(P’) = p(P). Figure 4.2 shows, for example, how the case 
s= 1, t,=2 gives ~,,(2,5)23. I 

We can at least partially evaluate the bounds in (4.1) and (4.2). In fact, 
for k > 2 the function f,(t) = (l/t) log(k’- 1) is strictly increasing in t, 
which implies that the maxima in the right-hand side of (4.1) are achieved 
only for s = 1 and t, = I- 1. Thus (4.1) is equivalent to 

pu,(k,f)a(k-l).(k’pl-l) for 122. (4.1’) 

Similarly, we find that for k 2 3, the function f2(t) = (1/(2t - 1)) log(k’ - 1) 
ismaximizedonNbyt=l,correspondingtos=1-2andt,=..-=t,=l. 
Thus for k 2 3, (4.2) is equivalent to 

pL,,(k, I) 2 (k- I)‘, (4.2’) 

which is not too exciting, because it does not beat the trivial lower bound 
of Lemma 4.2(iii). 

However, for k = 2 we do better. In this casef2(t) is maximized on N by 
t = 3, which (for s = $(Z- 2) and ti= 3) yields that, for k = 2 and 
1~ 2 mod 5, (4.2) is equivalent to 

&,(2, 5s + 2) 2 7”. (4.2”) 

The precise evaluation of the bound (4.2) for Q2, I) in the other cases is 
tedious. Instead, we will be content with the observation that a combina- 
tion of (4.2”) with Lemma 4.3 implies 

&,(2, I) > 7”-4”5 for 121 (4.2”‘) 

and thus 

- 

FIG. 4.2. Construction of a poset demonstrating ~,,(2, 5) 2 3. 
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COROLLARY 4.5. 

GtiNTER M. ZIEGLER 

lim 1% P,“(-T I) 1 I-cc 1 2 3 log 7. 

We will end this section with a (rather trivial) upper bound for p”,(k, I) 
and p,,(k, I). For this we note the following lemma, which does not seem 
to be well known. A. Bjorner has noted that it does not’ extend to the 
topological setting of simplicial complexes. 

LEMMA 4.6. For ever-y bounded poset P with P # @, 

Ip( <MC(P) - 1. 

Furthermore, equality holds if and only if P is a sum of chains. 

Proof: Induction on n = IPI. Let T = max(P) and choose x E T. 
Case 1. If x covers 6, then p(P) =p(P-xx) + 1 and MC(P) = 

MC(P - x) + 1, and we are done by induction. 
Case 2. If x covers an element y E P such that x is its only cover, then 

p(P) = p(P - y). Also we have MC(P) 2 MC(P - y) (since every maximal 
chain C of P- y extends to a unique maximal chain of P, which is Coy 
if this is a chain, and C otherwise). Thus the inequality holds by induction: 

Ip( = Ip(p- y)l <MC(P-- y)- 1 <MC(P)- 1. 

For equality to hold, we need Ip(P- y)l = MC(P) - 1, so that P- y is a 
sum of chains, and MC(P) = MC(P - y); that is, every maximal chain of P 
containing y extends a maximal chain of P- y. Thus the maximal chain C 
of P - y that contains x yields the maximal chain C u ( y } of P. Now y has 
no other cover than x, which implies that P is a sum of chains as well. 

Case 3. From p(P) = p(P - x) - ~(6, x), and by induction, we obtain 

IP( G IPL(P- XII + IA6 ex)I 
<MC(P-X)+MC(&X)- 2. 

Now every maximal chain C of P either is a maximal chain of P-x (if 
x 4 C), or it is a maximal chain of (6, x] (where x E C). This yields the “G” 
part of 

MC(P)=MC(&X)+MC(6,X). 

Here equality holds because every maximal chain in P - x also is a maxi- 
mal chain in P; that is, there is no y E P for which x is the only cover: 
otherwise we would be in Case 2. 
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Thus we can conclude 
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IP( <MC(P)-- 

in this Case 3, which completes the proof. 1 

From this lemma we obtain 

P,& z)<p,,(k, Z)<k’- 1, 

where the second inequality holds with equality only for I = 1 and for k = 1. 

COROLLARY 4.7. 

log k > lim log dk I) 
/L-m I 

> lim log /.dk I) ~ flog 7 for k= 2, 
/ 

/+a0 I log(k-1) for ka3. 

5. LATTICES WITH MAXIMAL MOBIUS FUNCTION 

Surprisingly, the question for the maximal Mobius function on the 
lattices with n +2 elements [7, Exercise 3.41b] turns out to be much 
harder than the same question for posets. One reason is that the conjec- 
tured extreme examples, namely, the subspace lattices L(k, q) of finite 
vector spaces, do not exist for arbitrary n, so that proofs by induction on 
the size become impossible. 

DEFINITION 5.1. For n 2 0, p,(n) is the maximal absolute value of the 
Mobius function attained on a lattice with n + 2 elements. 

As long as some of the (n + 2)-elements posets with maximal Mobius 
function are lattices, we obtain, of course, that p,(n) = p,(n); as soon as 
there is no lattice among the posets achieving pP(n), we obtain 
L%(n) < .&in). 

LEMMA 5.2. (i) pL,(0)= 1, pL,(n) = p,(n) = n - 1 for l<n<7, 
P&J < p,(n) for n 2 8; 

(ii) .~~(n+ l)>pL,(n) for n> 1. 

Proof: (i) Theorem 2.5. 

(ii) See Lemma 2.2. 1 

However, am is probably not even strictly increasing. It seems that 
reasonable asymptotics are the most one can hope for in this case. 

582a/56/2-4 
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Conjecture 5.3. (1) p,(n) = n - 1 for 1 <n < 25, ~~(26) = ~~(27) = 27. 

(2) lim, _ o. pJn)/n* = 0. 

This conjecture arises from the analysis of the @ear lattices L,(q), as 
suggested by R. Stanley. For these Ip(L,Jq))J =q(*) [7, Example 3.10.21, 
whereas [L,(q)1 is a polynomial in q of degree Lk2/4J. Thus the exponent 
2 in Conjecture 5.3(2) cannot be replaced by 2 --E for any E > 0, that is, 
Conjecture 5.3(2) is essentially best possible. 

However, if we denote by pLL(n, I) the maximal Ip(L)I attained by lattices 
with cardinality IL1 =n +2 and length bounded as 1(L)<l+ 1, then the 
linear lattices lead to the sharper conjecture 

~~(n,z)=~(n*~r(r+l)/*l-l) for 12 1. 

This is clear for I= 1 (with ,uL(n, 1) = n - l), and will follow in Proposi- 
tion 5.4 and Corollary 5.5(2) below for I= 2. 

Without length restriction, we consider p,(n) = max, pLL(n, I). For small 
values of n, the lattice of length 2 with n + 2 elements is best possible. The 
smallest lattice we know of with p(L) > 111 - 1 is the linear lattice L3(3) 
with p(L,(3))= -27 and (L,(3)1 = 26. This leads to ~,(26)>27, and a 
trivial modification of L,(3) as in Lemma 2.2( 1) leads to ~~(27) 2 27. 
In 5.3(l) we conjecture that this is best possible. 

We can get close to this with graph theory methods. 

PROPOSITION 5.4. Let L be a finite lattice with n + 2 elements (n > 1) and 
of length at most 3. Then 

n-l>p(L)Bn---t{n+J*}, (5.1) 

where the upper bound for p(L) is sharp if and only if L has length 2, and 
the lower bound holds with equality if and only if L is the lattice of a 
projective plane. 

Proof Let L be a lattice of length at most 3. Then i is ranked, with n, 
elements of rank 1 and n2 = n - n, elements of rank 2. We can consider L 
as a bipartite graph with color classes of sizes n, and n2, and with e edges 
corresponding to the cover relations in J?. Now the Mobius function of L 
is given by 

p(L)= -1 +n-e, 

which can be seen directly from the definitions or as a special case of [7, 
Proposition 3.8.51. With this we can use methods of extremal graph theory 
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to derive bounds on e. For this we note that L is a bipartite graph without 
quadrilateral (without K2,2 subgraph), which means 

O<e<z(n,, n2, 2,2) 

in the notation of Bollobas [3, p. 3093. 
With the argument from [3, Theorem V1.2.6(i)] we now derive the 

bounds e(e-n,)<n,n,(n,-1) and e(e-nz)<nzn,(n,-1). Adding up 
these two inequalities (with n, + n, = n and n, n2 < Ln/2 Jrn/2J = Ln*/4 J) 
we obtain 

42e-n)b T (n-2), 
11 

which implies (5.1). Equality in (5.1) implies n, = n, = n/2 and that L is a 
projective plane on n, points (n, = q2 + q + 1 ), as in the proof of [3, 
Theorem VI.2.6(ii)]. 1 

COROLLARY 5.5. (1) 

pL(n, 2)=n- 1 for 1 <n<24, 

24 < ~~(252) < 25, and ~~(26, 2) = 27. 

lim p,h 2) 1 -=- 

n-cc n312 fi’ 

Proof. (1) Follows from Proposition 514. For (2), see Bollobas [3, 
Corollary VI.2.71. 1 

We are far from a proof of Conjecture 5.3(2). However, a clever argu- 
ment by J. Kahn and P. Edelman (personal communication, 1988) at least 
yields that pL(n) grows subexponentially. 

PROPOSITION 5.6 (Kahn and Edelman). p,(n)<p,(n-l)+p,(Ln/ZJ-1) 
for n > 6. 

Proof: Let L be a finite lattice and x an atom of L. If p(L) # 0, then by 
Weisner’s theorem [7, Corollary 3.9.33 there is a coatom y E L such that 
x z$ y. Then [x, 11 n [a, ~1 = 0 and thus one of these two intervals has at 
most cardinality Ln/2 _I + 1. Taking, if necessary, the order dual, we may 
therefore assume 1 [x, I] 1 6 Ln/2 J f 1. Now L - x is again a finite lattice, 
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with p(L) = p(L -x) - ~(x, f ), from which we obtain the claim using the 
monotonicity of pL,(n) (Lemma 5.2(ii)). 1 

From this, standard techniques of asymptotic analysis imply p,(n) = 
4n “‘g*“); that is, lim,, m (,L(n)/2(‘og2n)2) = 0 (and thus, in particular, 
lim, + m log p,(n)/n) = 0). 
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