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Abstract 

The aim of this paper is to describe a CREW-PRAM optimal algorithm which converts a 
regular expression of size s into its Glushkov automaton in O(logs) time using O(s’/ logs) 

processors. This algorithm makes use of the star-normal form of an expression as defined by 
Briiggemann-Klein (1993) and is based on the sequential algorithm due to Ziadi et al. (1997) 
which computes an original representation of Glushkov automaton in O(s) time. @ 1999- 
Elsevier Science B.V. All rights reserved 
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1. Introduction 

PRAM model is a general framework used for describing and analyzing parallel 

algorithms. It consists of n processors working synchronously and exchanging data 

through a shared memory unit. We shall suppose here that concurrent reads are allowed, 

but concurrent writes are not (CREW-PRAM). A PRAM algorithm is said to be efficient 

if it works in a polylogarithmic time using a polynomial number of processors. It 

is said to be optimal if its sequential time (the product of its parallel time by the 

number of processors) is equal to the computation time of the fastest known sequential 

algorithm solving the problem. Our aim is to produce optimal PRAM algorithms in 

automata domain [ 131; this paper describes such an algorithm, for converting a regular 

expression into an automaton. 

There exist a lot of different sequential algorithms to convert a regular expression 

into an automaton. Watson’s taxonomy [12] is an excellent reference for such a topic. 

Up to now, Thompson’s approach [ll], which yields a non-deterministic automaton 

with E-transitions, is the only one to have been parallelized. Rytter algorithms [9] are 
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based on adaptations of Thompson’s method due to Hopcroft and Ullman [6], and to 

Sedgewick [lo]. They work on a CREW-PRAM model and are optimal; they convert 

a regular expression of size s in O(l0g.s) time using O(s/ logs) processors. 

Building an automaton from a regular expression is currently performed in order 

to test whether a word belongs to a given language or not. If the automaton has 

e-transitions, their elimination is in O(s*) sequential time. This elimination is based on 

the computing of a transitive closure, for which there is no optimal PRAM algorithm. 

It is one of the reasons why we concentrate our efforts on computing a result without 

&-transitions. 

This paper describes a CREW-PRAM parallelization of Glushkov approach [5,7] 

which yields a non-deterministic automaton without &-transitions. Our parallel algo- 

rithm is based on a new sequential algorithm described by Ziadi et al. in [8, 141. This 

sequential algorithm (named ZPC algorithm) first transforms a regular expression of 

size s into an original representation of its Glushkov automaton in O(s) time. Our 

parallelization is based on the following results: 

(1) an optimal algorithm which builds the ZPC representation in O(logs) time using 

O(s/ logs) processors, as far as the expression is in star-normal form (notion due 

to Brtiggemann-Klein [2]), 

(2) an efficient algorithm which computes the star-normal form of a regular expression 

in O(logs) time using O(s) processors, 

(3) an optimal algorithm which converts the ZPC representation into a table of tran- 

sitions in O(l0g.s) time using O(s2/ logs) processors. 

Combining 1 and 2 we get an efficient algorithm to compute the ZPC representation. 

Combining l-3 we get an optimal algorithm to convert a regular expression into its 

Glushkov automaton. 

Section 2 presents terminology and writing conventions, and recalls Glushkov con- 

struction. Section 3 briefly describes ZPC sequential algorithm and introduces the no- 

tion of star-normal form. Section 4 presents an optimal algorithm which computes 

ZPC representation for a regular expression in star-normal form. Section 5 describes 

an efficient algorithm which constructs the star-normal form of a regular expression. 

Section 6 provides an optimal algorithm which converts the ZPC representation into a 

table of transitions in O(logs) time using O(s*/ logs) processors. 

2. Definitions and writing conventions 

In this section, we first introduce the terminology and the notations used in this 

paper. With a few exceptions, these notations can be found in [8]. 

2.1. Regular expressions and hnguages 

Let C be a non-empty finite set of symbols, called the alphabet. C* represents the 

set of all words over C. The empty word is denoted by a. The symbols in C are 
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represented by the first lower-case letters such as a, b, c, . . . . Union (+>, product (e ), 

and Kleene star (*) are the classical regular operations over the subsets of Z* . Upper- 

case letters such as E, F and G represent regular expressions. In order to specify the 

position of the symbols in the expression, the symbols are subscripted following the 

order of reading. For example, starting from E = (a + c)ba we obtain the subscripted 

expression E = (al + &)b2~3. Subscripts are called positions and are represented by the 

last lower-case letters of the alphabet, such as x,y,z. The set of positions of a regular 

expression E is denoted by Pus(E). x is the application which maps each position 

in Pm(E) to the symbol of C which appears at this position in E. We denote by c 

(0 = (11, A23 * - *, A,}, where IPos(E)I =n) the subscripted alphabet. We denote by L(E) 

the language generated by the regular expression E. We denote by T(E) the syntax 

tree associated with E. If v is a node in T(E), symbol(v) is the operator or the operand 

associated with v. We write VI (resp. v,) the left (resp. right} child of v. If v has a 

single child (it is the case if v is labeled ‘*‘), this child is written u,. By E, we denote 

the subexpression rooted at v. The size IEl of a regular expression E is the length of 

its postfix form. Under the assumption that a node of T(E) and its child cannot be 

both labeled by Kleene star, it is easy to prove that IEl = 0( IPos(E)I ), Therefore, we 

will express our complexity results as functions of (El. 

2.2. Glushkov automaton 

In order to construct a non-deterministic finite automaton recognizing L(E), Glushkov 

[5] has introduced four fUnctionsI 

l Null(E) is equal to {E} if E EL(E) and 8 otherwise. 

l Ei’rst(E) is the set of initial positions of words of the language L(E). 

l Last(E) is the set of final positions of words of the language L(E). 

l Follow(E,x) is the set of positions which follow immediately the position x in the 

expression E. 

Example 1. For the expression E = (a + b)“ab, we have: 

E = (a1 + bZ )*a&i, 

Null(E) = 8, 

First(E)= {1,2,3}, 

Last(E) = {4}, 

Follow(E,l)=FoZlow(E,2)={1,2,3}, 

Follow(E, 3) = {4}, Follow(E,4) = 8. 

rhese four functions can be defined over CJ in the following way: 

AM(E) = if E E L(E) then {E} else 0 

First(E) = {x E Pm(E) I 3u E CT* : &u E L(E)} 

Last(E) = {x f Pm(E) I324 E cr* : u& E L(E)} 

Follow(E,x) = {y E Pas(E) I 31 E o*, 3w E CT* : &xAp f L(E)}. 

We shall use the following notation: for each set X, we note Ca;, the hction which 

1s equal to {E} for all x fX and 0 otherwise. 
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Proposition 1. Null(E) can be inductively computed as follows: 

Nul4-C~)) = {4 
Null(0) = 0 

Null(a) = 0 

Null(F + G) = Null(F) u Null(G) 

Null(F. G) = Null(F) n Null(G) 

Null(F*) = (8) 

Proposition 2. First can be inductively computed as follows: 

First(&) = 0 

First(0) = 0 

First(x) = lx> 

First(F + G) = First(F) U First(G) 

First(F. G) = First(F) U Null(F). First(G) 

First(F*) = First(F) 

Proposition 3. Last can be inductively computed as follows: 

Last(&) = 0 

Last(B) = 0 

Last(x) = ix> 

Lust(F + G) = Last(F) U Last(G) 

Last(F. G) = Last(G) U Null(G). Last(F) 

Last(F*) = Last(F) 

Proposition 4. Follow(E,x) can be inductively computed as follows: 

Follow(~,x) = 0 

Follow(0,x) = 0 

Follow(a,x) = 0 

Follow(F + G,x) = -O~os(~)(x). Follow(F,x) u UP,’ Follow(G,x) 

Follow(F. G,x) = .9&,,,,(x). Follow(F,x) u&,,(G)(x)’ Follow(G,x) 

u J&~(F)(~). First(G) 

Follow(F*,x) = .9poscFj(~). Follow(F,x) U 9&,&)~ First(F) 
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b 0 4 

a 

Fig. 1. Glushkov automaton of the expression E = (a I- 6)*. a. b. 

Definition 1. The Glushkov automaton ME = (QE, C, ~E,sJ,FE, x) of the expression E 

is defined as follows: 

- QE = Pas(E) u {q} 

- Va f C, 6E(sI,a) = {y 1 y E First(E) and x(y) = a} 

- b’a E .I?‘, Vx E Pus(E), ~E(x, a) = {y 1 y E Fuhv(E,x) and x(y) = a} 

- FE = Last(E) U Nulls {SI} 

Theorem 1 (Ziadi et al. [143). Let E be a regular expression and ME its Glushkou 

automaton, then L(E) = L(ME) (Fig. 1). 

3. ZPC sequential algorithm 

Let E be a regular expression of size s. A naive implementation of Glushkov algo- 

rithm leads to a 0(s3) time complexity. Briiggemann-Klein [2], Chang and Paige [3], 

and Ziadi et al. [8, 141 have proposed algorithms with an 0(s2> time complexity. The 

latter one (named ZPC algorithm) is the basis of our parallelization. We briefly describe 

it now. 

3. I. Computation of First and Last 

We consider the syntax tree T(E) and for each node v in T(E), we denote by Set(v) 

the set of leaves in the subtree whose root is v. This set will be represented by a list. 

In order to have an 0( 1) access to Set(v), v points to its leftmost leaf and to its 

rightmost leaf. The forest T’(E) which maps each node v to First(E,) is computed in 

the following way according to the Proposition 2: 

1. Initialize W(E) by T(E). 

2. For every node v labeled “.I’, cut the link to its right child v, if NuZl(E,, ) = 0, with 

respect to the statement First(F. G) = First(F) U Null(F) - First(G). 

3. For each node, update its pointers to its leftmost and rightmost leaves, and link the 

rightmost leaf of its left child to the leftmost leaf of its right child. 
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Fig. 2. ZPC algorithm for the expression E = (afbl )*’ a3’ bq, 

The forest TL(E) which maps each node v to Last(E,) is computed in a dual way 

with respect to the statement Last(F. G) = Last(G) U Null(G). Last(F) of Proposi- 

tion 3 (see Fig. 2). 

3.2. Computation of b(A4~) 

Let A, be the set of edges induced by the node v. A, is defined as follows: 

Last(E,,) x First(E,+) if v is labeled . , 

A, = Last(E,) x Fir.st(E,) if v is labeled *, 

0 otherwise. 
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On the data structure we use, cartesian products involved by d, calculus are imple- 
mented by a pointer from v[ in T’(E) to vr in V(E) if v is labeled by “.“, or from v, 
in E(E) to v, in Z”(E) if v is labeled by “*” (see Fig. 2). These pointers are called 
“follow links”. 

Proposition 5 (Ziadi et al. [14]). &WE)= (lJvET(E) d,)U ((~1) X J’ir@)). 

&ME) is not necessarily a disjoint union. ZPC algorithm eliminates redundant A, sets 
in order to get a disjoint union. The parallel algorithm we describe in the next section 
makes use of the fact that the star-normal form of the expression E also yields a 
disjoint union. 

3.3. Star-normal form 

According to Briiggemann-Klein [2], a regular expression E is said to be in star- 
normal form (SNF) if for each H such that H* is a subexpression of E, we have 

Vx E Last(H), Follow(H,x) n First(H) = 8. 

This condition is called SNF condition. 

Theorem 2 (Briiggemann-Klein [2]). For each regular expression E, there is a regular 
expression E’ called the star-normal form of E such that 

1. E’ satisfies the SNF condition, 

2. ME* =ME, 
3. ME. is computed in 0(s2) time, where s= IEl. 

In order to compute E’, Briiggemann-Klein introduces the expression E” verifying 
the following conditions: 
1. E” satisfies the SNF condition, 
2. ME”* =ME* . 

By recursively substituting each subexpression H* of E with Ho*, we obtain E’. 

Proposition 6 (Brliggemann-Klein [2]). E* can be computed by the following induc- 
tive rules: 

[E=E or 81 E’=E 

[E = a] E’=E 

[E=F+G] E’=F’+G* 

[E = F. G] E’=F’.G’ 

[E=F*] E. =FO** 
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Proposition 7. E”’ can be computed by the following inductive rules; 

[E=& or 01 E”‘=0 

[E=a] E”‘=E 

[E=F+G] E”‘=F”‘+G”’ 

if Null(F) = 0 and Null(G) = 0 

[E=F.G] 
if Null(F) = 0 and Null(G) = {&} 

if Null(F) = {E} and Null(G) = 0 

if Null(F) = {&} and Null(G) = {&} 
[E=F*] E”. =F”. 

Example 2. Computation of E’ for E = (a*b*)*ab: 

E’ = ((a*b*)*ab)’ 
= ((a*b*)*a)‘b’ 

= ((a*b*)*).a*b 
= (a*b*)“‘*ab 
= (a*‘* + b*“)*ab 
= (a” + b’*)*ab 

= (a + b)*ab 

The relation between the star-normal form and the elimination of redundant links in 

ZPC algorithm is resumed by the following proposition: 

Proposition 8 (Ziadi et al. [14]). If E is in star-normal form then: 

i@&) = H ({SC} x FirWQ). 

3.4. Modified ZPC algorithm 

In order to parallelize ZPC algorithm we modify it as follows (Fig. 3): 

b 1.a Construct the tree T(E). 

l 1.b Compute the star-normal form E’ of E. 

l 2. For each node v in the tree T(E’) compute NuZf(E:). 

l 3. Construct the forests TL(E’) and TF(E’). 

l 4. For each node v in T(E’) compute the follow links representing A,. 

4. Parallelization of modified ZPC algorithm 

In this section we suppose that the expression E verifies SNF condition. Let s be 

the size of E. We show that in this case modified ZPC algorithm can be parallelized 

in O(log s) time using O(s/ logs) processors, which is an optimal result. Steps la, 2, 

3 and 4 of modified ZPC algorithm are parallelized in the following way. 
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TO3 ‘) 

__--------_____ 
,_*- ---TL(E ‘) --._ TF(E ‘) 

,’ --. 

L&most and righttnost pointers Linking of the leaves 

Fig. 3. Modified ZPC algorithm for the expression E = (a* + b*)*. a’ b. 

4.1. Step la: T(E) construction 

We make use of the optimal parallel algorithm due to Bar-On and Vi&kin [ 11, which 

computes the syntax tree of an arithmetic expression of size s in O(logs) time using 

O(s/logs) processors. This algorithm works on a completely bracketed expression; it 

means that each subexpression is enclosed between a left and a right bracket (these 

brackets form a pair). Bar-On and Vishkin claim that an expression can be converted to 

an equivalent completely bracketed expression in O(log S) optimal time using O(S/ log s) 

processors. The syntax tree T(E) is constructed from the sequence PE of brackets of 

the completely bracketed expression E. Each node v of T(E) is associated with the pair 

of brackets enclosing the subexpression E, (see Fig. 4). In order to construct T(E), 
Bar-On and Vi&in define the function match which associates to every position i in 

PE the position j such that the brackets P&i) and P&j) form a pair. For example, in 

the Fig. 4, we have match(4) = 17 and match(5) = 10. The function match is computed 

in time O(logs) with O(s/logs) processors and so T(E) construction is achieved with 

the same complexity. 
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Fig. 4. Syntax tree of the expression E = a. (a. b + c. d) and its corresponding sequence of brackets. 

4.2. Step 2: Null computation 

We adopt the parallel algorithm that Gibbons and Rytter [4] give for the evaluation 

of an algebraic expression. This algorithm is optimal: its time complexity is O(logs) 

using O(s/ log s) processors. 

4.3. Step 3: TL(E) and TF(E) construction 

As mentioned in the previous section, TL(E) is deduced from T(E) by deleting 

every link between a node v labeled “.” to its left child VI, if Null(&) =0. Dually, 

TF(E) is deduced from T(E) by deleting every link between a node v labeled “.” to its 

right child v,., if NuZZ(E,,) =0. Links deletion is easily performed in O(1) time using 

O(s) processors. In both forests, every node v points to the leftmost leaf (leftmost(v) 
pointer) and to the rightmost leaf (rightmost(v) pointer) in the tree rooted at v. The 

computation of leftmost and rightmost pointers requires a particular attention. We 

present an optimal algorithm for achieving this step. We describe it in the case of the 

computation of leftmost pointers in TL(E) and we outline adjustments for computation 

of rightmost pointers and for computation in TF(E). Let us first illustrate it on an 

example. 

Example 3. Let E = ((a)(((a)(b)) + ((c)(d)))). We compute T(E) and TL(E). 
It appears that leftmost pointers cannot be easily computed from a standard traversal 

of TL(E). So, we make a copy T’(E) of T(E) in which we permute the subtrees rooted 

at VI and v, every time a link from a node v to its left child VI is deleted in TL(E) 
(Fig. 5). Now, we can use the trace of the top-down right suffix traversal of T’(E) to 

draw leftmost pointers. In our example, that trace is equal to alcads. azb3. +.. The last 

leaf appearing before a node v in the trace is the leftmost leaf of v. 

trace al c4 d5 . a2 b3 . + 
leftmost al c4 d5 dS a2 b3 b3 63 b3 
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T(E) T’(E) ‘WE) 

Fig. 5. Computing leftmost in TL(E) via T’(E). 

We now detail the two substeps of this algorithm (computation of trace, computation 
of leftmost pointers). 

4.3.1. Substep 1: Computation of trace 
Subtrees permutations are not physically realized; they are rather performed via a 

marking of the opening brackets of the sequence PE. For a node v, if its link to VI 
is deleted in 2X(E), the opening bracket of v[ (resp. v,) is marked by r (resp. I); 
otherwise the opening bracket of VI (resp. v,) is marked by 2 (resp. Y). By convention, 
the opening bracket of the root is marked by 1. 

In our example we have PE = (( )((( )( ))(( )( )))) an a d fi er subtrees permutations we 

get PE = (t(r>(t(l(r)(/)>(r(r>(I>)))). 

Let rank(v) be the rank of the node v in a top-down right suffix traversal of 
Our aim is to compute rank(v) without constructing Pk nor T’(E). Let A[i] 

position of the opening bracket PE[~] in the sequence of opening brackets of 
We first compute A[i] with the help of brother function defined as follows: 

brother(i) = 
match(match(i) + 1) + 1 if PE[match(i) + l] =‘)‘, 

match(i) + 1 otherwise. 

T’(E). 

be the 
T’(E). 

Then we get rank(v) by computation of prefix sums of the array A. We finally use 
rank0 to compute the trace of a top-down right suffix traversal of T’(E). The resulting 

procedure is 

begin 
Computation of positions in the sequence of opening brackets PA 
f oral1 1 <i < [PE( pardo 

case PE[i] of 
(I: begin A[i]: = 1; A[match[i]]: = -A[i]; end; 
(r: begin A[i]: = (match[brother[i]] - brother[i] + 1)/2; 

A[match[i]]: = -A[i]; end; 
end; 

Computation of ranks in T’(E) 



80 D. Ziadi, J.-M. Champarnaudl Theoretical Computer Science 215 (1999) 694’7 

prefix-sums of A 

Example 4. We consider the expression E = a(ab + cd). Prefix sums on A are denoted 

by &(A). 

i 123 4567 89 10 11 12 13 14 15 16 17 18 

PE (l (r > (I (I (r > b 1 > G (r > (/ > 1 > ) 

node ’ al al + a2 a2 b3 b3 . c4 c4 d5 d5 . + . 

A 1 8 -8 1 1 2 -2 1 -1 -1 4 2 -2 1 -1 -4 -1 -1 

C,(A) 1 9 1 2353 43 2 686 76 2 10 

trace al c4 ds . a2 b3 . + . 

Our claim is that this procedure correctly computes the trace of a top-down right 

suffix traversal of T’(E). The proof comes from Lemmas 1 and 2. 

Lemma 1. vi, 1 <i<IP,,I,z:l=afch(‘)A[k] =O. 

Lemma 2. Let v be a node and i be the position of the opening bracket in PE asso- 

ciated with the node v in T’(E). We have: rank(v) = EL=, A[k]. 

Proof. We shall note r(i) = xi=, A[k]. Lemma 2 is verified for T’(E) root since 

rank(v) = r( 1) = 1. Consider node v at position i and let us assume that Lemma 2 

holds for nodes whose positions are less or equal to i. Let g and d be positions in PE 
of opening brackets, respectively, associated with VI and v, in T’(E) (g = brother[d]). 
We are going to show that Lemma 2 holds for v, and VI. There are two possibilities: 

Case 1: g <d In this case g = i + 1. By induction r(i) = rank(v). T’(E) traversal 

is such that rank(vr) = rank(v) + 1. So we get rank(vl) = r(i) + 1. As A[g] = 1 (by 

initialization) and g = i + 1, we can write rank(vr) = C!=, A[k]. 
On the other hand, T’(E) traversal is such that rank(v,) = rank(v) + t(vl) + 1, where 

t(vl) is the number of nodes in the subtree rooted at VI. As t(vl) is equal to the 

number of pairs of brackets inside the pair associated to v[ (including this pair), 

it is easy to verify that we have t(vr) =(match[g] - g + 1)/2. Therefore, it comes 

rank(v,) = rank(v) + (match[g] - g + 1)/2 + 1. 

Let us consider now r(d)= Cz=, A[k]. We have 

r(d) = (C:=, AWI) + <C,“,:, API) + 44. 
As g = i + 1 and match[g] = d - 1, Lemma 1 implies xi,\, A[k] = 0. Moreover, 

by initialization A[d] = 1 + (match[g]-g + 1)/2. So we have r(d) = r(i) + (match[g] - 

g+1)/2+1. 
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By induction rank(v)= r(i), so we have runk(vt)=r(d). 
Case 2: g>d. 

The demonstration is similar as in the first case. q 

4.3.2. Substep 2: Computation of leftmost pointers 
Computation of leftmost pointers is achieved via a marking of trace based on the 

following lemma: 

Lemma 3. Let T be a syntax tree and A4 be a marking of the trace of a right suffix 
traversal of T. We shall assume T is not void. Suppose internal nodes are initially 

marked by 0 and leaves by 1. Then prefix sums of A4 give the same mark to nodes 

having the same leftmost leaf 

Proof. The initial value of M can be seen as a word of the language (lo*)+. For 

each subexpression lO* of such a word, nodes marked by 0 (if any) have the same 

leftmost leaf, which is the node marked by 1. All of these nodes (and only them) will 

be identically marked by prefix sums of M. 0 

We associate a processor to each element of truce. Each processor determines its 

leftmost leaf by performing the following sequence: 

begin 

Initialization of marking B 

f oral1 1 d i <s pardo 

if trace[i] is a letter then B[i]:=l else B[i]:=O; 
Computation of marking B 
prefix-sums of B 

Collecting leftmost pointers 
f oral1 1 < i <s pardo 

if trace[i] is a letter then leaf[B[i]]:=trace[i]; 
f oral1 1 d i < s pardo leftmost[i]:=leuf [B[i]]; 

end 

We shall complete the description of Step 3 by the following remarks: 

1. The computation of the rightmost pointers can be done in a similar way by 

calculating the order of the opening brackets in a prefix traversal of T(E) and by 

achieving the prefix sums in B from right to left. 

2. The computation of leftmost and rightmost pointers in the forest TF(E) is deduced 

from the construction presented on TL(E). 
3. The computation of linking of the leaves inside a same tree, works as follows. 

Associate a processor to each node v in T(E) which performs the following 

sequence: 
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begin 

join rightmost to leftmost in TL(E) 

join rightmost to leftmost(v,.) in T’(E) 

end 

4.3.3. Conclusion of Step 3: 
The computation of TL(E) and TF(E) (leftmost and rightmost pointers, leaves link- 

ing) can be achieved in O(logs) time using O(s/ logs) processors (same complexity 

as for prefix-sums). 

4.4. Step 4: Computation of the follow links representing A, 

In order to create the links representing A,, to each node v we associate a processor 

which performs the following sequence: 

begin 

case v of 

. : join VI in TL(E) to v, in TF(E) 

* : join v, in TL(E) to v, in TF(E) 
end 

end 

This sequence is achieved in constant time using O(s) processors. 

4.5. Conclusion 

The result of these successive steps is illustrated by Fig. 6. With respect to the 

complexity of each step, we can state the following theorem: 

Fig. 6. 7X(E) and T’(E) for E = a(ab + cd). 
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F(E’*) F(E? T(f ) 

Fig. 7. The forests associated to (a*b*)*ab. 

Theorem 3. Let E be a regular expression of size s, verifying SNF condition. The 
Glushkov automaton of E represented by the forest of Lasts, the forest of Firsts and 
the follow links can be computed by an optimal parallel algorithm of time complexity 

O(logs) using O(s/ logs) processors on a CREW-PRAM. 

5. Computation of the star-normal form 

Let E be a regular expression and T(E) its syntax tree. We assume that the function 
father0 has been computed on T(E). The problem is the following: given T(E), build 
T(E*), the syntax tree of the star-normal form E’ of E. We consider the forests F(E’ ) 
and F(E”‘) associated to the expressions E’ and E”’ (see Section 3) and constructed 
as follows: 

(a) F(E’) and F(E”‘) are initialized by a copy of T(E), 

(b) The computation of E’ according to Theorem 3 partitions F(E*) (resp. F(E”)) 
into subtrees inside which internal nodes are evaluated without jumping in F(E"' ) 

(resp. F(E*)). We modify the function father0 in both forests in order to represent 
these partitions. Moreover, in F(E”‘), we replace the operator “.” by the operator “+” 
with respect to the definition of (G . A!)‘* and we replace the operator “*” by the 
identity operator “0” with respect to the definition of (E*)‘*. Fig. 7 gives the repre- 
sentation of the function father0 in the forests F(E*) and F(E”) for the expression 
E = (a*b*)*ab. 

We denote by v(E’) (resp. v(E”‘)) the node of F(E’) (resp. F(E”‘)) corresponding 
to the node v of T(E). We associate a processor to every node v in T(E) and each 
processor performs the following sequence: 

begin 
case symbol(v) of 

.: case (Null(E,,),(Null(E,r)) of 
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(03 0) 
HE), 0) 

(09 {&>) 
end 

. begin futher(vl(E”‘)) :=nil; futher(v,(E”)):=nil; end; 

I father(u,(E”‘)): = nil; 

: fither(u,(E”‘)):= nil; 

*: begin @her(v,(E’)):= nil; symbo~(u(E”‘)): = “’ end; 

end; 

end 

This construction is achieved in constant time using O(s) processors. 

The problem is now to deduce T(E’) from F(E’) and F(E”‘). We denote by v* 

the node of T(E’) corresponding to the node v of T(E). We associate a processor to 

each node v of T(E). Each processor must decide whether V* = v(E’) or v* = v(E”*). 
A sequential solution to this problem would be typically recursive. We need some 

technique to make a local decision. This technique is illustrated on a simplified case 

where trees are replaced by lists, as shown in Fig. 8. 

Let L,=(ao,at,... , a,) and Lb = (bo, bt,. . . , b,) be two lists. We arbitrarily suppress 

some links in each list, with respect to the condition: 

V’i, 0 < i <n, (next(q) = nil) A (next(bi) = nil) =fuZse 

L, and Lb are now collections of lists. Our aim is to compute the list L = (CO, cl,. . . , c,) 

from L, and Lb such that: 

- c()=uo 

- Vi, O<i<n, if Ci=Ui 

then ci+l = 
Uift if tZeXt(Ui) # nil 

else Cifl = 
bi+t if Hext(bi) # nil 

bi+l otherwise ai+t otherwise 

Let x be an element of list. We call rank of x the distance d(x) of x to the head of 

the list. The assignment of ai or bi to ci can be locally decided from d(ai) and d(bi), 

using the property: d(ai) > d(bi)Hci = ui. 

This technique extends to the case of forests (see Fig. 7); d(v) is the distance of 

node v to the root of the tree it belongs to; d(v) is computed by doubling technique, in 

O(logs) time using O(S) processors. Each processor performs the following sequence: 

a0 al a2 a3 a4 a5 a6 a7 a8 a9 a10 

r, 

L, 

b0 bl b2 b3 b4 b5 ‘$6 b7 b8 by’ b10 

--A0 
0 10 10 12 3 4 5 0 

a0 al a2 a3 a4 a5 b6 b7 b8 b9 a10 
L 

Fig. 8. “Lists stitching”. 
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begin 

if d(v(E”* )) > d(v(E’)) 

then symbol(v'):= symboZ(v(E”‘)) 

else symbol(v’):= symboZ(v(E*)); 

end 

Finally we can state the following theorem: 

Theorem 4. T(E’) can be computedfrom T(E) in time O(logs) using O(s) processors 

on a CREW-PRAM, 

6. Computation of the sets Follow(E,x) 

In this section we assume that E is in star-normal form. We show that, in this 

case, it is possible to compute the set Follow(E,x), for x E Pas(E), as a linked list 

L, of states in time O(logs) using O(s/ logs) processors in a CREW-PRAM model. 

The position x is also a leaf of TL(E). We consider the nodes Ai, 12,. . . , A,,, which are 

ancestors of x in the tree containing X, and which are heads of a follow link. Let us 

denote QX={&,&,..., &} the set of associated tails. As E is in star-normal form, 

the follow links going from the ancestors of x are such that the sets of positions of the 

subtrees rooted at 41, C/Q,. . . , & are disjoint sets. Thus, the list LX can be computed 

by the following algorithm: 

begin 

1 Construction of the list @X={&,$2,...,&,) 

2 forall 1 <i<m- 1 pardo 

3 join rightmost(&) to leftmost(&+l) 
4 join Lx to leftmost 
end 

Let us analyze the complexity of this algorithm. First we show that Step 1 can 

be achieved in time O(logs) using O(s/ logs) processors. We shall make use of PE, 

the sequence of brackets associated to E. Let i be the position in PE of the opening 

bracket associated to the node x, and r be the position of the opening bracket associated 

to the root of the tree of TL(E) containing x. We shall assume that every opening 

bracket is labeled with the rank of the corresponding node in T(E). Let us consider 

the subsequence S = PE[Y] . . . PE[~]. The reduced sequence [4] S’ of S can be obtained 

by deleting the brackets PE[~] such that j E [r,i] and match[j] E [r,i]. For example, 

if S = )(( ))((, then S’ = )((. S’ can be computed in time O(logs) using O(s/ logs) 

processors [4]. Let us remark that S’ is exactly the sequence of opening brackets 

associated with the ancestors of x. Among these ancestors we eliminate those which 

are not heads of follow links and then we compute QXa,, in time O(logs) using O(s/ logs) 

processors. 
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It is easy to see that Steps 2-4 can be achieved in time O(log s) using O(s/ logs) 

processors. So the computation of all the sets FolZow(E,x) can be done in time O(logs) 

using O(s2/ logs) processors in a CREW-PRAM. 

Theorem 5. Let E be a regular expression of size s. Glushkov automaton associated 

to E can be computed in time O(logs) using O(s2/ logs) processors in a CREW- 

PRAM. 

7. Conclusion 

We have described an optimal parallel algorithm to compute ZPC representation of 

the star-normal form of an expression and an efficient algorithm to compute the star- 

normal form of an expression. They combine in an efficient algorithm (O(logs) time 

using O(s) processors) to compute the ZPC representation of an expression. We do not 

know whether there exists an optimal algorithm to compute the star-normal form of 

an expression, but we provide an optimal algorithm to convert the ZPC representation 

of an expression verifying SAY’ condition into a table of transitions (O(logs) time 

using O(s*/ logs) processors). Thus we finally get an optimal algorithm to convert 

a regular expression into its Glushkov automaton, in O(logs) time using 0(s2/ logs) 

processors. 
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