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Abstract-In this paper, we prove the existence of mild and strong solutions of nonlinear time 
varying delay integrodifferential equations of Sobolev type with nonlocal cqnditions in Banach spaces. 
The results are obtained by using the theory of compact semigroups and Schaefer’s fixed-point theo- 
rem. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The problem of existence of solutions of semilinear differential equations and integrodifferential 
equations in Banach spaces has been studied by several authors [l-7]. Byszewski [8] has es- 
tablished the existence and uniqueness of mild, strong, and classical solutions of the following 
nonlocal Cauchy problem: 

duct) 
dt + Au(t) = f(t, u(t)), t E (%a], 

u(to) fg(t1,tz , . . . It,, 4.1) = uo, 

where 0 5 to < tl < . .. < t, 5 a, a > 0, -A is the infinitesimal generator of a Co-semigroup 
in a Banach space X, ug E X, and f : [O, a] x X + X, g : [0, a]” x X + X are given functions. 
Subsequently, he has investigated the same problem for different types of evolution equations in 
Banach spaces [g-12]. Many papers have been written on nonlocal Cauchy problems for various 
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classes of differential and integrodifferential equations [13-191. Physical motivation for this kind 
of problem is given in [8-11,201. 

Brill [21] investigated the existence of solutions for a semilinear Sobolev evolution equation in a 
Banach space. Existence theorems for Sobolev type equations in Banach spaces have been proved 
in papers [22-251. These types of equations arise in various applications such as in the flow of fluid 
through fissured rocks, thermodynamics, and shear in second-order fluids (see [24]). Recently, 
Balachandran et al. [26] discussed the problem for nonlinear integrodifferential equations of 
Sobolev type with nonlocal conditions in Banach spaces. In this paper, we shall establish the 
existence of solutions of time varying delay integrodifferential equations of Sobolev type with 
nonlocal conditions by using the compact semigroup and the Schaefer theorem. 

2. BASIC ASSUMPTIONS 
Consider the nonlinear time varying integrodifferential equation of Sobolev type with nonlocal 

condition of the form 

@u(t)) + Au(t) = f(4 u(m(t)), . . . , u(dt)), 
I 

t 
k(t,s)h(s,u(a,+l(s)))ds), t E P,al, (1) 

0 

u(O) +9(u) = ‘110, (2) 

where f : I x X*+’ + Y, k : A --+ R, h : I x X -+ X, and g : X + X are given functions. 
Moreover,ai:I+I,i=l,..., n+l, are continuous functions such that oi(t) 5 t, i = 1, . . . , n+l, 
and us E D(E). Let I = [O,a] and A = {(t,s) : 0 5 s 5 t 5 a}. We assume the following. 

(i) For each t E I, the function f(t,.,. . . , .) : Xn+’ -+ Y is continuous and for each 
. , u,+l E X, the function f(., ~1,. . . , u,+l) : I -+ Y is strongly measurable. 

(ii) iz’dach t E I, the function h(t, .) : X -+ X is continuous and for each u E X, the function 
h(., u) : I + X is strongly measurable. 

(iii) For every positive integer r, there exists h, E L1(I) such that 

sup 
l4lr II ( f 6 u(m(t)), . . . ,4%(t)), I 

t 
k(4 s)h(s, 4nz+l(s))) ds I b(t). 

0 

DEFINITION 2.1. (See /7].) A continuous solution u(t) of the integral equation 

u(t) = E-‘T(t)Euo - E-‘T(t)Eg(u) + 
s 

t 
E-‘T(t - s)f s, u(ci(s)), . . . , u(an(t)), 

0 ( 

s 

S 

k(s,~)h(T,~(a,+l(7)))dr ds 
0 > 

is called a mild solution of (l),(2) on I. 

DEFINITION 2.2. (See /7].) A f unction u is said to be a strong solution of problem (l),(2) on I 
if u is differentiable almost everywhere on I, u’(t) E L’(I,X), u(0) + g(u) = ug and 

I 
t 

(Eu(t))’ + Au(t) = f t, u (al(t)) , . . . , u (dt)) , k(t, s)h (s, ‘11 (an+l(s))) ds 
> 

, a.e. on I. 
0 

In order to prove our main theorem, we assume certain conditions on the operators A and E. 
Let X and Y be Banach spaces with norm 1.1 and ]] .]I, respectively The operators A : D(A) c 

X -+ Y and E : D(E) c X 4 Y satisfy the following hypotheses. 

(Hi). A and E are closed, linear operators, 

(Hz). D(E) c D(A) and E is bijective. 

(Hs). E-’ : Y --) D(E) is continuous. 
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Hypotheses (HI) and (Hz) and the closed graph theorem imply the boundedness of the linear 
operator AE-’ : Y + Y and -AE-’ generates a uniformly continuous semigroup T(t), t > 0, 
of bounded linear operators from Y into Y. 

(Hb). For some X E p(-AE-‘), the resolvent set of -AE-l, the resolvent R(X, -AE-l) is a 
compact operator. 

Let T(t) be a uniformly continuous semigroup and let A be its infinitesimal generator. If the 
resolvent set R(X : A) of A is compact for every X E p(A), then T(t) is a compact semigroup [7]. 

From the above fact that -AE-’ generates a compact semigroup T(t), t 1 0, and so rnaxteJ 
IIT(t)II is finite and denote o = IIE-rll. W e need the following fixed-point theorem to prove our 
results. 

SCHAEFER'S THEOREM. (See 1271.) Let Z be a normed linear space. Let F : 2 + Z be a 
completely continuous operator, that is, it is continuous and the image of any bounded set is 
contained in a compact set, and let 

C(F) = {z E 2 : x = XFx, for some 0 

Then either C(F) is unbounded or F has a fixed point. 

< x c 1). 

3. EXISTENCE THEOREMS 

THEOREM3.1. Letf :IxX”+‘+Yandh:IxX + X be functions satisfying Conditions (i)- 
(iii). Assume that (HI)-(Hd) hold. firther assume the following. 

(iv) There exists a continuous function m : I --) [0, 00) such that 

IW, u)l 5 W)fW)~ 

where R : [0, 00) + (0, co) is a continuous nondecreasing function. 
(v) There exists a continuous function p : I + (0, 00) such that 

Ilf (4 Ul, a.. , wa+1)ll I PWO (lwl + .-* + l%a+11), 

where Rc : [0, oo) + (0, oo) is a continuous nondecreasing function. 
(vi) k : A + R is a measurable function such that there exists a constant L > 0 such that 

IW, s)l I L for t > s I 0. 

(vii) T(t) is a compact semigroup and there exists a constant M > 0 such that 

IIWII I M. 

(viii) g : C(I : X) + D(E) c X, is continuous, compact, and there exists a constant G > 0 
such that 

lIEg(u 5 G, for 21 E C(I : X). 

Further, if 

J 
a 

m*(s) ds < 
0 Jrn ds 

c Qo(s) + O(s) 

where c = crnM( IJEucII + G) and m*(t) = max{naMp(t), Lm(t)}, then problem (l),(2) has at 
least one mild solution on I. 
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PROOF. We establish the existence of a mild solution of problem (l),(2) by applying the Schaefer 
fixed-point theorem. First, we obtain a priori bounds for the mild solutions of problem (3),(4), 
a.9 in [18], 

J 
t 

W(t))’ + Au(t) = Xf 4 ‘1~ (m(t)) , . . . ,u (a,(t)) , k(t, s)h (3, u (~+l(s))) ds , (3) 

u(O) = x (%l - s(u)) 7 x E” (0,l). (4) 

Let u(t) be a mild solution of problem (3),(4). Then from the equation 

u(t) = XE-‘T(t)Euo - m-‘T(t)Eg(u) 

s 

t 
+A E-QYt - s)f s,?J (al(s)),.. .,~(%(S)), 'k(s,s)h(7,~(0,+1(7))) d7. ds, 

0 s 0 > 

we have 

b(t)\ I cd lIEuoIl + aMG 

+M s,u(~l(s)),...,~(~,(s)), 
s 

‘k(s,7)h(r,?1(0,+1(~))) dr ds 
0 

jaM,,Euo,,+aMG+M~ [ ap(s)flo b(m(s))I+... f IU(GJS))l 

+ os I~(s,~)I Ih (~,~(G+I(T))) W] ds J 
5 crM llEuoII + aMG + CYM 

6’ 1 
P(s)ao b (a1(s))l+ ... f l~(%(S))I 

J s +L m(T)fl (b (&x+~(T))i) d7 ds. 
0 I 

Let us take the right-hand side of the above inequality as v(t). Then we have v(0) = aM(IIEuo)( 
+G), b(t)1 I v(t), 

t 
v’(t) < aMp(t 

[ 
Iu (n(t))1 + .. . + 1~ (~(t))l + L 

s m(sP (lu.(~+l(s))I) ds 
0 I 

[ J t L aMp(t 2, (m(t)) + . . . + v (a,(t)) + L m(s)Q (v (0,+1(s))) ds 
0 I < crMp(t)flo v(t) + . . + + w(t) -I- L J t m(s)Q (v (an+l(s))) ds 

0 1 
since Y is obviously increasing and ai 5 t, i = 1, . . . , n + 1. 

Let w(t) = m(t) + L si m(s)Q(v(s)) ds. 
Then w(0) = nv(0) = c, w(t) 5 w(t), 

w’(t) = m’(t) + Lm(t)n(?J(t)) 

I naMP(t)ao(w(t)) + -Wt)Ww(t)) 

I m*(t) [flo(w(t)) + fi(w(t))l . 

This implies 

s 

w(t) ds 

s 

a CC 

W(o) no(s) + R(s) 5 o m*(s)ds < 
ds 

Q,(s) + Q(s). 
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This inequality implies that there exists a constant K such that w(t) 5 K, t E I, and hence, 
u(t) < K where K depends only on a and on the functions m, p, 520, and 0. 

Next we prove that the operator F : B = C(I, X) -+ B defined by 

(Fy)(t) = E-%!‘(t)&, - E+(t)+(y) 

s t + E-‘T(t - s)f s, Y (m(s)) 
0 

is a completely continuous operator. 
Let B, = {y E B : ((y(( 5 T} for some T 2 1. We first show that F maps B, into an 

equicontinuous family. Let y E B, and tl, t2 E I and E > 0. Then if 0 < E < tl < t2 5 a, 

II (h) - (FY) W It 

I llT(h> - T(tz)llQ(II~uoll + IlJ%(Y)Il) + Jil~ll(Wl -s) -T@2 - s))ll 
0 

x f s,y(a(s)),..., 
II ( 

Y (%(S)) ,I’ kc% TN (77 Y (%+1(~))) q I/ ds 

+ 
s 

t2 a IIT (tz - s)ll 
t1 

s, Y (cl(s)), . . . , Y (G(S)) 7 ls Vs, dh CT Y (an+~(~))) di) Ij ds 

s t1 

I IIT (tl) - T (t2)ll a Wuoll + G) + Q Il(T (tl - s) - T (tz - s))ll h-(s) ds 
0 

tz 
+ 

s 
CY IIT (tz - s)ll h,(s) ds. 

t1 
As t2 - tl -P 0, the right-hand side of the above inequality tends to zero since the compactness of 
T(t) for t > 0 implies the continuity in the uniform operator topology. Thus, F maps B, into an 
equicontinuous family of functions. It is easy to see that the family FB, is uniformly bounded. 

Next we show that FB, is compact. Since we have proved that FB, is an equicontinuous 
family, it is sufficient, by the Arzela-Ascoli theorem, to show that F maps B, into a precompact 
set in X. This is clear when t = 0, the set Fy(0) = { 2~0 - g(y)} is precompact in X, since g is 
compact. 

Let 0 < t < a be fixed and e a real number satisfying 0 < e < t. For y E B,, we define 

(F,y) (t) = E-‘T(t)Euo - E-‘T(t)Eg(y) 

+ 
s 

t--E 
E-‘T(t - s)f 3, Y (‘~1 (s)) , . . . , Y (G(S)) , 

0 J 

s 
k (s, T) h (7, Y (cn+l CT))) dr ds. 

0 > 

Since T(t) is a compact operator, the set Y,(t) = {(Fey)(t) : y E B,.} is precompact in X, for 

every E, 0 < E < t. Moreover, for every y E B,., we have 

II (b)(t) - (Q/)(t) II 

I i;, (Y l/W - s)f (s, Y (a(s)) 3.. ., Y (4s)) 1 Jd’ k(s, 7)h (7, y (an+l(T))) d7) j/ ds 

s 

t 
I allT(t - s)lIh,(s) ds. 

t--c 

Therefore, there are precompact sets arbitrarily close to the set { (Fy)(t) : y E BT}. 
Hence, the set {(Fy)(t) : y E B,} is precompact in X. 
It remains to be shown that F : B -+ B is continuous. Let {I+} be a sequence such that 

uj + u in B. Then there is an integer q such that (Iu~(( 5 q for all j and ((u(( < q, t E I, and so 
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uj E B, and u E B,. By (i) and (ii), 

f (k “j (Cl(G), . . * 3 Uj (%(t)), St qt, s)h (s, uj (a,+1(s))) ds) 
0 

-f t,21(a1(t)),...,u(a,(t)), 
( s 

t 

w, s)h (%U (%+1(S))) ds , 
0 > 

for each t E I and since 

t, Uj (m(t)) , . . . , Uj (an(t)) 1 
s 

t 

k(t, s)h (s,Uj (0,+1(s))) ds 
0 > 

-f (t, u (al(t)) , . . . , u (dt>) 3 Jo’ k(t, s)h (s, u (on+l(s))) ds) (1 I 2&(t), 

we have, by dominated convergence theorem, 

llFUj - Full 

Ill 

t 

I( 
3 

= sup E-lT(t - s, .f s, Uj (cl(S)) 7 *. . ,Uj (a,(t)), ~(ST T)h (7, Uj (on+~(~))) d7 
tcr 0 J 0 > 

-f s,u((Tl(S)),...,u(~,(t)), 
( J ‘k(s,~)h(r,u(o,+l(r))) d7 >> (I ds 

~~:pi,‘~~~-‘rct~~~~~I(~(~~~j~~l~~~~~~~~~~j~~~~t~~~ Jak(s,r)h(7ruj(~~+l(T)))d7) 
0 

-f(s,u(ul(s)),..., U (an(t)) 7 Is k(s, ~)h (~5 U (G+I(T))) dT) } [ ( ds -+ 0, asj+co. 

Thus, F is continuous. This completes the proof that F is completely continuous. 

We have already proved that the set C(F) = {y E B : y = XFy, X E (0, 1)) is bounded and, by 
Schaefer’s theorem, the operator F has a fixed point in B. This means that problem (l),(2) has 
a mild solution. 

THEOREM 3.2. Let Assumptions (i)-( viii in Theorem 3.1 be satisfied and the following addi- ) 
tional assumptions hold. 

(ix) Y is a refJexive Banach space and B, = {y E B : JIy(I 5 T}. 
(x) f : I x xn+l + Y is continuous in t on I and there exists constants NO > 0 and N > 0 

such that 

Ilf (t, ‘111,. . . , wz+~)ll I No, 
Ilf (s, Ul, . . ’ , x+1) - f (C 211,. . . , G+I) II 5 N [Is - tl + IN - ~1 I + . . . + lun+l - ~+ll] , 

s, t E I, ui,vi E Br, i=l,...,n+l. 

(xi) k : A + R is such that there exists a constant L* > 0 such that 

(k(t, 7) - k(s, 7)l I L*Jt - sl. 

(xii) u is the unique mild solution of problem (l),(2) and there is a constant y such that 

IU(ai(s)) - U(ai(t))l I YlU(S) - U(t)17 fort,sEIandi=l,..., n. 

Then u is the unique strong solution of problem (l),(2) on I. 
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PROOF. Since all the assumptions of Theorem 3.1 are satisfied, then problem (l),(2) possesses 
a mild solution u which, according to Assumption (xii), is the unique mild solution of prob- 

lem O),(2). 
Now we show that this mild solution is the unique strong solution of problem (l),(2) on I. For 

any t E I, we have 

u(t + h) - u(t) = E-‘[T(t + h) - T(t)]EuO - E-‘[T(t + h) - T(t)]Eg(u) 
h 8 

+ 
J 

E-IT@ + h - s)f(s, u(m(s)), . . . , u(~(s)), 
J 

Vs, 7.jN.r, ~(G+I(T))) do) ds 
0 0 

J 

t+h 
+ E-‘T(t + h - s)f(s, 401(s)), . . . ,4on(s)), 

h J 
a k(s, T)~(T, u(~+l(~))) d7) ds 

0 

- 
J 
of E+(t - s)f(s, u(al(s)), . . . ,~G(s)), 1’ k(s, TM’r, 4gn+lb))) W ds. 

From our assumptions, we have 

IMt + h) - 4t)ll 5 Q: IPYt + h) - VIII (lIEuoIl + lIEg(~) + QMNo~ t + 
J II E-‘T(t-s) 
0 H 

f s+h,u(u~(s+h)) ,..., u(a,(s$h)), 

X 
J 

s+h 

k (s + h, 7) h (7, u (G,+I (7))) dT 
0 > 

-f 

( 
s,u (al(s)),*. .,~(%(S)) 3 J 

’ k(% r)h (7, u (%+1(7))) dT )IIl ds 
0 I a IIT@ + h) - W)II W~oll + llJQ(~)ll) + aMh (No + Na) 

+ crMN [J ot(l~(o~(s + h)) - 4al(s>)l+.~.+ b(~(s + h)) - u(an(s))l)ds 
s+h 

+a IJ kb + h, T)h(T, ‘1L(Gx+l(~))) dT - 
0 J 

s 
k(s, .r)h(7., u(%+l(T))) &- 

0 II 5 a,hM ((AE-‘(1 (lIEuall + G) + cxMh (No + Na) 
t 

+ aMNah (L*a + L) + ctMN 
J 

ny)u(s + h) - u(s)/ ds 
0 

5 Qh + P 
J 

ot lu(s + h) - u(s)1 ds, 

where 

Q = aM IjAE-l/l (IJEuoII + G) + crM (NO + Na) + aMNa (L*a $ L) , 
P = cqMNn. 

Using Gronwall’s inequality, we get 

IMt + h) - 4t)Il 5 hQeP4, t E I. 

Therefore, u is Lipschitz continuous on I. 
The Lipschitz continuity of u on I, combined with (xc), gives that 

J 

t 
t,2L(61(t)),...,21(6,(t)), k(t,s)h(s,u(a,+l(s))) ds 

0 > 
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is Lipschitz continuous on I. Using Corollary 2.11 in Section 4.2 in [7] and the definition of strong 
solution, we observe that the linear Cauchy problem 

(Wt))‘+Mt) =f t,u(u.l(t)),...,~(u,(t)), 
J 
tk(t,s)h(s,u.(un+l(~))) ds , 

0 > 
40 = uo - 9(4 

has a unique strong solution v satisfying the equation 

w(t) = E-‘T(QE 2L(J - E-‘T(t)Eg(~) 

+ Lt E-V@ - s)f (s, u (Q(S)) , . . . , u (GM) > /-’ 4s, TP (7,~ (u,+I(T))) dr) ds 
Jo 

= u(t). 

Consequently, u is the 

\ Jo / 

unique strong solution of problem (l),(2) on I. 

4. EXAMPLE 

Consider the partial integrodifferential equation of the form 

$[z(t, x) - %(&x)1 = g&,x) + 
(1+ t)ii +@) [ J t z(sin t, z) + sin z(t, z) e-r(sins~r) ds , 

0 1 o<x<n, t E J = [O,l], (5) 

z(0, t) = z(x, t) = 0, t E J, z(x, 0) + 9(z) = 20(x) E c*p, .rr], 

where g(z) = /: z(s, x) d s, a < 1, satisfies the Lipchitz condition. 
Take X = Y = L*[O, ~1 and let 

J t sin '(tT z, t -+inS,l) & 
4 s)h(s, 44s)Nz) ds = Cl + tJ Cl + tzj o e J 7 

0 

f(t,.ddt)) I'k(t,s)h(s,z(a(s))ds(z) = c1 +t);l +t2) 3 
J t z(sin t, x) + sin Z(t, x) e-z(sins~s) ds . 

0 I 

Define the operators A : D(A) c X --) Y and E : D(E) c X -+ Y by 

Aw = w” and Ew = w - w”, 

where each domain D(A) and D(E) is given by 

{w E X : w, w’ are absolutely continuous, w” E X, w(0) = W(T) = 0). 

Then A and E can be written, respectively, as 

00 

Aw = ~n*(w,w,)w,, ‘w E WA), 
n=l 

Ew = F (1+ n”) (w, wn) wn, w E D(E), 
n=l 
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where w,(x) = msinnx, n = 1,2 ,..., is the orthogonal set of vectors of A. Furthermore, 
for w E X, we have 

AE-‘w = g s (w, w,) wz, 

T(t)w = 2 exp (ff$) (w, w,) wn. 
T&=1 

It is easy to see that AE-’ generates a strongly continuous semigroup T(t) on Y and T(t) is 
compact such that IT(t)1 5 eet for each t > 0. Further, we have 

(1+&+@) [ 
z(sint, x) + sin z(t, x) 

s 

t 
e-‘@” ‘lz) ds 

0 II 
Moreover, all the other conditions stated in Theorem 3.1 are satisfied. 
mild solution on [0, 11. 
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